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Abstract. For every pair of inverse systems X, Y in a category A, where Y is cofinite,
there exists a complete ultrametric structure on the set pro∗-A(X,Y ). The corresponding
hom-bifunctor is the internal and invariant Hom of a subcategory, containing tow∗-A, in
the category of complete metric spaces. Several applications to the shapes (ordinary, coarse
and weak) are considered.
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1. Introduction

In seeking a natural structure of the shape morphism sets ([3, 4, 13 – 17, 20, 21]
and some others) it has become clear that, in general, there is no unique topological
structure on those sets. The original idea was to consider the shape morphisms as
certain classes of Cauchy sequences, i.e., to obtain the shape as a Cantor completion
process. However, their starting point was not (except [20, 21]) a (pseudo)metric on a
pro-morphism set. Although not unique, the obtained (ultra)metric and topological
structures on the shape morphism sets yield some interesting and useful results.
For instance, they permit relations between rather distant theories and the shape
theory. Further, they admit constructions of some new shape invariants, in addition
to simpler expressions of the old ones by means of the new technique.

In this paper (similarly to the previous two, [20, 21]) we obtain, by metric tools, a
better view into coarse and weak shape type classifications, especially for metrizable
compacta. Our starting point is a naturally existing countable decreasing family of
equivalence relations on a set inv∗-A(X,Y ), where A is an arbitrary category. It
induces a pseudoultrametric whenever the codomain inverse system Y is cofinite,
[22]. By passing to the quotient set pro∗-A(X,Y ) we obtain the ultrametric space
(pro∗-A(X,Y ), d∗), denoted by (Y X∗, d∗), which is complete (Theorem 1). More-
over, this metric structure is an extension of the known one on pro-A(X,Y ), [20],
such that the canonical injection of pro-A(X,Y ) into pro∗-A(X,Y ) is an isometric
closed embedding of (Y X , d) into (Y X∗, d∗) (Theorem 2).

Further, we consider the hom-bifunctor

hom : (pro∗-A)op × (pro∗-A)→ Set,
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and establish the sufficient condition for hom to be an internal Hom, i.e., to be
continuous with respect to the category Mc of complete metric spaces (Lemma 4
and Theorem 4). Especially, hom is (uniformly) continuous for inverse sequences
(Corollary 2), i.e., there exists

Hom : (tow-A)op × (tow-A)→Mc.

Furthermore, we have found the sufficient condition for hom to be invariant (The-
orem 5). Especially, hom, i.e., Hom is invariant (and uniformly continuous) for all
inverse sequences (Theorem 6).

At the end, in Section 5, there follows several applications of the new results
and technique to get a better view into classifications by shapes, especially, by the
coarse shape. We define the coarse equivalence and uniform coarse equivalence
(as the analogues and improvements of the Borsuk quasi-equivalence, [1, 2, 19]) -
both of which are coarser than the coarse shape type. At the very end we have
constructed a new complete ultrametric structure on a set pro∼∗ -A(X,Y ) which is
naturally comparable to that on pro∗-A(X,Y ). It is obtained by slightly changing
the known one of [21]. Namely, the old one was incomparable to that on pro-A(X,Y )
as well as to that constructed hereby on pro∗-A(X,Y ). In the new setting the
injections of pro-sets induce the isometric closed embeddings of the spaces (Y X , d)
and (Y X∗, d∗) into (Y X∗ , d∗) (Theorem 11). Since pro∼∗ -A(X,Y ) is a realizing set
for the weak shape morphisms, we may conclude that in some categories, especially
for compact metrizable spaces, there exist canonical complete ultrametric structures
on the shape, coarse shape and weak shape morphism sets, Sh(X,Y ), Sh∗(X,Y )
and Sh∗(X,Y ) respectively, such that the natural (functorial) injections

Sh(X,Y )→ Sh∗(X,Y )→ Sh∗(X,Y )

are isometric closed embeddings (Corollary 8).

2. Ultrametric on a pro∗-morphism set

First of all, recall the complete ultrametric structure on a set pro-A(X,Y ), [20].
Let A be a category (our category terminology is based on [6]) and let inv-A be the
corresponding inv-category of A, [11], i.e., the objects of inv-A are all the inverse
systems X = (Xλ, pλλ′ ,Λ) in A, and inv-A(X,Y ) is the set of all morphisms

(f, fµ) : X → Y = (Y µ, qµµ′ ,M),

defined by the following condition

(∀µ ≤ µ′)(∃λ ≥ f(µ)) f(µ′)fµpf(µ)λ = qµµ′fµ′pf(µ′)λ.

The composition is defined by (g, gν)(f, fµ) = (fg, gνfg(ν)), and the identity on an
X is (1Λ, 1Xλ).
Two morphisms (f, fµ), (f ′, f ′µ) : X → Y of inv-A are said to be equivalent (ho-
motopic), denoted by (f, fµ) ' (f ′, f ′µ), provided every µ ∈ M admits a λ ∈ Λ,
λ ≥ f(µ), f ′(µ), such that

fµpf(µ)λ = f ′µpf ′(µ)λ.
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This relation is an equivalence relation that is compatible with composition in inv-A.
Therefore, there exists the corresponding quotient category (pro-category) inv-A/('
) ≡ pro-A. A morphism [(f, fµ)] of pro-A is denoted by f .

Given two morphisms (f, fµ), (f ′, f ′µ) : X → Y of inv-A, and µ ∈ M , (f, fµ)
is said to be µ-homotopic to (f ′, f ′µ), denoted by (f, fµ) 'µ (f ′, f ′µ), provided there
exists a λ ∈ Λ, λ ≥ f(µ), f ′(µ), such that

fµpf(µ)λ = f ′µpf ′(µ)λ.

Then the relation 'µ is an equivalence relation on each set inv-A(X,Y ), 'µ′ implies
'µ whenever µ ≤ µ′, and 'µ for all µ ∈ M is equivalent to ' (Lemma 2.2 of
[20]). Further, if (f, fµ) 'µ (f ′, f ′µ), then (f, fµ)(h, hλ) 'µ (f ′, f ′µ)(h, hλ), while
(f, fµ) 'µ (f ′, f ′µ) implies (g, gν)(f, fµ) 'ν (g, gν)(f ′, f ′µ) whenever g(ν) ≤ µ.

Given a λ ∈ Λ, let |λ| denote the cardinal of the set of all the predecessors λ′

of λ in Λ, λ′ < λ (i.e., λ′ ≤ λ and λ′ 6= λ). In the case of a cofinite inverse system
(indexing set), for every λ ∈ Λ, |λ| is finite, i.e., |λ| = m− 1 for some m ∈ N.

Let (f, fµ), (f ′, f ′µ) : X → Y be morphisms of inv-A, and let κ be a cardinal.
Then (f, fµ) is said to be κ-homotopic to (f ′, f ′µ), denoted by (f, fµ) 'κ (f ′, f ′µ),
provided for every µ ∈ M , such that |µ| < κ, (f, fµ) 'µ (f ′, f ′µ) holds. Clearly, in
the case of a cofinite Y , those cardinals (representatives - numbers) κ range over the
set of non-negative integers. Furthermore, if Y is an inverse sequence, the relations
'm and 'µ coincide (µ = |µ|+ 1 = m).

According to Lemma 2.4 of [20], the relation 'κ is an equivalence relation on
each set inv-A(X,Y ), 'κ′ implies 'κ whenever κ ≤ κ′, and, if Y is cofinite, ' is
equivalent to 'm for all m ∈ N. Further,

(i) (f, fµ) 'κ (f ′, f ′µ) and (f ′, f ′µ) 'κ′ (f ′′, f ′′µ ) imply (f, fµ) 'κ′′ (f ′′, f ′′µ ), where
κ′′ = min{κ, κ′};

(ii) (f, fµ) 'κ (g, gµ), (f ′, f ′µ) 'κ′ (g′, g′µ) and (f, fµ) 'η (f ′, f ′µ) imply (g, gµ) 'η′
(g′, g′µ), where η′ = min{κ, κ′, η};

(iii) (f, fµ) 'κ (f ′, f ′µ) implies (f, fµ)(h, hλ) 'κ (f ′, f ′µ)(h, hλ); .

(iv) (f, fµ) 'κ (f ′, f ′µ) implies (g, gν)(f, fµ) 'κ′ (g, gν)(f ′, f ′µ), provided for every
ν ∈ N | ν |< κ′ implies | g(ν) |< κ.

Given a pair of inverse systemsX,Y , where Y is cofinite, the function ρ : inv-A(X,Y )×
inv-A(X,Y )→ R,

ρ((f, fµ), (f ′, f ′µ)) =

{
inf{ 1

m+1 | (f, fµ) 'm (f ′, f ′µ), m ∈ N}
1, otherwise

,

defines a pseudoultrametric on the set inv-A(X,Y ).ρ) (Lemma 2.5 of [20]).
Finally, since ρ is invariant with respect to the relation ', the function d :

pro-A(X,Y )× pro-A(X,Y )→ R,

d(f ,f ′) = ρ((f, fµ), (f ′, f ′µ)),
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where (f, fµ) ∈ f , (f ′, f ′µ) ∈ f ′ is any pair of representatives, is well defined. Let us

denote Y X ≡ pro-A(X,Y ). Then, for every X and every cofinite Y , the ordered
pair (Y X , d) is a complete ultrametric space (Theorem 2.6 of [20]).

Consider now a set pro∗-A(X,Y ). We firstly recall the definition of a pro∗-
category (see [8]). In the first step we define the category inv∗-A. The object
class Ob(inv∗-A) = Ob(inv-A), i.e., it consists of all inverse systems in A, while
the morphisms are all so called ∗-morphisms. Given a pair of inverse systems in A,
X = (Xλ, pλλ′ ,Λ), Y = (Yµ, qµµ′ ,M), a ∗-morphism (originally an S∗-morphism)
of inverse systems, (f, fnµ ) : X → Y , consists of a function f : M → Λ (the index
function) and, for each µ ∈ M , of a sequence of A-morphisms fnµ : Xf(µ) → Yµ,
n ∈ N, such that, for every related pair µ ≤ µ′ in M , there exists a λ ∈ Λ, λ >
f(µ), f (µ′), and there exists an n ∈ N so that, for every n′ > n,

fn
′

µ pf(µ)λ = qµµ′f
n′

µ′ pf(µ′)λ.

If
(
f, fnµ

)
: X → Y and (g, gnν ) : Y → Z = (Zν , rνν′ , N) are ∗-morphisms, then we

compose them by the rule

(g, gnν )
(
f, fnµ

)
= (h, hnν ) ,

where h = fg : N → Λ and hnν = gnν f
n
g(ν), n ∈ N, ν ∈ N . One readily verifies that

(h, hnν ) : X → Z is a ∗-morphism and that the composition is associative.
Given an inverse system X = (Xλ, pλλ′ ,Λ) in A, let

(
1Λ, 1

n
Xλ

)
consist of the identity

function 1Λ and of the identity morphisms 1nXλ = 1Xλ of A, for every n ∈ N and
every λ ∈ Λ. Then (1Λ, 1

n
Xλ

) : X → X is the identity ∗-morphism on X. In this
way, given any category A, the corresponding inv∗-category inv∗-A is obtained.

Now we define (see [8], Definitions 3.8 and 3.19) that a ∗-morphism (f, fnµ ) : X →
Y is equivalent to a ∗-morphism (f ′, f ′nµ ) : X → Y , denoted by (f, fnµ ) ∼ (f ′, f ′nµ ),
provided every µ ∈ M admits a λ ∈ Λ, λ > f(µ), f ′(µ), and an n ∈ N, such that,
for every n′ > n,

fn
′

µ pf(µ)λ = f ′n
′

µ pf ′(µ)λ.

The relation ∼ is an equivalence relation on each set inv∗-C(X,Y ). The equivalence
class [(f, fnµ )] of a ∗-morphism (f, fnµ ) : X → Y is briefly denoted by f∗. This
equivalence relation is compatible with the composition in inv∗-A, i.e., if

(f, fnµ ) ∼ (f ′, f ′nµ ) : X → Y and (g, gnν ) ∼ (g′, g′nν ) : Y → Z,

then

(g, gnν )(f, fnµ ) ∼ (g′, g′nν )(f ′, f ′nµ ) : X → Z.

Therefore, one may compose the equivalence classes of ∗-morphisms by putting

g∗f∗ = h∗ ≡ [(h, hnν )],

where

(h, hnν ) = (g, gnν )(f, fnµ ) = (fg, gnν f
n
g(ν)).
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Finally, the desired pro∗-category pro∗-A is the corresponding quotient category,
i.e.,

pro∗-A = (inv∗-A)/(∼).

Let us add a few words about the corresponding functors, [8]. First, for every
category A, there exists a (faithful) functor

J : pro-A → pro∗-A

defined by J (X) = X and, for an f = [(f, fµ)], J (f) = f∗ = [(f, fnµ )], where, for
every n ∈ N, fnµ = fµ, for all µ ∈ M . (Such an (f, fnµ = fµ) is called an induced or
commutative ∗-morphism.) Especially, for a pro-reflective subcategory D ⊆ C there
exists a faithful functor J : pro-D → pro∗-D described above. It induces a faithful
functor

J : Sh(C,D) → Sh∗(C,D)

(relating the shape and coarse shape category), which keeps the objects fixed. Fur-
ther, if one puts S∗(X) = X, X ∈ ObC, and S∗(f) = F ∗ = 〈f∗〉, f ∈ MorC, where
f∗ = J(f) and f is induced by f , then

S∗ : C → Sh∗(C,D)

becomes a functor, called the (abstract) coarse shape functor. Its relationship with
the (abstract) shape functor S : C → Sh(C,D) ([11], I. 2) is given by the following
commutative diagram:

C
S ↙ ↘ S∗

Sh(C,D) →
J
Sh∗(C,D)

,

where the functor J is faithful keeping the objects fixed ([8], Section 4).
In order to endow a set pro∗-A(X,Y ) with a metric structure, we follow the

pattern for pro-A(X,Y ).

Definition 1. Let (f, fnµ ), (f ′, f ′nµ ) : X → Y be morphisms of inv∗-A, and let
µ ∈M . Then (f, fnµ ) is said to be µ-homotopic to (f ′, f ′nµ ), denoted by (f, fnµ ) ∼µ
(f ′, f ′nµ ), provided there exist a λ ∈ Λ, λ ≥ f(µ), f ′(µ), and an n ∈ N, such that for
every n′ ≥ n,

fn
′

µ pf(µ)λ = f ′n
′

µ pf ′(µ)λ.

Lemma 1. (i) The relation ∼µ is an equivalence relation on each set inv∗-A(X,Y ).

(ii) If (f, fnµ ) ∼µ′ (f ′, f ′nµ ) and µ ≤ µ′, then (f, fnµ ) ∼µ (f ′, f ′nµ ).

(iii) If (f, fnµ ) ∼µ (f ′, f ′nµ ), then (f, fnµ )(h, hnλ) ∼µ (f ′, f ′nµ )(h, hnλ).

(iv) If (f, fnµ ) ∼µ (f ′, f ′nµ ), then (g, gnν )(f, fnµ ) ∼ν (g, gnν )(f ′, f ′nµ ), whenever g(ν) ≤
µ.

(v) (f, fnµ ) ∼ (f ′, f ′nµ ) if and only if (f, fnµ ) ∼µ (f ′, f ′nµ ) for every µ ∈M .

Proof. All the claims obviously follow by the definition.
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Definition 2. Let (f, fnµ ), (f ′, f ′nµ ) : X → Y be morphisms of inv∗-A, and let κ
be a cardinal. Then (f, fnµ ) is said to be κ-homotopic to (f ′, f ′nµ ), denoted by
(f, fnµ ) ∼κ (f ′, f ′nµ ), provided (f, fnµ ) ∼µ (f ′, f ′nµ ) holds for every µ ∈ M such that
|µ| < κ,.

Clearly, if Y is cofinite, then those cardinals (representatives - numbers) κ range
over the set of non-negative integers. Moreover, in the case of an inverse sequence
Y , the relations ∼m and ∼µ coincide (µ = |µ| + 1 = m ∈ N). It is obvious that
Definitions 1 and 2 and Lemma 1 imply the following facts.

Lemma 2. (i) The relation ∼κ is an equivalence relation on each set inv∗-A(X,Y ).

(ii) If (f, fnµ ) ∼κ′ (f ′, f ′nµ ) and κ ≤ κ′, then (f, fnµ ) ∼κ (f ′, f ′nµ ).

(iii) If (f, fnµ ) ∼κ (f ′, f ′nµ ) and (f ′, f ′nµ ) ∼κ′ (f ′′, f ′′nµ ), then (f, fnµ ) ∼κ′′ (f ′′, f ′′nµ ),
where κ′′ = min{κ, κ′}.

(iv) If (f, fnµ ) ∼κ (g, gnµ), (f ′, f ′nµ ) ∼κ′ (g′, g′nµ ) and (f, fnµ ) ∼η (f ′, f ′nµ ), then
(g, gnµ) ∼η′ (g′, g′nµ ), where η′ = min{κ, κ′, η}.

(v) If (f, fnµ ) ∼κ (f ′, f ′nµ ), then (f, fnµ )(h, hnλ) ∼κ (f ′, f ′nµ )(h, hnλ).

(vi) If (f, fnµ ) ∼κ (f ′, f
′]n
µ ), then (g, gnν )(f, fnµ ) ∼κ′ (g, gnν )(f ′, f ′nµ ), provided, for

every ν ∈ N , | ν |< κ′ implies | g(ν) |< κ.

(vii) If Y is cofinite, then (f, fnµ ) ∼ (f ′, f ′nµ ) if and only if (f, fµ) ∼m (f ′, f ′µ) for
every m ∈ N.

Given a pair of inverse systems X,Y in A, where Y is cofinite, let us define the
function

ρ∗ : inv∗-A(X,Y )× inv∗-A(X,Y )→ R

by putting

ρ∗((f, fnµ ), (f ′, f ′nµ )) =

{
inf{ 1

m+1 | (f, f
n
µ ) ∼m (f ′, f ′nµ ), m ∈ N}

1, otherwise
.

Lemma 3. For every X and every cofinite Y , the ordered pair (inv∗-A(X,Y ), ρ∗)
is a pseudoultrametric space.

Proof. (See also Theorem 2 of [22].) Clearly, ρ∗((f, fnµ ), (f ′, f ′nµ )) ≥ 0, ρ∗((f, fnµ ),
(f, fnµ )) = 0 and ρ∗((f, fnµ ), (f ′, f ′nµ )) = ρ∗((f ′, f ′nµ ), (f, fnµ )). It remains to prove
that

ρ∗((f, fnµ ), (f ′′, f ′′nµ )) ≤ max{ρ∗((f, fnµ ), (f ′, f ′nµ )), ρ∗((f ′, f ′nµ ), (f ′′, f ′′nµ ))}

holds true. If ρ∗((f, fnµ ), (f ′, f ′nµ )) = 1 or ρ∗((f ′, f ′nµ ), (f ′′, f ′′nµ )) = 1, the statement
is obviously true. Further, the inequality holds in the case of ρ∗((f, fnµ ), (f ′, f ′nµ )) = 0
or ρ∗((f ′, f ′nµ ), (f ′′, f ′′nµ )) = 0 as well. Namely, in that case

ρ∗((f, fnµ ), (f ′′, f ′′nµ )) = ρ∗((f ′, f ′nµ ), (f ′′, f ′′nµ ))
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or
ρ∗((f, fnµ ), (f ′′, f ′′nµ )) = ρ∗((f, fnµ ), (f ′, f ′nµ ))

hold, respectively. Let

ρ∗((f, fnµ ), (f ′, f ′nµ )) =
1

m+ 1
and ρ∗((f ′, f ′nµ ), (f ′′, f ′′nµ )) =

1

m′ + 1

for a pair m,m′ ∈ N. It means that

(f, fnµ ) ∼m (f ′, f ′nµ ) ∧ (f, fnµ ) 6∼m+1 (f ′, f ′nµ )

(f ′, f ′nµ ) ∼m′ (f ′′, f ′′nµ ) ∧ (f ′, f ′nµ ) 6∼m′+1 (f ′′, f ′′nµ )

Then, by Lemma 2 (iii), (f, fnµ ) ∼m′′ (f ′′, f ′′nµ ), where m′′ = min{m,m′}. Thus,

ρ∗((f, fnµ ), (f ′′, f ′′nµ )) ≤ 1

m′′ + 1
= max{ 1

m+ 1
,

1

m′ + 1
},

and the conclusion follows.

Let us briefly denote pro∗-A(X,Y ) ≡ Y X∗. Observe that, by Lemma 2,
(iii) and (vii), if (f, fnµ ) ∼ (g, gnµ) and (f ′, f ′nµ ) ∼ (g′, g′nµ ) (all of X to Y ), then
ρ∗((f, fnµ ), (f ′, f ′nµ )) = ρ∗((g, gnµ), (g′, g′nµ )). Thus, for every cofinite Y , the function

d∗ : Y X∗ × Y X∗ → R is well defined by putting

d∗(f∗,f ′∗) = ρ∗((f, fnµ ), (f ′, f ′nµ )),

where (f, fnµ ) ∈ f∗, (f ′, f ′nµ ) ∈ f ′∗ is any pair of representatives.

Theorem 1. For every X and every cofinite Y , the ordered pair (Y X∗, d∗) is a
complete ultrametric space. Consequently, the space (Y X∗, d∗) is totally disconnected
and the (covering) dimension

dim(Y X∗, d∗) = 0.

Proof. (See also Theorem 2 and Remark 2 of [22].) By Lemma 3, it suffices to prove
that d∗(f∗,f ′∗) = 0 implies f∗ = f ′∗, and the completeness. Let d∗(f∗,f ′∗) = 0.
Then,

ρ∗((f, fnµ ), (f ′, fn′µ )) = 0

for any pair of the representatives. By the definition of ρ∗ and Lemma 2 (vii), it is
equivalent to (f, fnµ ) ∼ (f ′, f ′nµ ), i.e., f∗ = f ′∗.

Let (f∗k), f∗k = ((fk, f
n
µ,k)) be a Cauchy sequence in (Y X∗, d∗). Then, for every

m ∈ N, there exists a km ∈ N such that, for every pair k, k′ ∈ N, k, k′ ≥ km,

d∗(f∗k,f
∗
k′) ≤

1

m+ 1
,

i.e.,
(fk, f

n
µ,k) ∼m (fk′ , f

n
µ,k′),
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whenever k, k′ ≥ km.
Without loss of generality, one may assume that the sequence (km) is increasing and
unbounded. Since Y is cofinite, given a µ ∈M , denote |µ|+1 ≡ m(µ) ∈ N. Observe
that there exists a unique function

f0 : M → Λ, f0(µ) = fkm(µ)
(µ).

Now, for every µ ∈M and every n ∈ N, we put

fnµ,0 = fnµ,km(µ)
: Xf0(µ) = Xfkm(µ)

(µ) → Yµ.

(An equivalent choice can be fnµ,0 = f
km(µ)

µ,km(µ)
, for n = 1, . . . , km(µ), and fnµ,0 =

fnµ,km(µ)
, for n > km(µ).) In this way we have obtained the ordered pair (f0,

(fnµ,0)µ∈M,n∈N), briefly (f0, f
n
µ,0), where all the fnµ,0 : Xf0(µ) → Yµ, are A-morphisms.

We are to show that (f0, f
n
µ,0) is a ∗-morphism of X to Y . Given a pair µ ≤ µ′ in

M , we have to prove that there exist a λ ≥ f0(µ), f0(µ′) and an n ∈ N, such that,
for every n′ ≥ n,

fn
′

µ,0pf0(µ)λ = qµµ′f
n′

µ′,0pf0(µ′)λ.

Denote, as before, |µ| + 1 ≡ m(µ) = m and |µ′| + 1 ≡ m(µ′) = m′. Then, m ≤ m′

and km ≤ km′ . Therefore,

d∗(f∗km ,f
∗
km′

) ≤ 1

m+ 1
, i.e., (fkm , f

n
µ,km) ∼m (fkm′ , f

n
µ,km′

).

This means that there exist a λ1 ≥ fkm(µ), fkm′ (µ) and an n1 ∈ N, such that for
every n′ ≥ n1,

(1) fn
′

µ,km
pfkm (µ)λ1

= fn
′

µ,km′
pfk

m′
(µ)λ1

.

Since (fkm′ , f
n
µ,km′

) is a ∗-morphism, there exist a λ2 ≥ fkm′ (µ), fkm′ (µ
′) and an

n2 ∈ N, such that for every n′ ≥ n2,
(2) fn

′

µ,km′
pfk

m′
(µ)λ2

= qµµ′f
n′

µ′,km′
pfk

m′
(µ′)λ2

.

Since Λ is directed, there exists a λ ≥ λ1, λ2, and thus, λ ≥ f0(µ) = fkm(µ) and
λ ≥ f0(µ′) = fkm′ (µ

′). Put n = max{n1, n2}, and let n′ ≥ n. Then, by means of (1)
and (2), one straightforwardly obtains that

fn
′

µ,0pf0(µ)λ = fn
′

µ,kmpfkm (µ)λ = · · · = qµµ′f
n′

µ′,km′
pfk

m′
(µ′)λ = qµµ′f

n′

µ′,0pf0(µ′)λ.

Hence, (f0, f
n
µ,0) : X → Y is a morphism of inv∗-A. Let f∗0 = [(f0, f

n
µ,0)] be

the corresponding morphism of pro∗-A(X,Y ). Notice that for every m and every
k ≥ km,

(fk, f
n
µ,k) ∼m (f0, f

n
µ,0), i.e., d∗(f∗k,f

∗
0) ≤ 1

m+ 1
,

holds. Namely, by our construction, for every µ ∈M and every n ∈ N,

f0(µ) = fkm(µ) and fnµ,0 = fnµ,km , m = |µ|+ 1.

Thus, lim(f∗k) = f∗0, i.e., the Cauchy sequence (f∗k) converges to f∗0 in (Y X∗, d∗).
The last statement follows by the main result of [5] or by [22] (Theorem 4 and
Remark 2).
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Recall that there is the canonical injection of pro-A(X,Y ) into pro∗-A(X,Y ),

f = [(f, fµ)] 7→ i(f) = f∗ = [(f, fnµ = fµ)].

Theorem 2. The canonical injection of pro-A(X,Y ) into pro∗-A(X,Y ) is an
isometric closed embedding, i : (Y X , d)→ (Y X∗, d∗).

Proof. It is obvious by the appropriate definitions that

ρ∗((f, fnµ = fµ), (f ′, f ′nµ = f ′µ)) = ρ((f, fµ), (f ′, f ′µ)).

Thus, if f∗ = i(f) and f ′∗ = i(f ′), then d∗(f∗,f ′∗) = d(f ,f ′). Consequently, i
maps the space (Y X , d) isometrically onto (i[Y X ], d∗). Since (Y X , d) is complete
(Theorem 2.6 of [20]), the conclusion follows.

Consider the subspace (Y X∗ω , d∗) ⊆ (Y X∗, d∗) consisting of all the morphisms
f∗ having a commutative representative (f, fnµ ), i.e., for each n0 ∈ N (fixed),
(f, fn0

µ ) : X → Y is a morphism of inv-A. Clearly, according to Theorem 2 and
the proof of Theorem 1, the canonical injection (restricted to the smaller codomain)
i : (Y X , d) → (Y X∗ω , d∗) (⊆ (Y X∗, d∗)) is an isometric closed embedding as well.
However, the subspace (Y X∗ω , d∗) ⊆ (Y X∗, d∗) is not closed. Namely, the proof of
Theorem 1 shows that (Y X∗ω , d∗) is not complete. Indeed, given an n0 ∈ N and a
pair µ0 ≤ µ′0, the term fn0

µ0,0
of (f0, f

n
µ,0) belongs to (fkm(µ0)

, fnµ,km(µ0)
) ∈ f∗km(µ0)

,

while the term fn0

µ′0,0
of (f0, f

n
µ,0) belongs to (fkm(µ′0)

, fnµ,km(µ′0)
) ∈ f∗km(µ′0)

, which, in

general, do not mutually commute unless n0 is large enough. Further, (Y X∗ω , d∗)
is not open in (Y X∗, d∗) since, in general, a commutative morphism admits an ar-
bitrarily close noncommutative one. Finally, in general, Y X∗ω is not dense in Y X∗

(consider, for instance, polyhedral inverse sequences X and Y associated via its
limits with a pair of solenoids).

Remark 1. If Y = (Yµ = Y, qµµ′ = 1Y ,M) ∈ Ob(pro-A) is cofinite, then one

readily sees that for every X ∈ Ob(pro-A) the space (Y X∗, d∗) is discrete. However,
by Example 2.8 of [20] and our Theorem 2, there exist spaces (Y X∗, d∗) which are
not discrete. Especially, there exist inverse sequences X such that (XX∗, d∗) are not
discrete. Clearly, according to Theorem 2, if (Y X , d) is a nondiscrete space then so
is (Y X∗, d∗), while if (Y X∗, d∗) is discrete, then such is (Y X , d).

The next theorem diminishes technical difficulties in manipulating with Cauchy
sequences (compare Theorem 2.10 of [20]).

Theorem 3. For every X and every cofinite Y , every Cauchy sequence in (Y X∗, d∗)
admits a representing sequence having a unique increasing index function.

Proof. First, every sequence (f∗k) in (Y X∗, d∗) admits a representing sequence
((fk, f

n
µ,k)) such that all the index functions are increasing and f1 ≤ · · · ≤ fk ≤ · · · .

(This can be achieved by a straightforward inductive construction.) Let (f∗k) be a
Cauchy sequence. Recall the proof of Theorem 1, i.e., the construction of the limit
f∗0 = lim(f∗k). The constructed representative (f0, f

n
µ,0) ∈ f∗0 has been defined by
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means of a subsequence ((fkm , f
n
µ,km

)), where k1 ≤ · · · ≤ km ≤ · · · is unbounded such
that f0(µ) = fkm(µ) and fnµ,0 = fnµ,km , m = |µ|+ 1. This implies that f0 : M → Λ is
an increasing function. Let µ ∈M , |µ| = 0. Since f1 ≤ · · · ≤ fk1 , one can, for every
k = 1, . . . , k1 and every n, replace fk(µ) with f ′k(µ) = f0(µ) = fk1(µ) and fnµ,k with
f ′nµ,k = fnµ,kpfk(µ)f0(µ). In the next step, since f1 ≤ · · · ≤ fk1 ≤ fk1+1 ≤ · · · ≤ fk2 ,
given a µ ∈ M , |µ| = 1, one can, for every k = 1, . . . , n2, replace fk(µ) with
f ′k(µ) = f0(µ) = fk2(µ) and fnµ,k with f ′nµ,k = fnµ,kpfk(µ)f0(µ). Moreover, for ev-
ery µ′ ∈ M , |µ′| = 0, and every k = k1 + 1, . . . , k2, one can replace fk(µ′) with
f ′k(µ′) = f0(µ′) = fk2(µ′) and fnµ′,k with f ′nµ′,k = fnµ′,kpfk(µ′)f0(µ′).

The construction proceeds in an obvious way by induction on |µ| + 1 = m ∈ N
through the sequence (km). Thus, in the inductive step m 7→ m+ 1, one also must
correctly move the values of every fk, k = km + 1, . . . , km+1, for all µ ∈M , |µ| ≤ m.
Observe that for every k ∈ N, (f ′k, f

′n
µ,k) ∼ (fk, f

n
µ,k). Clearly, by construction,

the new representing sequence ((f ′k, f
′n
µ,k)) has the unique increasing index function,

namely, f0 = f ′k for all k.

3. The hom-bifunctor

Given a category K, let us consider the hom-bifunctor (see [6])

hom : Kop ×K → Set

defined by hom(X,Y ) = K(X,Y ) and hom(u, v)(f) = vfu. More precisely, for
each pair (of pairs) of objects (X,Y ), (X ′, Y ′) ∈ Ob(Kop × K) = ObKop × ObK =
ObK ×ObK,

homX,Y
X′,Y ′ : (Kop ×K)((X,Y ), (X ′, Y ′))

(= Kop(X,X ′)×K(Y, Y ′) = K(X ′, X)×K(Y, Y ′))→ Set(K(X,Y ),K(X ′, Y ′)),

(u, v) 7→ (homX,Y
X′,Y ′(u, v) : K(X,Y )→ K(X ′, Y ′))

is defined by the composition, i.e., homX,Y
X′,Y ′(u, v)(f) = vfu.

If the sets K(X,Y ) are endowed with a structure, and if the hom-bifunctor preserves
the structure, then notation hom is usually changed into Hom (the “internal” Hom-
bifunctor), having an appropriate codomain category (instead of Set).

Let us now consider the case K = pro∗-A for an arbitrary category A, i.e.,
hom : (pro∗-A)op × (pro∗-A)→ Set,

hom(X,Y ) = pro∗-A(X,Y ) ≡ Y X∗

and homX,Y
X′,Y ′ : XX′∗ × Y ′Y ∗ → Set(Y X∗,Y ′X

′∗), where the function

homX,Y
X′,Y ′(u

∗,v∗) : Y X∗ → Y ′X
′∗ is defined by

homX,Y
X′,Y ′(u

∗,v∗)(f∗) = v∗f∗u∗,

i.e.,

X
u∗← X ′

f∗ ↓ hom(u∗,v∗)7→ ↓ v∗f∗u∗
Y →

v∗
Y ′

.



Ultrametrization of pro*-morphism sets 29

We assume in the sequel that all inverse systems are cofinite. As in the case of
(Y X , d) in [20], the natural question is: Does the hom-bifunctor preserve the added
complete ultrametric structure of the sets Y X∗? In other words: Is the function

hom(u∗,v∗) : (Y X∗, d∗)→ (Y ′X
′∗, d∗) continuous for all (some) u∗ : X ′ → X and

v∗ : Y → Y ′?
Since the restriction hom(u,v) : (Y X , d) → (Y ′X

′
, d) (of hom(u∗,v∗)) is, in

general, not continuous (see Example 3.2, Lemma 3.3 and Theorem 3.4 of [20] as
well as Example 2 in Section 5 below), the answer is negative. Nevertheless, there is a
certain subcategory, containing tow∗-A, such that the corresponding hom-bifunctor
is (uniformly) continuous (compare Lemma 3.5 and Theorem 3.6 of [20]). Similarly
to the pro-case, the continuity depends only on a specific “uniformity” property of
the morphism v∗ (relating the codomain systems Y and Y ′).

Lemma 4. Let u∗ : X ′ → X and v∗ : Y → Y ′ be morphisms of pro∗-A. If
(Y X∗, d∗) is discrete or v∗ satisfies the following “uniformity” condition:

(U) (∃(v, vnµ′) ∈ v∗)(∀m ∈ N)(∃sm ∈ N)(∀µ′ ∈M ′) |µ′| < m⇒ |v(µ′)| < sm,

then the function

hom(u∗,v∗) : (Y X∗, d∗)→ (Y ′X
′∗, d∗)

is uniformly continuous.

Proof. Clearly, it is enough to prove the statement when (Y X∗, d∗) is not discrete.
First, to prove the continuity it suffices to show that the function hom(u∗,v∗) pre-
serves convergent sequences. Let lim(f∗k) = f∗0 in (Y X∗, d∗). We are to prove that

the sequence (hom(u∗,v∗)(f∗k)) = (v∗f∗ku
∗) in (Y ′X

′∗, d∗) converges to hom(u∗,
v∗)(f∗0) = v∗f∗0u

∗. Let (fk, f
n
µ,k) ∈ f∗k, k ∈ N, (f0, f

n
µ,0) ∈ f∗0 and (u, unλ) ∈ u∗ be

chosen arbitrarily, and let (v, vnµ′) ∈ v∗ be a representative according to condition
(U). By Lemma 2, (v) and (vi), if (fk, f

n
µ,k) ∼m (f0, f

n
µ,0), then

(fk, f
n
µ,k)(u, unλ) ∼m (f0, f

n
µ,0)(u, unλ), and (v, vnµ′)(fk, f

n
µ,k) ∼m′ (v, vnµ′)(f0, f

n
µ,0)

provided |µ′| < m′ implies |v(µ′)| < m. Since lim(f∗k) = f∗0,

d∗(f∗k,f
∗
0) = ρ∗((fk, f

n
µ,k), (f0, f

n
µ,0))

becomes arbitrarily small when k increases, i.e., for every m ∈ N, there exists a
km ∈ N such that, for every k ≥ km,

ρ∗((fk, f
n
µ,k), (f0, f

n
µ,0)) ≤ 1

m+ 1
,

Hence, (fk, f
n
µ,k) ∼m (f0, f

n
µ,0), k ≥ km, and thus,

(v, vnµ′)(fk, f
n
µ,k)(u, unλ) ∼m′ (v, vnµ′)(f0, f

n
µ,0)(u, unλ), k ≥ km,

provided, for every µ′ ∈ M ′, |µ′| < m′ implies |v(µ′)| < m. Since, by condition
(U), for every m there exists an sm such that for every µ′ ∈ M ′ |µ′| < m implies
|v(µ′)| < sm, we infer tha, for every m and every k ≥ ksm

(v, vnµ′)(fk, f
n
µ,k)(u, unλ) ∼m (v, vnµ′)(f0, f

n
µ,0)(u, unλ)
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holds. Thus,

d∗(v∗f∗ku
∗,v∗f∗0u

∗) = ρ∗((v, vnµ′)(fk, f
n
µ,k)(u, unλ), (v, vnµ′)(f0, f

n
µ,0)(u, unλ)) ≤ 1

m+ 1
,

for every k ≥ ksm . This means that lim(v∗f∗ku
∗) = v∗f∗0u

∗, which proves the conti-
nuity of hom(u∗,v∗). In addition, notice that a δ > 0 (for continuity of hom(u∗,v∗))
does not depend on any particular point f∗ ∈ Y X∗. Namely, given any ε = 1

m+1 > 0,

one may put δ = 1
sm+1 > 0. Therefore, hom(u∗,v∗) is uniformly continuous.

Problem 1. Does the converse of Lemma 4 hold when (Y X∗, d∗) is not discrete and
v∗ is a “nontrivial” morphism? (The same question concerning Lemma 3.5 of [20],
because the corresponding part of its proof is not correct! Consequently, the proof of
the “only if” part of Theorem 4.1 of [20] is not correct!)

Remark 2. Let X be a system over an infinite Λ, and let Y be a system over an
M such that there are infinitely many µ ∈ M with |µ| = m, for some m ∈ {0} ∪ N.
Then every morphism f∗ : X → Y admits a representative (f ′, f ′nµ ) which does not
have the property of condition(U) (by shifting the index function). Nevertheless, this
fact does not contradict the definition of the metric d∗. Further, notice that every
representative of every morphism of inverse sequences has the property of condition
(U).

Observe that the property of condition (U) of some morphisms of pro∗-A is
preserved by composition. Since each identity morphism 1∗X obviously satisfies con-
dition (U), there exists a certain subcategory pro∗U-A ⊆ pro∗-A, which shares the
same object class, while Mor(pro∗U-A) is a proper subclass of (pro∗-A). Clearly, by
Remark 2, tow∗-A ⊆ pro∗U-A. Let us briefly denote pro∗U-A(X,Y ) ≡ Y X∗U ⊆ Y X∗.
By assuming the restriction to all cofinite inverse systems, the following theorem
holds (compare Theorem 3.6 of [20]).

Theorem 4. The hom-bifunctor for the subcategory pro∗U-A is a structure preserving
(continuous) one, i.e., it is

Hom : (pro∗U-A)op × (pro∗U-A)→Mc,

where Mc is the category of complete metric spaces.

Proof. According to Theorem 1 and Lemma 4, it suffices to prove that (Y X∗U , d∗) ⊆
(Y X∗, d∗) is a closed subspace. If Y X∗U = ∅, then there is nothing to prove. Thus, let
Y X∗U 6= ∅. Suppose that a sequence (f∗k) in Y X∗U converges to an f∗0 in (Y X∗, d∗).
We have to prove that f∗0 ∈ Y

X∗
U . Recall the construction of the limit morphism

f∗0 in the proof of Theorem 1. Given any representing sequence ((fk, f
n
µ,k)) of (f∗k),

the representing ∗-morphism (f0, f
n
µ,0) of f∗0 has been defined by means of

fnµ,0 = fnµ,km(µ)
: Xf0(µ) = Xfkm(µ)

(µ) → Yµ,

where m(µ) = |µ| + 1 and (km) assure the relation ∼m. In this case, however, we
can choose a representing sequence (fk, f

n
µ,k) so that

(∀k ∈ N)(∀m ∈ N)(∃skm ∈ N)(∀µ ∈M) |µ| < m⇒ |fk(µ)| < skm.
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Then the obtained unique limit morphism f∗0 = [(f0, f
n
µ,0)] satisfies condition (U).

Indeed, given an m ∈ N, put sm = skmm (depending on m only!), and then |µ| < m
implies that

|f0(µ)| = |fkm(µ)| < skmm = sm.

An inverse system X is said to have property (F) provided, for every m ∈ N, the
subset

Λm−1 ≡ {λ ∈ Λ | |λ| = m− 1} ⊆ Λ

is finite. For instance, every inverse sequenceX = (Xi, pii′ ,N) has property (F) since
in this case |Λm−1| = m. Let pro∗F-A ⊆ pro∗-A be the full subcategory containing
all the cofinite objects which have property (F).

Corollary 1. The hom-bifunctor for the subcategory pro∗F-A ⊆ pro∗-A is structure
preserving (continuous), i.e. it is

Hom : (pro∗F-A)op × (pro∗F-A)→Mc.

Proof. Observe that pro∗F-A ⊆ pro∗U-A is a full subcategory, because every mor-
phism of pro∗F-A satisfies condition (U) (sm is maximal among finitely many values).
Hence, the conclusion follows by Theorem 4.

Corollary 2. The hom-bifunctor for the tower∗-category tow∗-A is structure pre-
serving (continuous), i.e., it is

Hom : (tow∗-A)op × (tow∗-A)→Mc.

Proof. Every inverse sequence has property (F), i.e., tow∗-A ⊆ pro∗F-A is a full
subcategory (see also Remark 2). Thus, the conclusion follows by Corollary 1.

Let

(Y X∗ ×ZY ∗, d′) = (Y X∗, d∗)× (ZY ∗, d∗)

be the product space endowed with an appropriate metric d′ (for instance, d2, d1 or
d∞ with respect to the metrics on the factors). Then the function

ω : (Y X∗ ×ZY ∗, d′)→ (ZX∗, d′),

defined by the composition, (f∗, g∗) 7→ g∗f∗, naturally arises. According to preced-
ing results, ω cannot be continuous in general. However, the following fact holds as
a consequence of Theorem 4.

Corollary 3. The function (restriction)

ω : (Y X∗ ×ZY ∗U , d′)→ (ZX∗, d∗), ω(f∗, g∗) = g∗f∗,
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is uniformly continuous. Especially, for all inverse sequences X, Y and Z in A, the
function ω : (Y X∗ × ZY ∗, d′) → (ZX∗, d∗) is uniformly continuous. Moreover, for
every section v∗ : Y → Y ′, the hom-bifunctor commutes with ω, i.e., the diagram

Y X∗ ×ZY ∗ hom(u∗,v∗)×hom(v′∗,w∗)→ Y ′X
′∗ ×Z ′Y ∗

′

ω ↓ ↓ ω′

ZX∗
hom(u∗,w∗)→ Z ′X

′∗

is commutative. More precisely,

ω′ ◦ (hom(u∗,v∗)× hom(v′∗,w∗)) = hom(u∗,w∗) ◦ ω,

where v′∗ : Y ′ → Y is a left inverse of v∗, v′∗v∗ = 1∗Y .

Proof. It suffices to prove that lim(f∗k) = f∗0 in (Y X∗, d∗) and lim(g∗k) = g∗0 in

(ZY ∗U , d∗) imply lim(g∗kf
∗
k) = g∗0f

∗
0 = lim(g∗k) lim(f∗k) in (ZX∗, d∗). Since lim(g∗k) =

g∗0, Lemma 2 (v) implies that, for each k ∈ N,

lim
k′

(g∗k′f
∗
k) = g∗0f

∗
k.

Thus, d∗(g∗kf
∗
k, g
∗
k′f
∗
k) and d∗(g∗k′f

∗
k, g
∗
0f
∗
k) are arbitrarily small, for k, k′ ∈ N large

enough. Since g∗0 ∈ Z
Y ∗
U , the function hom(1∗X , g

∗
0) is (uniformly) continuous. Thus,

lim(g∗0fk) = lim(hom(1∗X , g
∗
0)(f∗k)) = hom(1∗X , g

∗
0)(lim(f∗k))

= hom(1∗X , g
∗
0)(f∗0)) = g∗0f

∗
0.

Finally, since d∗ is a(n) (ultra)meric, the conclusion follows. (Observe that we
have only needed g∗0 ∈ Z

Y ∗
U !) The commutativity of the diagram goes as follows:

(ω′ ◦ (hom(u∗,v∗)× hom(v′∗,w∗)))(f∗, g∗)

= ω′(hom(u∗,v∗)(f∗),hom(v′∗,w∗)(g∗))

= ω′(v∗f∗u∗,w∗g∗v′∗) = (w∗g∗v′∗)(v∗f∗u∗)

= w∗g∗(v′∗v∗)f∗u∗ = w∗(g∗f∗)u∗

= hom(u∗,w∗)(g∗f∗)

= hom(u∗,w∗)(ω(f∗, g∗))

= (hom(u∗,w∗) ◦ ω)(f∗, g∗).

4. Invariance of the hom-bifunctor

Consider now the invariance problem for the hom-bifunctor, i.e., under what con-
ditions, X ∼= X ′ and Y ∼= Y ′ in pro∗-A imply that the spaces (Y X∗, d∗) and

(Y ′X
′∗, d∗) are homeomorphic. Clearly, every pair of isomorphisms u∗ : X ′ → X,

v∗ : Y → Y ′ yields a set bijection Y X∗ → Y ′X
′∗, f∗ 7→ v∗f∗u∗, having the inverse
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function Y ′X
′∗ → Y X∗, f ′∗ 7→ (v∗)−1f ′∗(u∗)−1. Therefore, for every such a pair of

isomorphisms, the function hom(u∗,v∗) : Y X∗ → Y ′X
′∗ is a bijection with the in-

verse hom(u∗,v∗)−1 = hom((u∗)−1, (v∗)−1). According to Lemma 4, the following
theorem holds.

Theorem 5. Let u∗ : X ′ → X and v∗ : Y → Y ′ be isomorphisms of pro∗-A.

If (Y X∗, d∗) and (Y ′X
′∗, d∗) are discrete spaces or v∗ and (v∗)−1 satisfy condition

(U), then hom(u∗,v∗) : (Y X∗, d∗) → (Y ′X
′∗, d∗) is a uniform homeomorphism (of

complete ultrametric spaces).

Proof. In the special case of discrete spaces the statement is trivial. In the gen-
eral case, by Lemma 4, hom(u∗,v∗) and hom(u∗,v∗)−1 = hom((u∗)−1, (v∗)−1) are
(uniformly) continuous whenever v∗ and (v∗)−1 satisfy condition (U), respectively.
The conclusion follows.

Theorem 6. For every category A, the hom-bifunctor for pro∗-A is invariant (and
continuous into Metc) with respect to the object isomorphisms in the following sub-
categories: tow∗-A, pro∗F-A and pro∗U-A.

Proof. Apply Theorem 5 together with Corollary 2, Corollary 1 and Theorem 4
respectively.

Remark 3. (a) By Theorem 5, for every (cofinite) Y and every pair X ∼= X ′

in pro∗-A, (Y X∗, d∗) ≈ (Y X
′∗, d∗) in Mc holds via the hom-bifunctor. Moreover,

it is readily seen that for every isomorphism u∗ : X ′ → X the homeomorphism
hom(u∗,1∗Y ) is an isometry. On the other hand (by Example 3.2 and Theorem
3.4 of [20] and our Theorem 2), there exist an inverse sequence Y and a (count-
able and cofinite) inverse system Y ′ isomorphic to Y , Y ∼= Y ′ in pro-A (and,
thus, in pro∗-A), such that, for every isomorphism v∗ : Y → Y ′, the bijection
hom(1∗Y ,v

∗) : (Y Y ∗, d∗) → (Y ′Y ∗, d∗) is not continuous. Moreover, there is such
a pair of complete ultrametric spaces which are not homeomorphic (see Example 1
below). An important implication of this fact is that, in general, there is no unique
canonical complete ultrametrization of the coarse shape (shape as well) morphism
sets. Nevertheless, in some special cases (for instance, compact metrizable spaces,
by using only sequential HcANR- or HcPol-expansions) a unique canonical com-
plete ultrametrization of the coarse shape (shape as well) morphism sets is possible
(see Section 5 below).
(b) As we have mentioned in Introduction, in the last decade several papers dealing
with (ultra)metric and topological structures on the shape morphism sets were writ-
ten: [3, 4, 14 – 17, 20, 21, . . . ]. Looking for the basic idea, one readily sees that it is
the notion of being µ-homotopic. However, the germ of this idea goes back to 1976
when K. Borsuk [2] introduced the notion of quasi-equivalence of metric compacta.
This becomes quite clear after seeing the characterization (reinterpretation) of the
quasi-equivalence in terms of sequences of morphisms of inverse sequences, [19].

Example 1. Let Y = (Yj , qjj′ ,N) be an inverse sequence in a category A, and let
Y ′ = (Y ′µ, q

′
µµ′ ,M) be associated with Y by the “Mardešić trick” (see also Example
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3.2 of [20]), i.e.,

M = {µ ⊆ N | ∅ 6= µ is finite},
µ ≤ µ′ ⇔ µ ⊆ µ′,
Y ′µ = Yj , j = max(µ),

and q′µµ′ = qjj′ : Y ′µ′ = Yj′ → Yj = Y ′µ, µ ≤ µ′.

Then, Y ∼= Y ′ in pro-A (via isomorphisms yielded by the bonding morphisms and
identities on the terms), and thus, Y ∼= Y ′ in pro∗-A as well. We shall show that
the space (Y ′Y ∗, d∗) is discrete (see the proof below). Therefore, by choosing a Y
of tow–A (for instance, A = HcANR) such that (Y Y ∗, d∗) is not discrete (see
Remark 1), one provides an example with Y ∼= Y ′ such that the spaces (Y Y ∗, d∗)
and (Y ′Y ∗, d∗) are not homeomorphic.

Let us prove that the space (Y ′Y ∗, d∗) of Example 1 is discrete. Moreover, we
will show that

d∗(f∗,f ′∗) =

{
1, f∗ 6= f ′∗

0, f∗ = f ′∗
.

If d∗(f∗,f ′∗) = 1 for every pair f∗,f ′∗ ∈ Y Y ∗, f∗ 6= f ′∗, the conclusion follows.
Thus, since diam(Y ′Y ∗, d∗) ≤ 1, let us assume that there is a pair f∗,f ′∗ ∈ Y ′Y ∗
such that d∗(f∗,f ′∗) < 1, or equivalently, d∗(f∗,f ′∗) ≤ 1

2 (because d∗ takes its
values in { 1

n | n ∈ N} ∪ {0}). We are to prove that d∗(f∗,f ′∗) = 0, i.e., that
f∗ = f ′∗. Let (f, fnµ ) ∈ f∗ and (f ′, f ′nµ ) ∈ f ′∗ be any pair of representatives. Then

ρ∗((f, fnµ ), (f ′, f ′nµ )) ≤ 1

2
,

which implies (f, fnµ ) '1 (f ′, f ′nµ ), i.e., (f, fnµ ) 'µ (f ′, f ′nµ ) for every µ ∈M , |µ| = 0.

By construction of Y ′, |µ| = 0 means

µ = {j} ∈M0 ⊆M = t
k∈N

Mk−1

(Mk−1 = {µ ∈ M | |µ| = k − 1}, see the proof of Lemma 3.3 of [20]) and Y ′µ = Yj ,
j ∈ N. Thus,

(∀j ∈ N)(∃ij ≥ f({j}), f ′({j}))(∃n(j) ∈ N)(∀n′ ≥ n(j))(∀i ≥ ij)

fn
′

{j}qf({j})i = f ′n
′

{j}qf ′({j})i.

Since M1 = ∅, consider any µ = {j, j′} ∈ M2 ⊆ M , j < j′. Then {j}, {j′} < µ,
Y ′µ = Yj′ , q

′
{j}µ = qjj′ and q′{j′}µ = 1Yj′ . Since q′{j′}µ = 1Yj′ , the above relation and

properties of morphisms (f, fnµ ) and (f ′, f ′nµ ) of inv∗-A, with respect to {j}, {j′} ≤ µ,
imply that there exist an iµ ≥ ij , ij′ , f(µ), f ′(µ) and an n(µ) ≥ n(j), n(j′) such that
for every n′ ≥ n(µ) and every i ≥ iµ,

fn
′

µ qf(µ)i = f ′n
′

µ qf ′(µ)i
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holds. This shows that (f, fnµ ) 'µ (f ′, f ′nµ ) for every µ ∈M , |µ| ≤ 2, i.e., (f, fnµ ) '3

(f ′, f ′nµ ), and thus,

ρ∗((f, fnµ ), (f ′, f ′nµ )) ≤ 1

4
.

Now, by induction on m ∈ N, assuming that

ρ∗((f, fnµ ), (f ′, f ′nµ )) ≤ 1

m+ 1
,

one can prove in the same way as above that

ρ∗((f, fnµ ), (f ′, f ′nµ )) ≤ 1

m+ 1 + km
,

holds for some km ∈ N. Therefore, d∗(f∗,f ′∗) = ρ∗((f, fnµ ), (f ′, f ′nµ )) = 0, i.e.,

f∗ = f ′∗, which completes the proof.

5. Applications

5.1. The coarse equivalence

We want to show how the introduced ultrametric structure on the sets Y X∗ yields
a new equivalence relation on the cofinite object subclass of pro-A - strictly coarser
than isomorphiness on pro∗U-A, especially, on tow∗ω-A. First, a sequence (f∗k) in
Y X∗ is said to be a U-sequence, if it admits a representing sequence ((fk = f, fnµ,k)),
with a unique index function fk = f for all k, having the property of condition (U),
i.e.,

(∀m ∈ N)(∃sm ∈ N)(∀µ ∈M) |µ| < m⇒ |f(µ)| < sm.

Notice that if X is cofinite and Y is an inverse sequence, then every sequence (f∗k)
in Y X∗, having a representative ((fk = f, fnµ,k)), is a U-sequence (compare Example
2 below). Thus, in the case of inverse sequences, i.e., in tow∗-A, a unique index
function is all one needs.

Definition 3. Let A be a category, and let X and Y be cofinite systems in A.
Then X is said to be coarse equivalent to Y , denoted by X ∼∗ Y , if there exist
U-sequences (f∗k) in Y X∗ and (g∗k) in XY ∗ such that lim(g∗kf

∗
k) = 1∗X in (XX∗, d∗)

and lim(f∗kg
∗
k) = 1∗Y in (Y Y ∗, d∗).

Lemma 5. The coarse equivalence ∼∗ is an equivalence relation on the cofinite
object subclass of Ob(pro-A).

Proof. Since the relation ∼∗ is obviously reflexive and symmetric, it remains to
prove that ∼∗ is transitive. Let X ∼∗ Y be realized via an (f∗k) and a (g∗k), and
let Y ∼∗ Z be realized via an (f ′∗k ) and a (g′∗k ) - each of them admitting a required
representing sequence. Then, for every s ∈ N there exists a ks ∈ N such that for
every k ≥ ks,

d∗(g∗kf
∗
k,1
∗
X) ≤ 1

s+ 1
, d∗(f∗kg

∗
k,1
∗
Y ) ≤ 1

s+ 1
,

d∗(g′∗k f
′∗
k ,1

∗
Y ) ≤ 1

s+ 1
, d∗(f ′∗k g

′∗
k ,1

∗
Z) ≤ 1

s+ 1
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By Lemma 2 (v), for every k ≥ ks,

d∗(f∗kg
∗
kg
′∗
k , g

′
k
∗) ≤ 1

s+ 1
and d∗(g′∗k f

′∗
k f
∗
k,f

∗
k) ≤ 1

s+ 1

hold as well. Now, given any m ∈ N, choose sm, s
′
m ∈ N according to condition (U)

for the sequences (g∗k), (f ′∗k ), respectively. Then, for every k ≥ ksm , ks′m ,

d∗(g∗kg
′∗
k f
′∗
k f
∗
k, g
∗
kf
∗
k) ≤ 1

m+ 1
and d∗(f ′∗k f

∗
kg
∗
kg
′∗
k ,f

′∗
k g
′
k
∗) ≤ 1

m+ 1
,

respectively. Since d∗ is an ultrametric, it must hold

d∗(g∗kg
′∗
k f
′∗
k f
∗
k,1
∗
X)≤ 1

m+ 1
, k ≥ ksm and d∗(f ′∗k f

∗
kg
∗
kg
′∗
k ,1

∗
Z)≤ 1

m+ 1
, k ≥ ks′m .

Put, for every k ∈ N,

u∗k = f ′∗k f
∗
k : X → Z and v∗k = g∗kg

′∗
k : Z →X.

Since condition (U) is preserved by the coordinatewise composition of sequences
with unique index functions, the conclusion follows.

Remark 4. The relation ∼∗ is a “uniform” analogue and a generalization of Bor-
suk’s quasi-equivalence (of inverse sequences of compact ANR’s, [2, 2, 19]). How-
ever, the quasi-equivalence is not an equivalence relation (see [7]). The reason why
is “too much freedom for the index functions” - because its uniformization (by con-
trolling the index-functions), called the q̄-equivalence (see [8, 19]), is an equivalence
relation. So we have to use the sequences of morphisms having unique index func-
tions. If not, the counterexample of [7] would work herein as well.

Corollary 4. The q̄-equivalence strictly implies the coarse equivalence (for inverse

sequences), i.e., if X
q̄
' Y in tow-A then X ∼∗ Y , but not conversely. In particular,

X ∼= Y in tow∗ω-A implies X ∼∗ Y , but not conversely.

Proof. Both relations are defined via sequences of the appropriate morphisms hav-
ing unique index functions. Hence, every fk = [(f, fj,k)], k ∈ N, of tow-A yields the

corresponding f∗k = [(f, fnj,k = fj,k)], and similarly for gk and g∗k. Thus,
q̄
' implies

∼∗ (see also subsection 5.2 of [20]). The converse does not hold because of the same
counterexample (due to J. Keesling and S. Mardešić, [9]) used in Corollary 5.7 of
[23] and Corollary 5.2 of [8].

Notice that X ∼= Y in pro∗U-A (⊇ tow∗-A) implies X ∼∗ Y (via an appropriate
pair of constant sequences consisting of isomorphisms satisfying condition (U)). The
restriction to pro∗U-A is essential because it does not hold in general - as the next
example shows.

Example 2. Let Y = (Y j , qjj′ ,N) be an inverse sequence in A, and let Y ′ =
(Y ′µ, q

′
µµ′ ,M) be the inverse system associated with Y by the Mardešić trick (see

Example 1). Then, Y ∼= Y ′ in pro-A and, consequently, Y ∼= Y ′ in pro∗-A as
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well. However (see Example 3.2 and Lemma 3.3 of [20]), if Y is not semi-stable,
then there is no section of Y to Y ′ satisfying condition (U). Therefore, Y is not
isomorphic to Y ′ in pro∗U-A. Moreover, such a Y is not coarse equivalent to Y ′

(see the proof below).

First, recall the notion of semi-stability (the complementary part of strong mov-
ability; [19], Definition 3 and Lemma 4) of an inverse sequence X = (Xi, pii′ ,N):

(∃i0 ∈ N)(∀i ≥ i0)(∀i′ ≥ i)(∃r : Xi → Xi′)(∃i1 ≥ i′)(∀i′′ ≥ i1) rpii′′ = pi′i′′ .

It is readily seen that an X of tow-A ⊆ pro-A is semi-stable if and only if every
morphism f : X → Y of pro-A admits an i0 ∈ N such that f = [(ci0 , fµ)].

Assume to the contrary, i.e., that Y ∼∗ Y ′. Then there exists a pair of U-
sequences (f∗k) and a (g∗k) such that lim(g∗kf

∗
k) = 1∗Y and lim(f∗kg

∗
k) = 1∗Y ′ . Let

((f ′, f ′nµ,k)) be any appropriate representing sequence of (f∗k), and let (sm) be a
corresponding integer sequence existing by condition (U). Since Y is an inverse
sequence, there exists a representing sequence ((f, fnµ,k)) of (f∗k) such that f(µ) =
f(µ′) whenever |µ| = |µ′|. (The construction is by induction on |µ| = m − 1 ∈
{0} ∪N; put f(µ) = sm and fnµ,k = f ′nµ,kqf ′(µ)sm .). Let ((g, gnj,k)) be any appropriate
representing sequence of (g∗k). We may assume, without loss of generality, that g is
increasing. Since lim(f∗kg

∗
k) = 1∗Y ′ , there exists a strictly increasing sequence (km)

in N such that

d∗(f∗kg
∗
k,1
∗
Y ′) ≤

1

m+ 1
, k ≥ km.

By the definition of d∗, it means that for every µ ∈ M with |µ| < m and every
k ≥ km

(f, fnµ,k)(g, gnj,k) ∼µ (1M , 1
n
Y ′µ

)

holds. Choose {1} ∈ M . Then f({1}) = s1 = f({j}), for all j ∈ N, because
|µ| = 0 (i.e., |µ| < 1) if and only if µ = {j} for some j ∈ N. Put µ0 = g(s1)
and j0 = max(µ0). Then Y ′µ0

= Yj0 . Let j′ ≥ j ≥ j0. Put µ∗ = µ0 ∪ {j} and
µ′ = µ∗ ∪ {j′}. Then µ∗, µ

′ ∈ M , {j′} ≤ µ′, µ0 ≤ µ∗ ≤ µ′, max(µ∗) = j and
max(µ′) = j′. Thus, Y ′µ∗ = Yj and Y ′µ′ = Yj′ . Since Y is cofinite, there is an m′

such that |µ′| < m′, and we may apply (k = km′)

(f, fnµ,km′ )(g, g
n
j,km′

) ∼µ′ (1M , 1
n
Y ′µ

).

This means that there exist a µ1 ≥ µ′, gf(µ′) and an n1 ∈ N such that for every
µ′′ ≥ µ1 and every n ≥ n1

fnµ′,km′ g
n
f(µ′),km′

q′gf(µ′)µ′′ = q′µ′µ′′ . (1)

On the other hand, by the ∗-morphism property of

(f, fnµ,km′ )(g, g
n
j,km′

) : Y → Y ,

for {j′} ≤ µ′ there exist a µ2 ≥ gf({µ′}) (≥ gf({j′}) = µ0) and an n2 ∈ N such
that for every µ′′ ≥ µ2 and every n ≥ n2

fn{j′},km′ g
n
s1,km′

q′g(s1)µ′′ = q′{j′}µ′f
n
µ′,km′

gnf(µ′),km′
q′gf(µ′)µ′′ . (2)
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Choose a µ3 ≥ µ1, µ2, and put n3 = max{n1, n2}. Then (1) and (2) hold for every
µ′′ ≥ µ3 and every n ≥ n3. Put j1 = max(µ3) and let j′′ ≥ j1. Then j′′ = max(µ′′)
for some µ′′ ≥ µ3. By construction of Y ′, (1) implies (j∗ = max(gf(µ′))) that

fnµ′,km′ g
n
f(µ′),km′

qj∗j′′ = qj′j′′ : Yj′′ → Yj′ , n ≥ n3, (3)

while (2) implies (q′{j′}µ′ = 1Yj′ ) that

fn{j′},km′ g
n
s1,km′

qj0j′′ = fnµ′,km′ g
n
f(µ′),km′

qj∗j′′ : Yj′′ → Yj′ , n ≥ n3. (4)

Therefore,

fn{j′},km′ g
n
s1,km′

qj0jqjj′′ = fn{j′},km′ g
n
s1,km′

qj0j′′ = qj′j′′ , n ≥ n3.

Choose n = n3 and put

r = fn3

{j′},km′
gn3

s1,km′
qj0j : Yj → Yj′ .

In this way we have proven that Y = (Yj , qjj′ ,N) has the following property:

(∃j0)(∀j ≥ j0)(∀j′ ≥ j)(∃r : Yj → Yj′)(∃j1 ≥ j′)(∀j′′ ≥ j1) rqjj′′ = qj′j′′ ,

which means that Y is semi-stable - a contradiction.

Theorem 7. Let X ∼= X ′ and Y ∼= Y ′ in pro∗U-A, and let X ∼∗ Y . Then
X ′ ∼∗ Y ′.

Proof. Let u∗ : X → X ′ and v∗ : Y → Y ′ be isomorphisms satisfying condition
(U). Let (f∗k) in Y X∗ and (g∗k) in XY ∗be a pair of U-sequences realizing X ∼∗ Y .
For every k ∈ N put

f ′∗k = v∗f∗k(u∗)−1 : X ′ → Y ′ and g′∗k = u∗g∗k(v∗)−1 : Y ′ →X ′.

Since lim(g∗kf
∗
k) = 1∗X , Lemma 2 (v) assures that lim((g∗kf

∗
k)(u∗)−1) = (u∗)−1. In

the same way, lim((f∗kg
∗
k)(v∗)−1) = (v∗)−1.

Further, since u∗ and v∗ satisfy condition (U), Corollary 3 (see also its proof) assures
that

lim(g′∗k f
′∗
k ) = lim(u∗(g∗kf

∗
k)(u∗)−1) = lim(u∗) lim((g∗kf

∗
k)(u∗)−1) = u∗(u∗)−1 =1∗X′,

lim(f ′∗k g
′∗
k ) = lim(v∗(f∗kg

∗
k)(v∗)−1) = lim(v∗) lim((f∗kg

∗
k)(v∗)−1) = v∗(v∗)−1 =1∗Y ′ .

Therefore, X ′ ∼∗ Y ′.

Corollary 5. (i) If X,Y ∈ Ob(tow-A) such that X ∼= Y in tow∗-A, then X ∼∗
Y .

(ii) Let X,X ′,Y ,Y ′ ∈ Ob(tow-A) such that X ∼= X ′ and Y ∼= Y ′ in tow∗-A.
Then X ∼∗ Y if and only if X ′ ∼∗ Y ′.
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Concerning the (coarse) shape theory ([8, 11]), by Theorem 7 and Corollary 5
(ii), we can well define the coarse equivalence for compact metrizable spaces: Two
compacta X and Y are coarse equivalent, denoted by X ∼∗ Y , if X ∼∗ Y , where
X, Y is any pair of their sequential HcPol-expansions.

Since there are plenty of non-discrete spaces (Y X∗, d∗), we expect that the coarse
equivalence ∼∗ is strictly coarser than the isomorphiness in tow∗-A, i.e., that the
answer to the next question is affirmative (see also Theorem 8 below).

Problem 2. Does there exist a pair of inverse sequences X, Y in A such that
X and Y are coarse equivalent, X ∼∗ Y , and they are not isomorphic objects of
tow∗-A. (We have a pair X, Y such that X ∼∗ Y and X 6∼= Y in tow∗ω-HcPol;
however, in this particular case, X ∼= Y in tow∗-HcPol holds; see also Corollary
4).

The next theorem might be a motivation to ask for the affirmative solution.

Theorem 8. Let X and Y be inverse sequences in a category A. Then the following
claims are equivalent:

(i) X and Y are isomorphic objects, X ∼= Y , of tow∗-A.

(ii) X and Y are coarse equivalent, X ∼∗ Y , and there is a pair of realizing
sequences such that one (equivalently, both) of them is a Cauchy sequence.

Proof. Since the analogue of Lemma 5.10 of [20] holds in the same way for the
ultrametric d∗, the proof follows the pattern of the proof of Theorem 5.9 of [20].

Corollary 6. Let X and Y be compact metrizable spaces. Then the following are
equivalent:
(i) X and Y have the same coarse shape type, Sh∗(X) = Sh∗(Y ).
(ii) X and Y are coarse equivalent, X ∼∗ Y and there is a pair of realizing sequences,
for X ∼∗ Y , such that one (equivalently, both) of them is a Cauchy sequence.

Our intention now is to show that the coarse equivalence admits a full category
characterization. Let φ = (f∗k) be a sequence of morphisms f∗k ∈ Y

X∗, and let
ψ = (g∗k) be a sequence of morphisms g∗k ∈ Z

Y ∗, k ∈ N. Then the coordinatewise

composition well defines the sequence χ = (g∗kf
∗
k) in ZX∗. Clearly, this composition

is associative. Therefore, there exists a category on the object class of Ob(pro∗-A) =
Ob(pro-A) having morphisms φ : X → Y all the morphism sequences (f∗k) in Y X∗.

Let X and Y be cofinite systems, and let a pair of new morphisms φ = (f∗k) :
X → Y and φ′ = (f ′∗k ) : X → Y be given. Then, φ is said to be equivalent to φ′,
denoted by φ ∼ φ′, if the corresponding (real) distance sequence converges to zero,
i.e., lim(d∗(f∗k,f

′∗
k )) = 0. One can easily verify that the relation ∼ is an equivalence

relation on the set of new morphisms of an X to a Y . The equivalence class [φ] of
φ is denoted by φ

Lemma 6. Let φ = (f∗k) ∼ (f ′∗k ) = φ′ : X → Y , and let W and Z be cofinite
systems. Then,

(i) (∀χ = (h∗k) : W →X) φχ ∼ φ′χ.
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(ii) (∀ψ = (g∗k) : Y → Z satisfying condition (U)) ψφ ∼ ψφ′.

Proof. Statement (i) follows by Lemma 2 (v), because

(∀k ∈ N) d∗(f∗k,f
′∗
k ) ≤ 1

m+ 1
⇒ d∗(f∗kh

∗
k,f

′∗
k h
∗
k) ≤ 1

m+ 1
.

On the other hand, condition (U) for ψ = (g∗k) assures that

(∀k ∈ N) d∗(f∗k,f
′∗
k ) ≤ 1

sm + 1
⇒ d∗(g∗kf

∗
k, g
∗
kf
∗
k) ≤ 1

m+ 1
,

and statement (ii) follows.

Since condition (U) is preserved by the composition in pro∗-A, the coordinate-
wise composition of two U-sequences is a U-sequence. Further, the constant identity
sequence (1∗X,k = 1∗X) is obviously a U-sequence. Thus, the restriction to all the
U-sequences assures the compatibility of relation ∼ with the coordinatewise compo-
sition. Consequently, there exists the corresponding quotient category - denoted by
pro∗

U
-A as well as its full subcategory tow∗-A. Furthermore, in the case of a pro-

reflective category pair (C,D = A), one can establish the corresponding “shape∗U”
category “Sh∗U(C,D)” (yielding a kind of the “coarse” coarse shape theory - modeled

on [11] and [8]). For instance, in the case of C = HcM (the homotopy category of
compact metrizable spaces) and D = HcPol (the homotopy category of compact
polyhedra), we have got the category “(Sh∗)∗U(HcM),HcPol)”denoted by (Sh∗)∗(cM).

Theorem 9. Let X and Y be cofinite inverse systems in a category A. Then X
and Y are coarse equivalent, X ∼∗ Y , if and only if they are isomorphic objects of
pro∗

U
-A, X ∼= Y in pro∗

U
-A.

Proof. Let X ∼∗ Y , i.e., let there exist sequences (f∗k) in Y X∗ and (g∗k) in XY ∗

satisfying condition (U), such that lim(g∗kf
∗
k) = 1∗X in (XX∗, d∗) and lim(f∗kg

∗
k) =

1∗Y in (Y Y ∗, d∗). Put φ = (f∗k) and ψ = (g∗k). Then φ ∈ pro∗
U

-A(X,Y ) and
ψ ∈ pro∗

U
-A(Y ,X). We are to prove that ψφ = 1X and φψ = 1Y , i.e., that

ψφ ∼ (1∗X) and φψ ∼ (1∗Y ),

i.e., that lim(d∗(g∗kf
∗
k,1
∗
X)) = 0 and lim(d∗(f∗kg

∗
k,1
∗
Y )) = 0 hold. However, that is

an immediate consequence of lim(g∗kf
∗
k) = 1∗X and lim(f∗kg

∗
k) = 1∗Y . Conversely, let

X ∼= Y in pro∗
U

-A, i.e., let there exist a φ ∈ pro∗
U

-A(X,Y ) and a ψ ∈ pro∗
U

-A(Y ,X)

such that ψφ = 1X and φψ = 1Y . Let φ = (f∗k) ∈ φ and ψ = (g∗k) ∈ ψ be a pair of
representatives. Then,

(g∗kf
∗
k) = ψφ ∼ (1∗X) and (f∗kg

∗
k) = φψ ∼ (1∗Y ),

which means that lim(d∗(g∗kf
∗
k,1
∗
X)) = 0 and lim(d∗(f∗kg

∗
k,1
∗
Y )) = 0 hold. This

obviously implies that lim(g∗kf
∗
k) = 1∗X in (XX∗, d∗) and lim(f∗kg

∗
k) = 1∗Y in

(Y Y ∗, d∗). Since (f∗k) and (g∗k) satisfy condition (U), the conclusion follows.
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Corollary 7. Let X and Y be compact metrizable spaces. Then the following are
equivalent:

(i) X and Y are coarse equivalent, X ∼∗ Y .

(ii) X and Y have the same (Sh∗)∗-type.

5.2. The uniform coarse equivalence

In order to obtain another comparison of X ∼= Y in tow∗-A to X ∼∗ Y , we need
a special kind of morphism sequences. A sequence ((uk = u, unµ,k)) of ∗-morphisms
(u, unµ,k) : X → Y of inverse systems, k ∈ N, is said to be uniform if, for every
related pair µ ≤ µ′, there exist a λ ≥ u(µ), u(µ′) and an n, such that the appropriate
condition for a ∗-morphism holds for every k, i.e.,

(∀n′ ≥ n)(∀k ∈ N) un
′

µ,kpu(µ)λ = qµµ′u
n′

µ′,kpu(µ′)λ.

Clearly, the condition from above holds for every λ′ ≥ λ as well. We say that X and
Y are uniformly coarse equivalent if they are coarse equivalent by means of a pair
of uniform representing sequences. (Since we deal with inverse sequences, condition
(U) is satisfied in general!).

In light of Corollaries 4 and 5, the following characterization seems to be very
interesting.

Theorem 10. Let X,Y ∈ Ob(tow-A). Then, X ∼= Y in tow∗-A if and only if X
and Y are uniformly coarse equivalent.

Proof. Since every morphism of tow∗-A satisfies condition (U), and since every
stationary morphism sequence in Y X∗ and XY ∗ is uniform, the necessity holds
straightforwardly. Conversely, let X and Y be inverse sequences in A such that
X ∼∗ Y uniformly. First, let us show that every uniform sequence ((uk = u, unµ,k))

of ∗-morphisms (u, unj,µ) : X ′ → Y ′ (of systems, generally), k ∈ N, induces a ∗-
morphism (u, unµ) : X ′ → Y ′. (This has no analogue in the case of ordinary, i.e.,
commutative morphisms!). Let us apply the “diagonal procedure”, i.e., put, for
every n ∈ N and every µ ∈M ,

unµ = unµ,n = X ′u(µ) → Y ′µ.

Let µ ≤ µ′. Since the sequence ((u, unµ,k)) is uniform, there exist a λ ≥ u(µ), u(µ′)
and an nµ,µ′ , such that for every k every λ′ ≥ λ and every n ≥ nµ,µ′ ,

unµ,kpu(µ)λ′ = qµµ′u
n
µ′,kpu(µ′)λ′ .

By putting k = n, it turns into

unµ,npu(µ)λ′ = qµµ′u
n
µ′,npu(µ′)λ′ , i.e., unµpu(µ)λ′ = qµµ′u

n
µ′pu(µ′)λ′ ,

which shows that (u, unµ) is a ∗-morphism of X ′ to Y ′. Let (f∗k) in Y X∗ and (g∗k)

in XY ∗ be a pair of appropriate sequences realizing the uniform coarse equivalence
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X ∼∗ Y . Let ((f, fnj,k)), ((g, gni,k)) be any pair of appropriate representing sequences.
Let (f, fnj ) : X → Y and (g, gni ) : Y → X be their induced ∗-morphisms, respec-
tively, and let f∗ = [(f, fnj )] and g∗ = [(g, gni )]. We are to prove that g∗f∗ = 1∗X
and f∗g∗ = 1∗Y . It suffices to verify that for every m ∈ N

(fg, gni f
n
g(i)) ∼m (1N, 1

n
Xi) and(gf, fnj g

n
f(j)) ∼m (1N, 1

n
Yj )

hold. Indeed, since lim(g∗kf
∗
k) = 1∗X , for every m ∈ N, there exists a km such that

for every k ≥ km

ρ∗((fg, gni,kf
n
g(i),k), (1N, 1

n
Xi)) = d∗(g∗kf

∗
k,1
∗
X) ≤ 1

m+ 1
.

It means that for every i < m there exist an i′ ≥ i, fg(i) and an ni such that for
every n ≥ ni

gni,kf
n
g(i),kpfg(i)i′ = pii′ , k ≥ km.

Thus, for every m every i ≤ m and every k = n ≥ max{km, ni},

gni f
n
g(i)pfg(i)i′ = gni,kf

n
g(i),kpfg(i)i′ = pii′ ,

which means that
(fg, gni f

n
g(i)) ∼m (1N, 1

n
Xi)

holds. In the same way, starting with lim(f∗kg
∗
k) = 1∗Y , one obtains, for every m,

the needed relation
(gf, fnj g

n
f(j)) ∼m (1N, 1

n
Yj ).

Remark 5. The uniformity condition added to the coarse equivalence to become the
uniform coarse equivalence is the same one added to q-equivalence to become the q∗-
equivalence in the case of a sequence of commutative morphisms (see [19], Remark
8(b) and [8], Section 5).

5.3. The weak shape

The weak shape theory is another generalization of shape theory which generalizes
the coarse shape theory as well (see, [23]). The commutative functorial diagram (for
an appropriate category pair (C,D)) is as follows:

C
↙ S S∗ ↓ S∗ ↘

Sh(C,D) →
J

Sh∗(C,D) →
W

Sh∗(C,D)

where the functors J and WJ are faithful keeping the objects fixed. The realiz-
ing category of the weak shape category Sh∗(C,D) is the “∗-reduced pro-category”
pro∼∗ -D = (inv∼∗ -D)/ '. Generally, for every category A the morphism set

pro∼∗ -A(X,Y ) ≡ Y X∗ = (inv∼∗ -A(X,Y ))/ '
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is not empty if and only if M = Λ (preordered, directed, cofinite, infinite, hav-
ing no maximal element). Every morphism f∗ is the equivalence class [(fµ)] of a
hyperladder (fµ) : X → Y (morphism of inv∼∗ -A).

In [21], it is showed that every set Y X∗ admits a complete ultrametric structure
having a lot of useful properties. However, that metric structure is not naturally
comparable to (Y X , d) of [20] neither to (Y X∗, d∗) of this paper. We will show
hereby how to change slightly the previous ultrametric on Y X∗ to obtain a complete
ultrametric space (Y X∗ , d∗) such that, at least for inverse sequences, (Y X , d) and
(Y X∗, d∗) are its closed subspaces.

Definition 4. Let (fµ), (f ′µ) : X → Y be morphisms (hyperladders) of inv∼∗ -A,
M = Λ, and let m ∈ N. Then (fµ) is said to be m-equivalent to(f ′µ), denoted by
(fµ) ∼m (f ′µ), if the following condition is fulfilled:

(∀µ1 ∈M)(∀µ′1 ≥ µ1, |µ′1| < m)(∃λ∗ ≥ µ′1)(∀µ2 ≥ λ∗) fµ ' f ′µ rel(µ′1, λ∗),

where µ = [µ1, µ2].
(Herein “rel (µ′1, λ∗)” means that for every µ ∈ [µ1, µ

′
1], fµpf(µ)λ∗ = f ′µpf ′(µ)λ∗ . )

The next properties are immediate consequences of the definition.

(i) For every m ∈ N, the relation ∼m is an equivalence relation on each set
inv∼∗ -A(X,Y );

(ii) if (fµ) ∼m′ (f ′µ) and m ≤ m′, then (fµ) ∼m (f ′µ);

(iii) (fµ) ' (f ′µ) if and only if for every m ∈ N, (fµ) ∼m (f ′µ);

(iv) If (fµ) ∼m′ (f ′µ) and (f ′µ) ∼m′′ (f ′′µ), then (fµ) ∼m (f ′′µ), where m =
min{m′,m′′};

(v) for everym and every (hλ) ∈ inv∼∗ -A(W ,X), if (fµ)∼m (f ′µ), then (fµ)(hλ)∼m
(f ′µ)(hλ);

(vi) Let m,m′ ∈ N, let (fµ) ∼m (f ′µ) and let (gν) ∈ inv∼∗ -A(Y ,Z) fulfills the
following condition:

(∀ν1 ∈ N = M)(∀ν′1 ≥ ν1)(∃µ1 ≥ ν′1)(∀ν2 ≥ µ1)

|ν′1| < m′ ⇒ |g(ν′1)| < m,

where g is the index function of the ladder gν ∈ (gν) assigned to ν = [ν1, ν2].
Then (gν)(fµ) ∼m′ (gν)(f ′µ).

The relation ∼m on the hyperladders admits to define a certain pseudoultrametric
(see also [22])

δ∗ : inv∼∗ -A(X,Y )× inv∼∗ -A(X,Y )→ R

by putting

δ∗((fµ), (f ′µ)) =

{
inf{ 1

m+1 | (fµ) ∼m (f ′µ), m ∈ N}
1, otherwise

.
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By definition, δ∗((fµ), (f ′µ)) = 0 if and only if (fµ) ' (f ′µ). Further, if (f ′µ) '
(f ′′µ), then δ∗((fµ), (f ′µ)) = δ∗((fµ), (f ′′µ)), for every (fµ). Thus, there exists an

ultrametric d∗ : Y X∗ × Y
X
∗ → R defined by

d∗(f∗,f
′
∗) = δ∗((fµ), (f ′µ)),

where (fµ) ∈ f∗, (f ′µ) ∈ f ′∗ is any pair of representatives. To see that the ultrametric

space (Y X∗ , d∗) is complete, let us consider a Cauchy sequence (fk∗) in (Y X∗ , d∗).
Then there exists a strictly increasing sequence (km) in N such that

d∗(f
k
∗,f

k′

∗ ) ≤ 1

m+ 1
, k, k′ ≥ km.

It means that for any representing sequence ((fkµ)) of (fk∗)

(∀µ1)(∀µ′1 ≥ µ1, |µ′1| < m)(∃λ∗ ≥ µ′1)(∀µ2 ≥ λ∗) fkµ ' fk
′

µ rel(µ′1, λ∗), k, k
′ ≥ km,

holds, where fkµ ∈ (fkµ) and fk
′

µ ∈ (fk
′

µ ) are the corresponding ladders assigned to
µ = [µ1, µ2] ∈ Λ. Now, by choosing, for every µ = [µ1, µ2] ∈ Λ, the ladder

f0
µ = fkmµ : X → Y , m = |µ2|+ 1,

we obtain the family (f0
µ), µ ∈ Λ. Then, one can easily verify that (f0

µ) is a
hyperladder of X to Y , and that, for every m ∈ N,

ρ∗((f
k
µ), (f0

µ)) ≤ 1

m+ 1
, k ≥ km.

Finally, by putting
f0
∗ = [(f0

µ)] : X → Y ,

it immediately follows that lim(fk∗) = f0
∗ in (Y X∗ , d∗).

Similarly to Theorem 3 (see also Lemma 6 of [23]), if lim(fk∗) = f0
∗, then there

exist representing hyperladders (fkµ), k ∈ N, and (f0
µ) having a unique common

increasing index function f0 ≥ 1Λ.
Recall now the canonical injection of pro-A(X,Y ) into pro∗-A(X,Y ), f =

[(f, fµ)] 7→ i(f) = f∗ = [(f, fnµ = fµ)] (Theorem 2). Further, by Lemma 7 of [23]
(see also its proof ), there exists a canonical (functorial) function of pro∗∼-A(X,Y )
to pro∼∗ -A(X,Y ), f∗ = [(f, fnµ )] 7→ j(f∗) = f∗ = [(fµ)], which is injective for
inverse sequences. (Given a µ = [µ1, µ2] ∈ Λ, the ladder fµ is defined to be the
maximal commutative restriction of (f, fnµ ) to µ for n = |µ2|+ 1; in general, j is not
an injection!)

Lemma 7. The function j : (Y X∗, d∗)→ (Y X∗ , d∗) is continuous.

Proof. Let lim(f∗k) = f∗0 in (Y X∗, d∗). We have to prove that lim(j(f∗k)) = j(f∗0)
in (Y X∗ , d∗). Therefore, it suffices to verify that, for every m ∈ N,

d∗(f∗, g∗) ≤ 1

m+ 1
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implies

d∗(j(f
∗), j(g∗)) ≤ 1

m+ 1
.

Let (f, fnj ) and (g, gnj ) be representatives of f∗ and g∗, respectively, and let (fj) and
(gj) be the corresponding induced hyperladders. (The same letter j for the function
and an index should not cause ambiguity!) Since

ρ∗((f, fnj ), (g, gnj )) ≤ 1

m+ 1
,

i.e., for each j0 = |j0|+ 1 < m,

(f, fnj ) ∼j0 (g, gnj ),

the construction of (fj) and (gj) assures that for every j1 and every j′1 ≥ j1 such
that |j′1| = j′1 − 1 < m, there exists an i∗ ≥ j′1, f(j′1), g(j′1) so that for every j2 ≥ i∗

fj ' gj rel(j′1, i∗), j = [j1, j2].

It means that (fj) ∼m (gj), i.e.,

ρ∗((fj), (gj)) ≤
1

m+ 1
,

and the conclusion follows.

Problem 3. Is j[Y X∗] closed in (Y X∗ , d∗)?

The answer is affirmative in the sequential case.

Theorem 11. Let X and Y be inverse sequences in a category A. Then the canon-
ical injections ji : Y X → Y X∗ and j : Y X∗ → Y X∗ are isometric closed embeddings
of spaces (Y X , d) and (Y X∗, d∗) into (Y X∗ , d∗), respectively.

Proof. According to Lemma 7 of [23] and our Lemma 7 and Theorems 1 and 2, it
suffices to verify that in the case of inverse sequences

d∗(j(f
∗), j(g∗)) = d∗(f∗, g∗)

holds. Let (f, fnj ) and (g, gnj ) be representatives of f∗ and g∗, respectively, and let
(fj) and (gj) be the corresponding induced hyperladders. (The same letter j for the
function and an index should not cause ambiguity!) If d∗(j(f

∗), j(g∗)) = 0, then
the definition of j and Lemma 7 of [23] immediately imply that d∗(f∗, g∗) = 0. Let
d∗(j(f

∗), j(g∗)) = 1. Since ρ∗((fj), (gj)) = 1, i.e., (fj) 6∼1 (gj), we infer that (for
j′1 = j1 = 1)

(∀i∗ ≥ 1, f(1), g(1))(∃j2 ≥ i∗) fj 6' gj rel(1, i∗),

where j = [1, j2]. It implies that there are cofinally many n = j2 ∈ N such that for
every i ≥ f(1), g(1),

fn1 pf(1)i 6= gn1 pg(1)i.
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Thus,
(f, fnj ) 6∼1 (g, gnj ), i.e., d∗(f∗, g∗) = ρ∗((f, fnj ), (g, gnj )) = 1.

Let, finally,

d∗(j(f
∗), j(g∗)) = ρ∗((fj), (gj)) =

1

m+ 1
,

for some m ∈ N. This means that

(fj) ∼m (gj) ∧ (fj) 6∼m+1 (gj)

hold. Since every j = |j|+ 1 ∈ N, and since for every n ∈ N there is j = |j|+ 1 = n,
the first relation and the definition of function j imply that

(f, fnj ) ∼m (g, gnj ), i.e., d∗(f∗, g∗) = ρ∗((f, fnj ), (g, gnj )) ≤ 1

m+ 1
.

On the other hand, the second relation implies (similarly to the previous case) that
there are cofinally many n = j2 ∈ N such that for every i ≥ f(m+ 1), g(m+ 1),

fnm+1pf(m+1)i 6= gnm+1pg(m+1)i.

Hence,

(f, fnj ) 6∼m+1 (g, gnj ), i.e., d∗(f∗, g∗) = ρ∗((f, fnj ), (g, gnj )) >
1

m+ 2
.

Therefore,

d∗(f∗, g∗) =
1

m+ 1

which completes the proof.

Similarly to the facts concerning the old structure (Theorems 4 and Corollary 2
of [21]), the analogue facts hold for the new complete ultrametric structure on Y X∗ .
Especially, the corresponding hom-bifunctor is continuous and invariant at least
for inverse sequences. Therefore, for HcM - the homotopy category of compact
metrizable spaces and HcPol - the homotopy category of compact polyhedra (or
HcANR - the homotopy category of compact ANR’s for metric spaces) the following
corollary holds.

Corollary 8. For every ordered pair (X,Y ) of compact metrizable spaces, there
exist complete ultrametric structures on the corresponding shape, coarse shape and
weak shape morphism sets, Sh(X,Y ), Sh∗(X,Y ) and Sh∗(X,Y ), respectively, such
that the canonical (functorial) injections

(Sh(X,Y ), d)→ (Sh∗(X,Y ), d∗)→ (Sh∗(X,Y ), d∗)

are isometric closed embeddings.

Proof. Since D = HcPol (or HcANR) is a sequentially pro-reflective (i.e., tow-
reflective) subcategory of HcM = C (Corollaries I. 5. 4 and I. 5. 6. of [11]),
the appropriate realizing categories for the shape, coarse shape and weak shape are
tow-D, tow∗-D and tow∗-D, respectively. By applying Corollary 3.9 and Theorem
4.2 of [20], our Corollary 2, Theorem 6, the above observation concerning Y X∗ and
Theorem 11, the conclusion follows.
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