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Abstract. In this paper, using the technique of measure of noncompactness in Banach
algebra, we prove an existence theorem for a nonlinear integral equation which contains as
particular cases a lot of integral and functional-integral equations considered in nonlinear
analysis and its applications. Our claim is also illustrated with the applications to some
nonlinear functional-integral equation for proving the existence results.
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1. Introduction

It is well-known that the differential and integral equations that arise in many
physical problems are mostly nonlinear and fixed point theory provides a power-
ful tool for obtaining the solutions of such equations which otherwise are difficult to
solve by other ordinary methods. In this paper, we consider solvability of a certain
functional-integral equation which contains as particular cases a lot of integral and
functional-integral equations, which are applicable in several real world problems
of engineering, mechanics, physics, economics and so on (see [6, 7]). The authors
consider the following functional-integral equation:

x(t) =

(
u(t, x(t)) + f

(
t,

∫ t

0

p(t, s, x(s))ds, x(α(t))

))
× g

(
t,

∫ a

0

q(t, s, x(s))ds, x(β(t))

)
, for t ∈ [0, a].

(1)

The main tool used in our result is a fixed point theorem which satisfies the
Darbo condition with respect to a measure of noncompactness in the Banach alge-
bra of continuous functions in the interval [0, a]. In Section 2, we introduce some
preliminaries and use them to obtain our main results in Section 3. In the last sec-
tion, we provide some examples that verify the application of this kind of nonlinear
functional-integral equations.
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2. Preliminaries

In this section, we recall basic results which we will need further on. Assume that
E is a real Banach space with the norm ‖.‖ and zero element θ. Denote by B(x, r)
the closed ball centered at x with radius r and the symbol Br stands for the ball
B(θ, r).
For X being a nonempty subset of E, by X and ConvX we denote the closure and
the convex closure of X, respectively. We denote the standard algebraic operations
on sets by the symbols λ X and X + Y . Finally, the family of all nonempty and
bounded subsets of E is denoted by mE and its subfamily consisting of all relatively
compact sets is denoted by nE . We accept the following definition of the measure
of noncompactness [1].

Definition 1. Let X ∈ mE and

µ(X) = inf

{
δ > 0 : X =

m⋃
i=1

Xi with diamXi ≤ δ, i = 1, 2, ...,m

}
,

where we denote
diamX = sup{‖x− y‖ : x, y ∈ X}.

Clearly, 0 ≤ µ(X) <∞. µ(X) is called the Kuratowski measure of noncompactness.

Theorem 1. Let X,Y ∈ mE and λ ∈ R. Then

(i) µ(X) = 0 if and only if X ∈ nE;

(ii) X ⊆ Y implies µ(X) ≤ µ(Y );

(iii) µ(X) = µ(ConvX) = µ(X);

(iv) µ(X ∪ Y ) = max{µ(X), µ(Y )};

(v) µ(λX) = |λ|µ(X), where λX = {λx : x ∈ X};

(vi) µ(X + Y ) ≤ µ(X) + µ(Y ), where X + Y = {x+ y : x ∈ X, y ∈ Y };

(vii) |µ(X)−µ(Y )| ≤ 2dh(X,Y ), where dh(X,Y ) denotes the Hausdorff distance of
X and Y , i.e.

dh(X,Y ) = max

{
sup
y∈Y

d(y,X), sup
x∈X

d(x, Y )

}
.

Here d(a,A) denotes the distance of an element a to a set A.

Further on, every function µ : mE → [0,∞), satisfying conditions (i) − (vi) of
Theorem 1, will be called a regular measure of noncompactness in the Banach space
[1].
Now let us assume that Ω is a nonempty subset of a Banach space E and S : Ω→ E
is a continuous operator transforming bounded subsets of Ω into bounded ones.
Moreover, let µ be a regular measure of noncompactness in E.
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Definition 2 (See [1]). We say that S satisfies the Darbo condition with a constant
k with respect to measure µ provided

µ(SX) ≤ kµ(X),

for each X ∈ mE such that X ⊂ Ω.
If k < 1, then S is called a contraction with respect to µ.

In the sequel, we will work in the space C[a, b] consisting of all real functions defined
and continuous on the interval [a, b]. The space C[a, b] is equipped with the standard
norm

‖x‖ = sup{|x(t)| : t ∈ [a, b]}.

Obviously, the space C[a, b] has also the structure of Banach algebra.
In our considerations, we will use a regular measure of noncompactness defined in
[2] (cf also [1]).

In order to recall the definitions of that measure let us fix a set X ∈ mC[a,b]. For
x ∈ X and for a given ε > 0 denote by ω(x, ε) the modulus of continuity of x, i.e.,

ω(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [a, b], |t− s| ≤ ε}.

Further, put

ω(X, ε) = sup{ω(x, ε) : x ∈ X},
ω0(X) = lim

ε→0
w(X, ε).

It may be shown [2] that ω0(X) is a regular measure of noncompactness in C[a, b].
For our purpose we will need the following theorem [2].

Theorem 2. Assume that Ω is a nonempty, bounded, convex and closed subset of
C[a, b] and the operators P and T transform continuously the set Ω into C[a, b] in
such a way that P (Ω) and T (Ω) are bounded. Moreover, assume that the operator
S = P.T transform Ω into itself. If the operators P and T satisfy on the set Ω
the Darbo condition with the constant k1 and k2, respectively, then the operator S
satisfies the Darbo condition on Ω with the constant

‖P (Ω)‖ k2 + ‖T (Ω)‖ k1.

Particularly, if ‖P (Ω)‖ k2 + ‖T (Ω)‖ k1 < 1, then S is a contraction with respect to
the measure ω0 and it has at least one fixed point in the set Ω.

3. Main results

In this section, we will study solvability of the nonlinear functional-integral equation(1)
for x ∈ C[a, b].
We formulate the assumptions under which equation (1) will be investigated. Namely,
we assume the following hypothesis.
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(H1) The functions u : [0, a]× R→ R, f, g : [0, a]× R× R→ R are continuous and
there exist constants l,m ≥ 0 such that

|u(t, 0)| ≤ l,

|f(t, 0, x)| ≤ m,

|g(t, 0, x)| ≤ m.

(H2) There exist the continuous functions a1, a2, a3, a4, a5 : [0, a]→ [0, a] such that

|u(t, x1)− u(t, x2)| ≤ a1(t)|x1 − x2|,
|f(t, y1, x1)− f(t, y2, x2)| ≤ a2(t)|y1 − y2|+ a3(t)|x1 − x2|,
|g(t, y1, x1)− g(t, y2, x2)| ≤ a4(t)|y1 − y2|+ a5(t)|x1 − x2|,

for all t ∈ [0, a] and x1, x2, y1, y2 ∈ R.

(H3) The functions p = p(t, s, x) and q = q(t, s, x) act continuously from the set
[0, a]× [0, a]×R into R and the functions α(t) and β(t) transform continuously
the interval [0, a] into itself.

(H4) There exists a non negative constant k such that

max{a1(t), a2(t), a3(t), a4(t), a5(t)} ≤ k, for t ∈ [0, a].

(H5) (sub-linearity condition) There exist constants α and β such that

|p(t, s, x)| ≤ c1 + c2|x|,
|q(t, s, x)| ≤ c1 + c2|x|.

(H6) 4γη < 1 and ac2 ≥ 1, for γ = k + kac2 and η = kac1 + l +m.

The following result is obtained by using the above hypothesis.

Theorem 3. Under assumptions (H1)− (H6) equation (1) has at least one solution
in the Banach algebra C = C[0, a].

Proof. Let us consider the operators F and G defined on the Banach algebra C by
the formula

(Fx)(t) = u(t, x(t)) + f

(
t,

∫ t

0

p(t, s, x(s))ds, x(α(t))

)
,

(Gx)(t) = g

(
t,

∫ a

0

q(t, s, x(s))ds, x(β(t))

)
,

for t ∈ [0, a].
From assumptions (H1) and (H3), it follows that F and G transform the algebra C
into itself.
Further, let us define the operator T on the algebra C by putting

Tx = (Fx)(Gx).
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Obviously, T transforms C into itself.
Now, let us fix x ∈ C. Then, using our assumptions for t ∈ [0, a], we get

|(Tx)(t)| = |(Fx)(t)|.|(Gx)(t)|

=

∣∣∣∣u(t, x(t)) + f

(
t,

∫ t

0

p(t, s, x(s))ds, x(α(t))

)∣∣∣∣ .∣∣∣∣g(t,∫ a

0

q(t, s, x(s))ds, x(β(t))

)∣∣∣∣
≤
(
|u(t, x(t))− u(t, 0)|+ |u(t, 0)|

+

∣∣∣∣f (t,∫ t

0

p(t, s, x(s))ds, x(α(t))

)
− f (t, 0, x(α(t)))

∣∣∣∣
+ |f (t, 0, x(α(t)))|

)
(∣∣∣∣g(t,∫ a

0

q(t, s, x(s))ds, x(β(t))

)
− g (t, 0, x(β(t)))

∣∣∣∣
+ |g (t, 0, x(β(t)))|

)
≤
(
a1(t)|x(t)|+ l + a2(t)

∣∣∣∣∫ t

0

p(t, s, x)ds

∣∣∣∣+m

)
(
a4(t)

∣∣∣∣∫ a

0

q(t, s, x)ds

∣∣∣∣+m

)
≤ (k|x(t)|+ l + ka(c1 + c2|x(t)|) +m)(ka(c1 + c2|x(t)|) +m)

≤ ((k + kac2) ‖x‖+ kac1 + l +m)2.

Let γ = k + kac2 and η = kac1 + l + m, then from the above estimate, it follows
easily that

‖Fx‖ ≤ γ ‖x‖+ η, (2)

‖Gx‖ ≤ γ ‖x‖+ η, (3)

‖Tx‖ ≤ (γ ‖x‖+ η)2. (4)

for x ∈ C[0, a].
From (4), we deduce that the operator T maps the ball Br ⊂ C[0, a] into itself for
r1 ≤ r ≤ r2, where

r1 =
(1− 2γη)−

√
1− 4γη

2γ2
.

r2 =
(1− 2γη) +

√
1− 4γη

2γ2
.

Also, from estimate (2) and (3), we obtain

‖FBr‖ ≤ γ r + η, (5)

‖GBr‖ ≤ γ r + η. (6)
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Next, we show that the operator F is continuous on the ball Br. To do this, fix
ε > 0 and take arbitrary x, y ∈ Br such that ‖x− y‖ ≤ ε. Then for t ∈ [0, a], we get

|(Fx)(t)− (Fy)(t)| =

∣∣∣∣u(t, x(t)) + f

(
t,

∫ t

0

p(t, s, x(s))ds, x(α(t))

)
−u(t, y(t))− f

(
t,

∫ t

0

p(t, s, y(s))ds, y(α(t))

) ∣∣∣∣
≤ a1(t)|x(t)− y(t)|+

∣∣∣∣f (t, ∫ t

0

p(t, s, x(s))ds, x(α(t))

)
−f
(
t,

∫ t

0

p(t, s, x(s))ds, y(α(t))

)
+f

(
t,

∫ t

0

p(t, s, x(s))ds, y(α(t))

)
−f
(
t,

∫ t

0

p(t, s, y(s))ds, y(α(t))

) ∣∣∣∣
≤ a1(t)|x(t)− y(t)|+ a3(t)|x(α(t))− y(α(t))|

+a2(t)

∣∣∣∣∫ t

0

p(t, s, x(s))ds−
∫ t

0

p(t, s, x(s))ds

∣∣∣∣
≤ 2k ‖x− y‖+ k a ω(p, ε),

where ω(p, ε) = sup{|p(t, s, x)− p(t, s, y)| : t, s ∈ [0, a];x, y ∈ [−r, r]; ‖x− y‖ ≤ ε}.
Since we know that p = p(t, s, x) is uniformly continuous on the bounded subset
[0, a] × [0, a] × [−r, r], we infer that ω(p, ε) → 0 as ε → 0. Thus, the operator F is
continuous on Br. Similarly, one can easily show that G is continuous on Br and
consequently we deduce that T is continuous on Br.

Now, we show that the operators F and G satisfy the Darbo condition with respect
to the measure ω0 as defined in Section 2, in the ball Br. Take a nonempty subset
X of Br and x ∈ X, then for a fixed ε > 0 and t1, t2 ∈ [0, a] such that without loss
of generality we may assume that t1 ≤ t2 and t2 − t1 ≤ ε, we obtain

|(Fx)(t2)− (Fx)(t1)| =

∣∣∣∣u(t2, x(t2)) + f

(
t2,

∫ t2

0

p(t2, s, x(s))ds, x(α(t2))

)
−u(t1, x(t1)) + f

(
t1,

∫ t1

0

p(t1, s, x(s))ds, x(α(t1))

) ∣∣∣∣
≤ |u(t2, x(t2))− u(t2, x(t1))|+ |u(t2, x(t1))− u(t1, x(t1))|

+

∣∣∣∣f (t2,∫ t2

0

p(t2, s, x(s))ds, x(α(t2))

)
−f
(
t2,

∫ t1

0

p(t1, s, x(s))ds, x(α(t2))

) ∣∣∣∣
+

∣∣∣∣f (t2,∫ t1

0

p(t1, s, x(s))ds, x(α(t2))

)
−f
(
t1,

∫ t1

0

p(t1, s, x(s))ds, x(α(t1))

) ∣∣∣∣
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≤ a1(t)|x(t2)− x(t1)|+ |u(t2, x(t1))− u(t1, x(t1))|

+a2(t)

∣∣∣∣∫ t2

0

p(t2, s, x(s))ds−
∫ t1

0

p(t1, s, x(s))ds

∣∣∣∣
+

∣∣∣∣f (t2,∫ t1

0

p(t1, s, x(s))ds, x(α(t2))

)
−f
(
t1,

∫ t1

0

p(t1, s, x(s))ds, x(α(t2))

) ∣∣∣∣
+

∣∣∣∣f (t1,∫ t1

0

p(t1, s, x(s))ds, x(α(t2))

)
−f
(
t1,

∫ t1

0

p(t1, s, x(s))ds, x(α(t1))

) ∣∣∣∣ (7)

For simplicity, we define the following quantities

ωu(ε, .) = sup{|u(t, x)− u(t′, x)| : t, t′ ∈ [0, a]; |t− t′| ≤ ε;x ∈ [−r, r]},
ωp(ε, ., .) = sup{|p(t, s, x)− p(t′, s, x)| : t, t′ ∈ [0, a]; |t− t′| ≤ ε;x ∈ [−r, r]},
ωf (ε, ., .) = sup{|f(t, y, x)− f(t′, y, x)| : t, t′ ∈ [0, a]; |t− t′| ≤ ε;

x ∈ [−r, r], y ∈ [−k′a, k′a]},
k′ = sup{|p(t, s, x)| : t, s ∈ [0, a];x ∈ [−r, r]}.

Then using relation (7) we obtain the following

|(Fx)(t2)− (Fx)(t1)| ≤ 2k|x(α(t2))− x(α(t1))|+ ωu(ε, .)

+k[ωp(ε, ., .).a+ k′ε] + ωf (ε, ., .).

This yields the following estimate

ω(Fx, ε) ≤ 2kω(x, ω(α, ε)) + ωu(ε, .) + k[ωp(ε, ., .).a+ k′ε] + ωf (ε, ., .).

In view of our assumption we infer that the functions u= u(t, x) and f = f(t, y, x)
are uniformly continuous on [0, a]× R and [0, a]× R× R.
Hence, we deduce that ωu(ε, .)→ 0, ωp(ε, ., .)→ 0, ωf (ε, ., .)→ 0 as ε→ 0. Thus,

ω0(FX) ≤ 2kω0(X). (8)

Similarly, we can show that

ω0(GX) ≤ 2kω0(X). (9)

Finally, from (5), (6), (8) and (9) and Theorem 2, we infer that the operator T
satisfies the Darbo condition on Br with respect to the measure ω0 with constant
(γr + η) 2k + (γr + η) 2k. Also, we have

(γr + η) 2k + (γr + η) 2k = 4k(γr + η)

= 4k(γr1 + η)

= 4k

(
γ

(
(1− 2γη)−

√
1− 4γη

2γ2

)
+ η

)
= 4k

(
1−
√

1− 4γη

2γ

)
< 1.
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Hence, the operator T is a contraction on Br with respect to ω0. Thus, by applying
Theorem 2 we get that T has at least one fixed point in Br. Consequently, the
nonlinear functional-integral equation (1) has at least one solution in Br. This
completes the proof.

4. Applications

In this section, we give some examples of classical integral and functional equations
considered in the applied problems of nonlinear analysis which are particular cases
of equation (1).

• If g(t, y, x) = 1, then equation (1) is in the following form which was studied
in [12].

x(t) = u(t, x(t)) + f

(
t,

∫ t

0

p(t, s, x(s))ds, x(α(t))

)
. (10)

• For u(t, x) = 0, we obtain the following nonlinear functional-integral equation
studied in [4, 11].

x(t) = f

(
t,

∫ t

0

p(t, s, x(s))ds, x(α(t))

)
× g

(
t,

∫ a

0

q(t, s, x(s))ds, x(β(t))

)
.

(11)

• f(t, y, x) = y and g(t, y, x) = 1, then we get the following functional-integral
equation studied in [3].

x(t) = u(t, x(t)) +

∫ t

0

p(t, s, x(s))ds. (12)

• If u(t, x) = 0, g(t, y, x) = 1 and f(t, y, x) = u(t, x)y, then equation (1) has the
following form as in the paper [13].

x(t) = u(t, x(t))

∫ t

0

p(t, s, x(s))ds. (13)

• If u(t, x) = 0, g(t, y, x) = 1 and f(t, y, x) = a(t) + y, then we get the following
well known nonlinear Volterra integral equation

x(t) = a(t) +

∫ t

0

p(t, s, x(s))ds. (14)

• If u(t, x) = 0, f(t, y, x) = 1 and g(t, y, x) = b(t) + y, then we obtain Urysohn
integral equation

x(t) = b(t) +

∫ a

0

q(t, s, x(s))ds. (15)
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• If u(t, x) = 0, f(t, y, x) = a(t) + y and g(t, y, x) = y, then equation (1) has the
form examined in the paper [8].

x(t) = a(t)

∫ a

0

q(t, s, x(s))ds+

(∫ t

0

p(t, s, x(s))ds

)(∫ a

0

q(t, s, x(s))ds

)
.

(16)

• Moreover, if u(t, x) = 0, f(t, y, x) = 1, g(t, y, x) = 1 + xy and q(t, s, y) =
t
t+sϕ(s)x, β(t) = t, then equation (1) has the form

x(t) = 1 + x(t)

∫ a

0

t

t+ s
ϕ(s)x(s)ds. (17)

The above equation is the famous quadratic integral equation of Chandrasekhar
type [5] which is applied in the theories of radiative transfer, neutron transport
and kinetic energy of gases (see [5, 9, 10]).

On the other hand, equation (1) also covers the well known functional equation of
the first order having the form

x(t) = f1(t, x(α(t))),

for this it is sufficient to put g(t, y, x) = 1, u(t, x) = 0 and f(t, y, x) = f1(t, x).

Now, we present an example of a functional-integral equation and consequently,
see the existence of its solutions by using Theorem 3.

Example 1. Consider the following nonlinear functional integral equation:

x(t) =

(
1

5
sin

(
t

4

)
+

1

4

∫ t

0

ts cos(x(s))ds

)
.

(
1

3

∫ 1

0

t sin

(
sx(s)

1 + x(s)

)
ds

)
, (18)

for t ∈ [0, 1].
Observe that equation (18) is a special case of equation (1). Let us take u : [0, 1] ×
R→ R, f, g : [0, 1]×R×R→ R and p, q : [0, 1]× [0, 1]×R→ R and comparing (18)
with (1), we get

u(t, x(t)) =
1

5
sin(

t

4
), f(t, y1, x) =

1

4
y1, g(t, y2, x) =

t

3
y2,

p(t, s, x) = ts cos(x(s)), q(t, s, x) = sin

(
sx(s)

1 + x(s)

)
.

It is easy to prove that these functions are continuous and satisfy the hypothesis
(H2) with a1 = a3 = a5 = 0, a2 = 1

4 , a4 = 1
3 . In this case, k = max{0, 13 ,

1
4} = 1

3 .
Moreover,

|u(t, 0)|≤ 1

5
, |f(t, 0, x)|=0, |g(t, 0, x)|=0, |p(t, s, x)| ≤ 0+1|x|, |q(t, s, x)|≤0+1|x|.
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It is observed that c1 = 0, c2 = 1 and l = 1
5 ,m = 0, a = 1 and ac2 = 1 ≥ 1 . Also,

4γη = 4(k + kac2)(kac1 + l +m) = 4

(
2

3

)
.

(
1

5

)
=

8

15
< 1.

Hence, all the hypotheses from (H1)−(H6) are satisfied. Applying the result obtained
in Theorem 3, we deduce that equation (18) has at least one solution in Banach
algebra C[0, 1].

Example 2. Consider the following functional integral equation:

x(t) =

(
1

7
cos

(
e−t

1 + t

)
+

1

2

∫ t

0

(
t

1 + t+ s

)
sin(x(s))ds

)
.

(
1

3

∫ 1

0

x(s)

2 + x(s)
ds

)
, (19)

where t ∈ [0, 1].
Observe that this equation is a special case of equation (1). In this example one
can easily verify that the assumptions of our existence Theorem 3 are satisfied, i.e.
equation (19) has at least one solution in Banach algebra C[0, 1].
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