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Abstract. In this paper, by using Krasnosel’skii fixed point theorem and under suitable
conditions, we present the existence of single and multiple positive solutions to the following
systems

(−1)mu(2m) = λf(t, u(t), v(t)) = 0, t ∈ [a, b],

(−1)nv(2n) = µg(t, u(t), v(t)) = 0, t ∈ [a, b],

u(2i)(a) = u(2i)(b) = 0, 0 ≤ i ≤ m− 1,

v(2j)(a) = v(2j)(b) = 0, 0 ≤ j ≤ n− 1,

where λ, µ > 0,m, n ∈ N. We derive two explicit eigenvalue intervals of λ and µ for the
existence of at least one positive solution and the existence of at least two positive solutions
for the above higher order two-point boundary value problem.
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1. Introduction

In this paper, we consider the existence of single and multiple positive solutions to
the following boundary value problem of nonlinear differential system

(−1)mu(2m) = λf(t, u(t), v(t)) = 0, t ∈ [a, b]

(−1)nv(2n) = µg(t, u(t), v(t)) = 0, t ∈ [a, b]

u(2i)(a) = u(2i)(b) = 0, 0 ≤ i ≤ m− 1,

v(2j)(a) = v(2j)(b) = 0, 0 ≤ j ≤ n− 1,

(1)

where λ, µ > 0,m, n ∈ N, f, g ∈ C[[a, b]× [0,∞)× [0,∞), [0,∞)], and also f and g
are allowed to be singular at t = a or t = b. The following assumptions are made to
establish our results.
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(H1) f(t, u, v) ≤ p1(t)q1(t, u, v), g(t, u, v) ≤ p2(t)q2(t, u, v), (t, u, v) ∈ [a, b]× [0,∞)×
[0,∞), where qi ∈ C[[a, b] × [0,∞) × [0,∞), [0,∞)], and pi ∈ C[[a, b], [0,∞)]
satisfy ∫ b

a

(s− a)(b− s)
b− a

pi(s)ds < +∞, i = 1, 2.

(H2) The limits

f0 = lim
u+v→0

min
t∈[ 3a+b

4 , a+3b
4 ]

f(t, u, v)

u+ v
, f∞ = lim

u+v→∞
min

t∈[ 3a+b
4 , a+3b

4 ]

f(t, u, v)

u+ v
,

g0 = lim
u+v→0

min
t∈[ 3a+b

4 , a+3b
4 ]

g(t, u, v)

u+ v
, g∞ = lim

u+v→∞
min

t∈[ 3a+b
4 , a+3b

4 ]

g(t, u, v)

u+ v
,

qi0 = lim
u+v→0

min
t∈[ 3a+b

4 , a+3b
4 ]

qi(t, u, v)

u+ v
, qi∞ = lim

u+v→∞
min

t∈[ 3a+b
4 , a+3b

4 ]

qi(t, u, v)

u+ v
,

exist with f0, f∞, g0, g∞, qi0, qi∞ ∈ [0,∞), i = 1, 2.

The aim of this paper is to establish some simple criteria for the existence of
single and multiple solutions of the system (1) in explicit intervals for λ and µ. The
rest of the paper is organized as follows. In Section 2, we present some preliminaries
and lemmas that will be used to prove our main results. In Section 3, we discuss the
existence of a single positive solution of the system (1). The intervals in which the
parameters λ, µ can guarantee the existence of a solution are obtained. In Section
4, we study the existence conditions of at least two positive solutions of the system
(1). Finally, in Section 5, we give an example as an application.

2. Preliminary results

In this section, we present some notation and lemmas that will be used to prove
our results. Here we consider the Banach space C[a, b] × C[a, b] equipped with the
standard norm

‖(u, v)‖ = ‖u‖+ ‖v‖ = max
t∈[a,b]

|u(t)|+ max
t∈[a,b]

|v(t)|, (u, v) ∈ C[a, b]× C[a, b].

Let Gn(t, s) be the Green’s function of a homogeneous boundary value problem:

(−1)nω(2n)(t) = 0, t ∈ [a, b],

ω(2i)(a) = ω(2i)(b) = 0, 0 ≤ i ≤ n− 1.

By induction, the Green’s function Gn(t, s) can be expressed as (see [1])

Gi(t, s) =

∫ b

a

G(t, u)Gi−1(u, s)du, 2 ≤ i ≤ n, (2)

where

G1(t, s) = G(t, s) =

{
(t−a)(b−s)

b−a , a ≤ t ≤ s ≤ b,
(s−a)(b−t)

b−a , a ≤ s ≤ t ≤ b.
(3)
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It is clear that

Gn(t, s) > 0, (t, s) ∈ (a, b)× (a, b). (4)

Lemma 1. For any (t, s) ∈ [a, b]× [a, b],

Gn(t, s) ≤

(
b− a

6

)n−1
(s− a)(b− s)

b− a
. (5)

Proof. For (t, s) ∈ [a, b]× [a, b], it is clear from (3) that

G(t, s) ≤ (s− a)(b− s)
b− a

. (6)

i.e. (5) is true for n = 1. Assume that (5) holds for n = k(≥ 1). Then, for
(t, s) ∈ [a, b]× [a, b], it follows from (2), (4) and (6) that

Gk+1(t, s) =

∫ b

a

G(t, u)Gk(u, s)du

≤
∫ b

a

(u− a)(b− u)

b− a

(
b− a

6

)k−1
(s− a)(b− s)

b− a
du

=

(
b− a

6

)k
(s− a)(b− s)

b− a
.

Thus (5) is true for n = k + 1.

Lemma 2. Let δ ∈ (a, a+b2 ), then for all (t, s) ∈ [δ, b− δ]× [a, b], we have

Gn(t, s) ≥ θn(δ)
(s− a)(b− s)

b− a
≥
(

6

b− a

)n−1
θn(δ) max

t∈[a,b]
Gn(t, s), (7)

where 0 < θn(δ) < 1 is a constant given by

θn(δ) = (δ − a)n

(
4δ3 − 6bδ2 + 6abδ − 3ab2 + b3

6(b− a)

)n−1
.

Proof. For (t, s) ∈ [δ, b− δ]× [a, b], from (3) we find

G(t, s) =

{
(t−a)(b−s)

b−a , t ≤ s
(s−a)(b−t)

b−a , s ≤ t

≥

{
(δ−a)(b−s)

b−a , t ≤ s
(s−a)(b−(b−δ))

b−a , s ≤ t

≥ (δ − a)(s− a)(b− s)
b− a

.

(8)
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Hence (7) is true for n = 1. Suppose now that (7) holds for n = k(≥ 1). Then, using
(2), (4) and (8), we get for (t, s) ∈ [δ, b− δ]× [a, b],

Gk+1(t, s) =

∫ b

a

G(t, u)Gk(u, s)du

≥
∫ b−δ

δ

G(t, u)Gk(u, s)du

≥
∫ b−δ

δ

(δ − a)(u− a)(b− u)

b− a
θk(δ)

(s− a)(b− s)
b− a

du

= θk+1(δ)
(s− a)(b− s)

b− a
.

So, (7) is true for n = k + 1.

In Lemma 2, let

σm =

(
6

b− a

)m−1
θm

(
3a+ b

4

)
=

(11b3 + 27a3 − 51ab2 + 45a2b)m−1

26m−4(b− a)m−2
,

σn =

(
6

b− a

)n−1
θn

(
3a+ b

4

)
=

(11b3 + 27a3 − 51ab2 + 45a2b)n−1

26n−4(b− a)n−2
,

σ = min{σm, σn}.

According to Lemma 1 and Lemma 2, one obviously has 0 < σ < 1.
It is well known that the system (1) is equivalent to the equation

(u(t), v(t)) =
(
λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds, µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds
)
.

Under the conditions of (H1), we define the operators Aλ, Aµ : C[a, b] × C[a, b] →
C[a, b] as

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds,

Aµ(u, v)(t) = µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds,

and an operator A : C[a, b]× C[a, b]→ C[a, b]× C[a, b] as

A(u, v) =
(
Aλ(u, v), Aµ(u, v)

)
, (u, v) ∈ C[a, b]× C[a, b]. (9)

It is clear that the existence of a positive solution to the system (1) is equivalent
to the existence of a fixed point of A in C[a, b]× C[a, b].

We define a cone in C[a, b]× C[a, b] by

κ =
{

(u, v) : C[a, b]×C[a, b] : u(t)≥0, v(t)≥0, min
3a+b

4 ≤t≤ a+3b
4

(u(t)+v(t)) ≥ σ‖(u, v)‖
}
.

Lemma 3. A : κ→ κ is completely continuous.
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Proof. Since the proof of the completely continuous is standard, we need only to
prove A(κ) ⊂ κ.

In fact, for any (t, s) ∈ [ 3a+b4 , a+3b
4 ]× [a, b], we have

Aλ(u, v)(t) +Aµ(u, v)(t)

= λ

∫ b

a

Gm(t, s)f(s, u(s)v(s))ds+ µ

∫ b

a

Gn(t, s)g(s, u(s)v(s))ds

≥ λθm
(3a+ b

4

)( 6

b− a

)m−1
max
t∈[a,b]

∫ b

a

Gm(t, s)f(s, u(s)v(s))ds

+ µθn

(3a+ b

4

)( 6

b− a

)n−1
max
t∈[a,b]

∫ b

a

Gn(t, s)g(s, u(s)v(s))ds

= σm‖Aλ(u, v)‖+ σn‖Aµ(u, v)‖ ≥ σ‖A(u, v)‖,

hence,
min

t∈[ 3a+b
4 , a+3b

4 ]
[Aλ(u, v)(t) +Aµ(u, v)(t)] ≥ σ‖A(u, v)‖.

Therefore, A(κ) ⊂ κ.

3. Existence results

In this section, we discuss the existence of at least one positive solution to the system
(1). We use the following notation for simplicity.

A1 =
(b− a

6

)m−1 ∫ b

a

p1(s)
(s− a)(b− s)

b− a
ds,

A2 =
(b− a

6

)n−1 ∫ b

a

p2(s)
(s− a)(b− s)

b− a
ds,

B1 =
11b3 − 11a3 + 33a2b− 33ab2

96(b− a)
θm

(3a+ b

4

)
,

B2 =
11b3 − 11a3 + 33a2b− 33ab2

96(b− a)
θn

(3a+ b

4

)
.

Our approach is based on the following Krasnosel’skii fixed point theorem [12].

Lemma 4. Let B be a Banach space and let P ⊂ B be a cone in B. Assume that
Ω1 and Ω2 are open bounded subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2\Ω1) → P

be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then, T has a fixed point in P ∩ (Ω2\Ω1).
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Theorem 1. Suppose (H1), (H2) hold, and 0 < α < 1, then we have the following
results:

(1) If 0 < q10, f∞, q20, g∞<∞, A1q10 < ασB1f∞, then for each λ∈( 1
σB1f∞

, α
A1q10

)

and µ ∈ (0, 1−α
A2q20

), the system (1) has at least one positive solution.

(2) If 0 < q10, f∞, q20, g∞ < ∞, A2q20 < (1 − α)σB2g∞, then for each λ ∈
(0, α

A1q10
) and µ ∈ ( 1

σB2g∞
, 1−α
A2q20

), the system (1) has at least one positive
solution.

Proof. We only prove case (1). The other case can be proved similarly. We con-
struct the sets Ω1 and Ω2 in order to apply Lemma 4.

Let

λ ∈
( 1

σB1f∞
,

α

A1q10

)
, µ ∈

(
0,

1− α
A2q20

)
,

and we choose ε > 0 such that

1

σB1(f∞ − ε)
≤ λ ≤ α

A1(q10 + ε)
, 0 < µ ≤ 1− α

A2(q20 + ε)
.

By the definition of q10 and q20, there exists R1 > 0 such that

q1(t, u, v) ≤ (q10 + ε)(u+ v), q2(t, u, v) ≤ (q20 + ε)(u+ v), for u+ v ∈ [0, R1].

Choosing (u, v) ∈ κ with ‖(u, v)‖ = R1, we have

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)q1(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)(q10 + ε)(u+ v)ds

≤ λ
(b− a

6

)m−1
(q10 + ε)‖(u, v)‖

∫ b

a

(s− a)(b− s)
b− a

p1(s)ds

≤ λA1(q10 + ε)‖(u, v)‖ ≤ α‖(u, v)‖,

Aµ(u, v)(t) = µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)q2(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)(q20 + ε)(u+ v)ds

≤ µ
(b− a

6

)n−1
(q20 + ε)‖(u, v)‖

∫ b

a

(s− a)(b− s)
b− a

p2(s)ds

≤ µA2(q20 + ε)‖(u, v)‖
≤ (1− α)‖(u, v)‖,
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then ‖A(u, v)‖ ≤ α‖(u, v)‖ + (1 − α)‖(u, v)‖ = ‖(u, v)‖. Consequently, if we set
Ω1 = {(u, v) ∈ κ : ‖(u, v)‖ < R1}, then

‖A(u, v)‖ ≤ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ω1. (10)

On the other hand, by the definition of f∞, there exists R2 > 0, such that
f(t, u, v) ≥ (f∞ − ε)(u + v), for all u + v ∈ [R2,∞). Let R2 = max{2R1, σ

−1R2}
and Ω2 = {(u, v) ∈ κ : ‖(u, v)‖ < R2}. If (u, v) ∈ κ with ‖(u, v)‖ = R2, then
mint∈[ 3a+b

4 , a+3b
4 ](u+ v) ≥ σ‖(u, v)‖ ≥ R2, thus we have

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

≥ λθm
(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)
b− a

(f∞ − ε)(u+ v)ds

≥ λθm
(3a+ b

4

)
(f∞ − ε)σ‖(u, v)‖

∫ a+3b
4

3a+b
4

(s− a)(b− s)
b− a

ds

=
11b3 − 11a3 + 33a2b− 33ab2

96(b− a)
λθm

(3a+ b

4

)
(f∞ − ε)σ‖(u, v)‖

= λB1(f∞ − ε)σ‖(u, v)‖

≥ ‖(u, v)‖, ∀t ∈
[3a+ b

4
,
a+ 3b

4

]
,

then

‖A(u, v)‖ ≥ ‖Aλ(u, v)‖ ≥ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ω2. (11)

Therefore, it follows from (10), (11) and Lemma 4, A has a fixed point in κ∩(Ω2\Ω1),
which is a positive solution of (1).

Similarly, we can also obtain the following theorem that is in some way a duality
of Theorem 1.

Theorem 2. Suppose (H1), (H2) hold, and 0 < α < 1, then we have

(1) If 0<f0, q1∞, g0, q2∞<∞, A1q1∞<ασB1f0, then for each λ ∈ ( 1
σB1f0

, α
A1q1∞

)

and µ ∈ (0, 1−α
A2q2∞

), the system (1) has at least one positive solution.

(2) If 0<f0, q1∞, g0, q2∞<∞, A2q2∞<(1− α)σB2g0, then for each λ∈(0, α
A1q1∞

)

and µ ∈ ( 1
σB2g0

, 1−α
A2q2∞

), the system (1) has at least one positive solution.

Proof. The proof is very similar to the proof of Theorem 1, we omit it here.

4. Multiplicity results

In this section, we prove the existence of at least two positive solutions for the system
(1).
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Theorem 3. Suppose (H1), (H2) hold. In addition, assume that there exist four
constants r1,M,K, α, where K is sufficient small, 0 < α < 1, with αB1M > A1K,
(1− α)B2M > A2K, such that:

(1) q10 = q1∞ = 0, q20 = q2∞ = 0;

(2) f(t, u, v) ≥Mr1, or g(t, u, v) ≥Mr1, for σr1 ≤ ‖(u, v)‖ ≤ r1.

Then for any λ ∈
[

1
B1M

, α
A1K

]
, µ ∈

(
0, 1−α

A2K

]
or λ ∈ [0, α

A1K

]
, µ ∈

[
1

B2M
, 1−α
A2K

]
, the

system (1) has at least two positive solutions.

Proof. We only prove the case of λ ∈
[

1
B1M

, α
A1K

]
, µ ∈

(
0, 1−α

A2K

]
. The other case is

similar.
Step 1. By the definition of q10 = q20 = 0, there exists H1 ∈ (0, r1) such that

q1(t, u, v) ≤ K(u+ v), q2(t, u, v) ≤ K(u+ v), for u+ v ∈ (0, H1).

Then we have

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)q1(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)dsK(u+ v)

≤ λ
(b− a

6

)m−1
K‖(u, v)‖

∫ b

a

(s− a)(b− s)
b− a

p1(s)ds

= λA1K‖(u, v)‖ ≤ α‖(u, v)‖,

Aµ(u, v)(t) = µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)q2(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)dsK(u+ v)

≤ µ
(b− a

6

)n−1
K‖(u, v)‖

∫ b

a

(s− a)(b− s)
b− a

p2(s)ds

= µA2K‖(u, v)‖ ≤ (1− α)‖(u, v)‖.

Hence,
‖A(u, v)‖ = ‖Aλ(u, v)‖+ ‖Aµ(u, v)‖ ≤ ‖(u, v)‖.

Set Ω1 = {(u, v) ∈ κ : ‖(u, v)‖ < H1}, then

‖A(u, v)‖ ≤ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ω1. (12)

Step 2. By the definition of q1∞ = q2∞ = 0, there exist H2 > r1 such that

q1(t, u, v) ≤ K(u+ v), q2(t, u, v) ≤ K(u+ v), for u+ v ∈ [H2,∞).
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Similarly, set Ω2 = {(u, v) ∈ κ : ‖(u, v)‖ < H2}, then

‖A(u, v)‖ ≤ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ω2. (13)

Step 3. Set Ω3 = {(u, v) ∈ κ : ‖(u, v)‖ < r1}, then ∀(u, v) ∈ κ with ‖(u, v)‖ = r1,
we have

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

≥ λθm
(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)
b− a

Mr1ds

= λB1Mr1 ≥ r1, ∀t ∈
[3a+ b

4
,
a+ 3b

4

]
.

Then
‖A(u, v)‖ ≥ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ω3. (14)

Consequently, from (12)-(14) and Lemma 4, the system (1) has at least two positive
solutions (u1, v1) ∈ κ, (u2, v2) ∈ κ with 0 ≤ ‖(u1, v1)‖ ≤ r1 ≤ ‖(u2, v2)‖.

The following result is an antithesis of Theorem 3.

Theorem 4. Suppose (H1), (H2) hold. In addition, assume that there exist four
constants r1,M,K, α, where K is sufficient large, 0 < α < 1, with αB1Kσ > A1M ,
(1− α)B2Kσ > A2M , such that:

(3) q1(t, u, v) ≤Mr1, or q2(t, u, v) ≤Mr1, for 0 ≤ ‖(u, v)‖ ≤ r1;

(4) f0 = f∞ =∞ or g0 = g∞ =∞.

Then for any λ ∈
[

1
B1Kσ

, α
A1M

]
and µ ∈

(
0, 1−α

A2M

]
or λ ∈ [0, α

A1M

]
and µ ∈[

1
B2Kσ

, 1−α
A2M

]
, the system (1) has at least two positive solutions.

For the convenience of the discussion of the existence of more than two positive
solutions for the system (1), we study the problem under a more general case than
the assumption of Theorem 3 and Theorem 4.

Let

ϕi(r) = sup{qi(t, u, v) : t ∈ [a, b], σr ≤ u+ v ≤ r}, i = 1, 2.

ψ1(r) = inf{f(t, u, v) : t ∈
[3a+ b

4
,
a+ 3b

4

]
, σr ≤ u+ v ≤ r}.

ψ2(r) = inf{g(t, u, v) : t ∈
[3a+ b

4
,
a+ 3b

4

]
, σr ≤ u+ v ≤ r}.

ϕ(r) = max{ϕ1(r), ϕ2(r)}, ψ(r) = min{ψ1(r), ψ2(r)}.

Then, we can obtain the following result.

Theorem 5. Suppose (H1) hold. In addition, assume that there exist three constants
M,K,α, 0 < α < 1 with αB1M > A1K, (1 − α)B2M > A2K and three constants
d1, d2, d3 with 0 < d1 < d2 < d3, such that one of the following two conditions is
satisfied:



58 K.R.Prasad and A.Kameswararao

(I) ϕ(d1) ≤ d1K, ψ(d2) > d2M , and ϕ(d3) ≤ Kd3.

(II) ψ(d1) ≥ d1M, ϕ(d2) < d2K, and ψ(d3) ≥Md3.

Then for any λ ∈
[

1
B1M

, α
A1K

]
, µ ∈

(
0, 1−α

A2K

]
or λ ∈ (0, α

A1K

]
, µ ∈

[
1

B2M
, 1−α
A2K

]
, the

system (1) has at least two positive solutions (u∗1, v
∗
1), (u∗2, v

∗
2) and d1 ≤ ‖(u∗1, v∗1)‖ <

d2 < ‖(u∗2, v∗2)‖ ≤ d3.

Proof. We only prove the case of (I) and λ ∈
[

1
B1M

, α
A1K

]
, µ ∈

(
0, 1−α

A2K

]
. The other

cases are similar. Let Ωd1 = {(u, v) ∈ κ : ‖(u, v)‖ < d1}. If (u, v) ∈ ∂Ωd1 , then
‖(u, v)‖ = d1. Since σd1 ≤ u+ v ≤ d1, a ≤ t ≤ b, then we have

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)q1(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)ϕ(d1)ds

≤ λ
(b− a

6

)m−1
d1K

∫ b

a

(s− a)(b− s)
b− a

p1(s)ds

≤ λA1d1K ≤ d1α = α‖(u, v)‖,

Aµ(u, v)(t) = µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)q2(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)ϕ(d1)ds

≤ µ
(b− a

6

)n−1
d1K

∫ b

a

(s− a)(b− s)
b− a

p2(s)ds

≤ µA2d1K ≤ (1− α)d1 = (1− α)‖(u, v)‖.

Then

‖A(u, v)‖ = ‖Aλ(u, v)‖+ ‖Aµ(u, v)‖ ≤ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ωd1 . (15)

If (u, v) ∈ ∂Ωd2 , then ‖(u, v)‖ = d2. Since σd2 ≤ u + v ≤ d2, t ∈
[
3a+b
4 , a+3b

4

]
, we

have

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

≥ λθm
(3a+ b

4

)∫ a+3b
4

3a+b
4

(s− a)(b− s)
b− a

ψ(d2)ds

= λB1d2M ≥ d2 = ‖(u, v)‖.
That is

‖A(u, v)‖ ≥ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ωd2 . (16)
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If (u, v) ∈ ∂Ωd3 , then ‖(u, v)‖ = d3. Since σd3 ≤ u+ v ≤ d3, a ≤ t ≤ b, we have

Aλ(u, v)(t) = λ

∫ b

a

Gm(t, s)f(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)q1(s, u(s), v(s))ds

≤ λ
(b− a

6

)m−1 ∫ b

a

(s− a)(b− s)
b− a

p1(s)ϕ(d3)ds

≤ λ
(b− a

6

)m−1
d3K

∫ b

a

(s− a)(b− s)
b− a

p1(s)ds

≤ λA1d3K ≤ d3α = α‖(u, v)‖,

Aµ(u, v)(t) = µ

∫ b

a

Gn(t, s)g(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)q2(s, u(s), v(s))ds

≤ µ
(b− a

6

)n−1 ∫ b

a

(s− a)(b− s)
b− a

p2(s)ϕ(d3)ds

≤ µ
(b− a

6

)n−1
d3K

∫ b

a

(s− a)(b− s)
b− a

p2(s)ds

≤ µA2d3K ≤ (1− α)d3 = (1− α)‖(u, v)‖.

Then

‖A(u, v)‖ = ‖Aλ(u, v)‖+ ‖Aµ(u, v)‖ ≤ ‖(u, v)‖, for all (u, v) ∈ κ ∩ ∂Ωd3 . (17)

From (15), (16), (17) and Lemma 4, the system has at least two positive solutions
(u∗1, v

∗
1) ∈ κ, (u∗2, v∗2) ∈ κ and d1 ≤ ‖(u∗1, v∗1)‖ < d2 < ‖(u∗2, v∗2)‖ ≤ d3.

5. Example

As an example, we consider the existence of positive solutions for the following
systems: 

u(4) = λ[(u+ v)3 + (u+ v)
1
3 ], t ∈ [0, 1]

−v(6) = µ[(u+ v)2 + (u+ v)
1
2 ], t ∈ [0, 1]

u(2i)(0) = u(2i)(1) = 0, i = 0, 1

v(2j)(0) = v(2j)(1) = 0, j = 0, 1, 2.

(18)

We choose r1 = 1,M = 3,K = 164×214×2
115 , α = 1

2 , then all the conditions in Theorem
4 are satisfied. Therefore, for any λ ∈ [ 99

128 , 6] and µ ∈ (0, 36] or λ ∈ (0, 6] and
µ ∈ [27, 36], (18) has at least two positive solutions (u1(t), v1(t)), (u2(t), v2(t)) with
0 < ‖(u1(t), v1(t))‖ < 1 < ‖(u2(t), v2(t))‖.
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