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Area formulas for a triangle in the alpha plane
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Abstract. In this paper, we give three area formulas for a triangle in the alpha plane
in terms of the alpha distance. The two of them are alpha versions of the standard area
formula for a triangle in the Euclidean plane, and the third one is an alpha version of the
well-known Heron’s formula.
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1. Introduction

The taxicab metric was given in a family of metrics of the real plane by Minkowski
[12]. Later, Chen [1] developed the Chinese Checker metric, and Tian [14] gave a
family of metrics, α-metric (alpha metric) for α ∈ [0, π/4], which includes the taxicab
and Chinese checker metrics as special cases. Then, Gelişgen and Kaya extended the
α-distance to three and n dimensional spaces in [7] and [8], respectively. Afterwards,
Çolakoğlu [2] extended the α-metric for α ∈ [0, π/2). According to the latter, if
P = (x1, y1) and Q = (x2, y2) are two points in R2, then for each α ∈ [0, π/2) and
λ(α) = (secα− tanα), the α-distance between P and Q is

dα(P,Q) = max {|x1 − x2| , |y1 − y2|}+ λ(α)min {|x1 − x2| , |y1 − y2|} , (1)

while the well-known Euclidean distance between P and Q is

dE(P,Q) = [(x1 − x2)
2
+ (y1 − y2)

2
]1/2. (2)

Since α-geometry has a distance function different from that of Euclidean geometry,
it is interesting to study the α-analogues of topics that include the distance concept
in Euclidean geometry. In this paper, we give area formulas for a triangle in the
alpha plane in terms of the alpha distance.

Remark 1. In this study, we use the usual Euclidean area notion. One can easily
see that in the α-plane, there are triangles whose α-lengths of corresponding sides
are the same, while areas of these triangles are different (see Figure 1).
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This fact gives rise to a natural question: How can one compute the area of a triangle
in the α-plane? It is obvious that every formula to compute the area of a triangle
depends on some parameters, and using different parameters gives different formulas.
Here we give three formulas to compute the area of a triangle in the α-plane, using
different parameters.

Figure 1:

Let the line AB be parallel to the x-axis, let C1 be an α-circle with center A and
radius b, C2 an α-circle with center B and radius b+ c, and C and D two points in
C1∩C2. For different C and D such that C and D are not symmetric to the line AB,
Area(ABC) ̸= Area(ABD), while dα(A,C) = dα(A,D) and dα(B,C) = dα(B,D).

2. Area of a triangle in α-plane

It is well-known that if ABC is a triangle with the area A in the Euclidean plane,
and H is the point of orthogonal projection of the point A on the line BC, then
standard area formula for the triangle ABC is A = ah/2, where a = dE(B,C)
and h = dE(A,H) or h = dE(A,BC) (see Figure 2). In this section, we give two
α-versions of standard area formula in terms of α-distance. Clearly, an α-version of
standard area formula for triangle ABC would be an equation that relates the two
α-distances a and h, where a = dα(B,C), h = dα(A,H) or h = dα(A,BC) and area
A of triangle ABC. Here, we give two α-versions of the area formula that depend
on one parameter, namely, the slope of the base segment, in addition to the other
parameters. Note that the real numbers α and λ(α) are fixed.

Figure 2: dE(A,H) = dE(A,BC)

The following equation, which relates the Euclidean distance to the α -distance
between two points in the Cartesian coordinate plane, plays an important role in
the first α-version of the area formula.
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Proposition 1. For any two points P and Q in the Cartesian plane that do not lie
on a vertical line, if m is the slope of the line through P and Q, then

dE(P,Q) = ρ(m)dα(P,Q) (3)

where ρ(m) = (1 + m2)1/2/(max{1, |m|} + λ(α)min{1, |m|}). If P and Q lie on a
vertical line, then by definition, dE(P,Q) = dα(P,Q).

Proof. Let P = (x1, y1) and Q = (x2, y2) with x1 ̸= x2; then m = (y2 − y1)/(x2 −
x1). Equation (3) is derived by a straightforward calculation with m and the coor-
dinate definitions of dE(P,Q) and dα(P,Q) given in Section 1.

Another useful fact that can be verified by direct calculation is:

Proposition 2. For any real number m ̸= 0

ρ(m) = ρ(−m) = ρ(1/m) = ρ(−1/m). (4)

We first note by Proposition 1 and Proposition 2 that the α-distance between
two points is invariant under all translations, rotations of π/2 , π and 3π/2 radians
around a point, and the reflections about the lines parallel to x = 0, y = 0, y = x
or y = −x (see [5]).

The following theorem gives an α-version of the well-known Euclidean area for-
mula of a triangle:

Theorem 1. Let ABC be a triangle with the area A in the α-plane, H orthogonal
projection (in the Euclidean sense) of the point A on the line BC, m the slope of
the line BC, and let a = dα(B,C) and h = dα(A,H).

(i) If BC is parallel to a coordinate axis, then

A = ah/2. (5)

(ii) If BC is not parallel to any one of the coordinate axes, then

A = [ρ(m)]
2
ah/2 (6)

where ρ(m) = (1 +m2)1/2/(max{1, |m|}+ λ(α)min{1, |m|}).

Proof. Let a = dE(B,C) and h = dE(A,H). Then, A = ah/2.
(i): If BC is parallel to a coordinate axis, then clearly a = a and h = h. Hence,

A = ah/2.
(ii): Let BC not be parallel to any one of the coordinate axes, and let the slope

of the line BC be m. Then, the slope of the line AH is (−1/m). By Proposition 1
and Proposition 2, a = ρ(m)a, h = ρ(m)h, hence A = ρ2(m)ah/2.

In the α-plane, the α-distance from a point P to a line l is defined by

dα(P, l) = min
Q∈l

{dα(P,Q)} (7)
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as in the Euclidean plane. It is well-known that in the Euclidean plane, Euclidean
distance from a point P = (x0, y0) to a line l : ax+ by + c = 0 can be calculated by
the following formula:

dE(P, l) =
|ax0 + by0 + c|
(a2 + b2)1/2

. (8)

In Proposition 4 we give a similar formula for dα(P, l), using α-circles (see [2]). It
is easy to see that if α ∈ (0, π/2), then unit α-circle is an octagon with vertices
A1 = (1, 0), A2 = ( 1k ,

1
k ), A3 = (0, 1), A4 = (−1

k , 1
k ), A5 = (−1, 0), A6 = (−1

k , −1
k ),

A7 = (0,−1) and A8 = ( 1k ,
−1
k ), where k = 1 + λ(α). If α = 0, then α-circle is a

square with vertices A1 = (1, 0), A3 = (0, 1), A5 = (−1, 0) and A7 = (0,−1) (see
Figure 3). Note that A2 and A6 are on the line y = x; A4 and A8 are on the line
y = −x.

Figure 3: Graph of the unit α-circle

Proposition 3. Given a point P = (x0, y0), and a line l : ax + by + c = 0 in the
α-plane. Then the α-distance from the point P to the line l can be calculated by the
following formula:

dα(P, l) = |ax0 + by0 + c| /max
{
|a| , |b| , |a+b|

1+λ(α) ,
|a−b|

1+λ(α)

}
. (9)

Proof. Clearly, if P is on the line l, then equation (9) is true. If P is not on the line
l, then we expand an α-circle with center P and radius 0 until the line l becomes
a tangent to the α-circle, to find the minimum α-distance from the point P to the
line l (Here, by tangent to an α-circle with center P and radius r, we mean “a line
whose α-distance from P is equal to r”, as in Euclidean plane.). It is easy to see
that a line can only be a tangent to an α-circle at one vertex or two vertices (at one
edge). Since corresponding vertices of expanding α-circle are on lines through P and
parallel to lines y = 0, x = 0, y = x and y = −x, if l is a tangent to an α-circle with
center P , then a tangent point is one of points

P1=

(
−by0 − c

a
, y0

)
, P2=

(
x0,

−ax0 − c

b

)
, P3=

(
bx0 − by0 − c

a+ b
,
−ax0 + ay0 − c

a+ b

)
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and

P4 =

(
−bx0 − by0 − c

a− b
,
ax0 + ay0 + c

a− b

)
,

where P1, P2, P3 and P4 are intersection points of the line l and y = y0, x = x0,
−x+ y+x0− y0 = 0 and x+ y−x0− y0 = 0, respectively (see Figure 4). Therefore,
dα(P, l) = min{dα(P, Pi) : i = 1, 2, 3, 4}.

Figure 4:

Since

dα(P, P1) =
|ax0 + by0 + c|

|a|
, dα(P, P2) =

|ax0 + by0 + c|
|b|

,

dα(P, P3) =
|ax0 + by0 + c|

|a+ b| /(1 + λ(α))
and dα(P, P4) =

|ax0 + by0 + c|
|a− b| /(1 + λ(α))

,

we get

dα(P, l) =
|ax0 + by0 + c|

max
{
|a| , |b| , |a+b|

1+λ(α) ,
|a−b|

1+λ(α)

} .

The following equation, which relates the Euclidean distance to the α-distance
from a point to a line in the Cartesian coordinate plane, plays an important role in
the second α-version of the area formula.

Proposition 4. Given a point P , and a line l in the Cartesian plane that is not a
vertical line, if m is the slope of the line l, then

dE(P, l) = τ(m)dα(P, l) (10)

where

τ(m) = max

{
|1| , |m| , |1 +m|

1 + λ(α)
,
|1−m|
1 + λ(α)

}
/(1 +m2)1/2.

If l is a vertical line, then dE(P, l) = dα(P, l).

Proof. Let P = (x0, y0) be a point, and l : ax+by+c = 0 be a line in the Cartesian
plane. If l is not a vertical line, then b ̸= 0 and m = −a

b . Using m in equation (8)

and equation (9), one gets dE(P, l) = |ax0 + by0 + c| / |b| (1 +m2)1/2 and

dα(P, l) = |ax0 + by0 + c| / |b|max

{
|1| , |m| , |1 +m|

1 + λ(α)
,
|1−m|
1 + λ(α)

}
.
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Hence, dE(P, l) = τ(m)dα(P, l) where

τ(m) = max
{
|1| , |m| , |1+m|

1+λ(α) ,
|1−m|
1+λ(α)

}
/(1 +m2)1/2.

If l is a vertical line, then b = 0 and a ̸= 0. Therefore, dE(P, l) = |ax0 + c| / |a| and
dα(P, l) = |ax0 + c| / |a|, hence dE(P, l) = dα(P, l).

The following theorem gives another α-version of the well-known Euclidean area
formula of a triangle:

Theorem 2. Let ABC be a triangle with area A in the α-plane, m the slope of the
line BC, and let a = dα(B,C) and h = dα(A,BC).

(i) If BC is parallel to a coordinate axis, then

A = ah/2. (11)

(ii) If BC is not parallel to any one of the coordinate axes, then

A = σ(m)ah/2 (12)

where

σ(m) = max

{
|1| , |m| , |1 +m|

1 + λ(α)
,
|1−m|
1 + λ(α)

}
/(max{1, |m|}+λ(α)min{1, |m|}).

Proof. Let a = dE(B,C) and h = dE(A,BC). Then, A = ah/2.
(i): If BC is parallel to a coordinate axis, then clearly a = a and h = h. Hence,

A = ah/2.
(ii): Let BC not be parallel to any one of the coordinate axes, and let the slope of

the line BC bem. Then, by Proposition 1 and Proposition 5, a = ρ(m)a, h = τ(m)h,
hence A = ρ(m)τ(m)ah/2. Since ρ(m)τ(m) = σ(m), we get A = σ(m)ah/2.

3. Alpha version of Heron’s formula

It is well-known that if ABC is a triangle with the area A in the Euclidean plane,
and a = dE(B,C), b = dE(A,C), c = dE(A,B), and p = (a + b + c)/2, then

A = [p(p− a)(p− b)(p− c)]
1/2

, which is known as the Heron’s formula. In this
section, we give an α-version of this formula in terms of the α-distance. Clearly, an
α-version of the Heron’s formula for triangle ABC would be an equation that relates
the three α-distances a, b and c, where a = dα(B,C), b = dα(A,C), c = dα(A,B),
and the area A of triangle ABC. Here, we give an α-version of the Heron’s formula
that depend on three new parameters in addition to a, b, c and A.

We need the following two definitions given in [13] and [11] respectively, to give
an α-version of the Heron’s formula:

Definition 1. Let ABC be any triangle in the α-plane. Clearly, there exists a pair
of lines passing through every vertex of the triangle, each of which is parallel to a
coordinate axis. A line l is called a base line of ABC if and only if
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(1) l passes through a vertex;

(2) l is parallel to a coordinate axis;

(3) l intersects the opposite side (as a line segment) of the vertex in (1).

Clearly, at least one of vertices of the triangle always has one or two base lines. Such
a vertex of the triangle is called a basic vertex. A base segment is a line segment on
a base line, which is bounded by a basic vertex and its opposite side.

Definition 2. A line with slope m is called a steep line, a gradual line and a sepa-
rator if |m| > 1 or m → ∞, |m| < 1 and |m| = 1, respectively.

The following theorem gives an α-version of the Heron’s formula:

Theorem 3. Let ABC be a triangle with area A in the α-plane, such that C is a
basic vertex, a = dα(B,C), b = dα(A,C) and c = dα(A,B). Let D be the intersec-
tion point of a base line and AB, the opposite side of the basic vertex C. Let H1

and H2 be orthogonal projections (in the Euclidean sense) of A and B on the base
line CD, respectively. Then,

A =



l
2 [2p− c− λ(α)(l1 + l2)] ; if C1 is valid

l
2λ(α) [2p− c− (l1 + l2)] ; if C2 is valid

l
2λ(α)

[
2p− c+ (λ(α)− 1)b− (λ2(α)l1 + l2)

]
; if C3 is valid

l
2λ(α)

[
2p− c+ (λ(α)− 1)a− (l1 + λ2(α)l2)

]
; if C4 is valid

(13)

where

p = (a+ b+ c)/2, l = dα(C,D), l1 = dα(C,H1), l2 = dα(C,H2),

C1 : lines AC and BC are not gradual and base line CD is horizontal, or lines
AC and BC are not steep and base line CD is vertical;

C2 : lines AC and BC are not steep and base line CD is horizontal, or lines AC
and BC are not gradual and base line CD is vertical;

C3 : line AC is not gradual, line BC is not steep and base line CD is horizontal,
or line AC is not steep, line BC is not gradual and base line CD is vertical;

C4 : line AC is not steep, line BC is not gradual and base line CD is horizontal,
or line AC is not gradual, line BC is not steep and base line CD is vertical.

Proof. Let ABC be a triangle with area A in the α-plane, such that C is a basic
vertex, a = dα(B,C), b = dα(A,C) and c = dα(A,B). Let D be the intersection
point of a base line and AB, the opposite side of the basic vertex C. Let H1 and
H2 be orthogonal projections of A and B on the base line CD, respectively. And
let p = (a+ b+ c)/2, l = dα(C,D), l1 = dα(C,H1), l2 = dα(C,H2), h1 = dα(A,H1),
h2 = dα(B,H2). Since the α-distance between two points is invariant under all
translations, rotations of π/2, π and 3π/2 radians around a point, and reflections
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about the lines parallel to x = 0, y = 0, y = x or y = −x, Figure 5 and Figure 6
represent all triangles for which C1 holds, Figure 7 and Figure 8 represent all trian-
gles for which C2 holds, Figure 9 and Figure 10 represent all triangles for which C3

holds, and finally Figure 11 and Figure 12 represent all triangles for which C4 holds.
In Figure 5 and Figure 6, a = h2+λ(α)l2 and b = h1+λ(α)l1 by the α-distance defi-

Figure 5: Figure 6:

nition. Since A(ABC) = A(ADC)+A(BDC) = l
2 (h1+h2), using h1 and h2 values,

one gets A = l
2 [2p− c− λ(α)(l1 + l2)]. In Figure 7 and Figure 8, a = l2 + λ(α)h2

Figure 7: Figure 8:

and b = l1 + λ(α)h1 by the α-distance definition. Since A(ABC) = A(ADC) +
A(BDC) = l

2 (h1+h2), using h1 and h2 values, one getsA = l
2λ(α) [2p− c− (l1 + l2)].

In Figure 9 and Figure 10, a = l2 + λ(α)h2 and b = h1 + λ(α)l1 by the α-distance

Figure 9: Figure 10:

definition. Since A(ABC) = A(ADC) + A(BDC) = l
2 (h1 + h2), using h1 and h2

values, one gets A = l
2λ(α)

[
2p− c+ (λ(α)− 1)b− (λ2(α)l1 + l2)

]
. In Figure 11 and
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Figure 11: Figure 12:

Figure 12, a = h2 + λ(α)l2 and b = l1 + λ(α)h1 by the α-distance definition. Since
A(ABC) = A(ADC) + A(BDC) = l

2 (h1 + h2), using h1 and h2 values, one gets

A = l
2λ(α)

[
2p− c+ (λ(α)− 1)a− (l1 + λ2(α)l2)

]
.

Remark 2. Since well-known taxicab and Chinese Checker distances are special
cases of the α-distance for α = 0 and α = π/4, respectively, Theorem 3, Theorem
6 and Theorem 7 also give taxicab and Chinese Checker versions of area formulas
for a triangle, when α = 0 and α = π/4, respectively (see [10], [13] and [9]). Note
that if α = 0, then λ(α) = 1, and we get simple equations for taxicab plane: ρ(m) =
(1 + m2)1/2/(1 + |m|), d0(P, l) = dT (P, l) = |ax0 + by0 + c| /max {|a| , |b|} , τ(m) =
max {|1| , |m|}/(1+m2)1/2, σ(m) = max {|1| , |m|}/(1+|m|),A = l

2 [2p− c− (l1+l2)].
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