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Fitting conic sections to measured data in 3-space
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Abstract. We consider the problem of fitting given data in 3-space by rotated plane conic
sections in the least squares sense. For circles this was done in [4]. For ellipses we will use
some details from [2]. Regarding hyperbolas there is a problem using the two branches.
However we can follow [2]. Also for parabolas considered for plane data in [1] we can
extend the solution method to spatial data. In all cases the use of three rotations (instead
of formerly two ones) is discussed and suitably done. All methods will be based on the
necessary conditions for a least squares solution. These algorithms are also related to those
ones for fitting data in 3-space by paraboloids [5] and elliptic paraboloids [6] with only two
out of three possible rotations used here.
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1. Models

At first we will consider nondegenerate conic sections in the x−y plane. In parametic
form with center or vertex (parabola) (0, 0, 0)T these are:

Circle: x(t) = r cos t,

y(t) = r sin t, (1)

z(t) = 0, 0 ≤ t ≤ 2π

Ellipse: x(t) = p cos t,

y(t) = q sin t, (2)

z(t) = 0, p 6= q, 0 ≤ t ≤ 2π

Hyperbola: x(t) = ± cosh t,

y(t) = sinh t, (3)

z(t) = 0, −∞ ≤ t ≤ ∞
(+ right branch,−left branch)
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Parabola: x(t) =
1

2p
t2 or for d 6= 0 x(t) = dt2

y(t) = t, (4)

z(t) = 0, 0 ≤ t ≤ ∞

All these models can be shifted to

u(t) =

 a+ x(t)
b+ y(t)
c

 (5)

and afterwards (or vice versa before) rotated to

v(t) = S(α, β, γ)u(t), (6)

where
S = S(α, β, γ) = R(γ)Q(β)P (α), (7)

and where P (α), Q(β), R(γ) are rotations in the x− y, x− z, and y− z planes given
by

P (α) =

 cosα − sinα 0
sinα cosα 0

0 0 1

 , (8)

Q(β) =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 , (9)

R(γ) =

 1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 . (10)

Now let the given data be

ui =

xi
yi
zi

 , i = 1, . . . ,m (11)

For later purposes we introduce

ui =

xi
yi
zi

 = RT (γ)ui (12)

ũi =

 x̃i
ỹi
z̃i

 = QT (β)ui = QT (β)RT (γ)ui, (13)

ûi =

 x̂i
ŷi
ẑi

 = PT (α)ũi = PT (α)QT (β)ui

= PT (α)QT (β)RT (γ)ui.
(14)
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2. The ellipse

2.1. The least squares objective function

For some model v = v(t) depending on unknown parameters (a, b, c, p, q, α, β, γ) (in
the case of an ellipse) the function to be minimized is

W =
1

2

m∑
i=1

‖ui − v(ti)‖2 . (15)

Here ui(i = 1, · · · ,m) are the given data and t = (t1, . . . tm) are additional unknown
values determining points on v = v(t) with the smallest distance to u1, . . . ,um.

Because S (6) as a product of orthogonal matrices is also orthogonal, then we
have ST = S−1 and thus

W =
1

2

m∑
i=0

‖STui − STv(ti)‖2

=
1

2

m∑
i=1

‖ûi − STSu(ti)‖2

=
1

2

m∑
i=1

‖ûi − u(ti)‖2 (16)

=
1

2

m∑
i=1

(ûi − u(ti)
T (ûi − u(ti)). (17)

For the ellipse (17) can also be written as

W =
1

2

m∑
i=1

(x̂i − a− p cos ti)
2 + (ŷi − b− q sin ti)

2 + (ẑi − c)2 . (18)

2.2. Necessary conditions for a minimum

The basis for numerical algorithms trying to minimize (16), (18) will be the explicit
knowledge of all partial derivatives of (17). In order to fulfill at least the necessary
conditions for a minimum of our objective function all of them must be zeroed.

Evidently the conditions

∂W

∂a
=
∂W

∂p
= 0,

∂W

∂b
=
∂W

∂q
= 0,

∂W

∂c
= 0

give

am + p

m∑
i=1

cos ti =

m∑
i=1

x̂i

a

m∑
i=1

cos ti + p

m∑
i=1

cos2 ti =

m∑
i=1

x̂i cos ti

 (19)
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bm + q

m∑
i=1

sin ti =

m∑
i=1

ŷi

b

m∑
i=1

sin ti + q

m∑
i=1

sin2 ti =

m∑
i=1

ŷi sin ti

 (20)

c =
1

m

m∑
i=1

ẑi. (21)

The two systems (19) and (20) will normally have a unique solution (a, p) and
(b, q).

Moreover the conditions

∂W

∂ti
= 0 (i = 1, . . . ,m)

result in

(q2 − p2) sin ti cos ti + p sin ti(x̂i − a)− q cos ti(ŷi − b) = 0 . (22)

Putting g = tgti you will get m polynomial equations of degree four with at least
one real solution [2] and thus two or four. Then that one has to be selected that
minimizes the i-th part in W (18). Since polynomials of degree four can exactly be
solved any numerical methods are not needed here.

Finally we have to care for

∂W

∂α
=
∂W

∂β
=
∂W

∂γ
= 0 .

Using (14) for the first condition we get

∂ûi
∂α

=
∂PT (α)

∂α
ũi (i = 1, . . . ,m) .

Applying this to (17) we receive

∂W

∂α
=

m∑
i=1

(
∂ûi
∂α

)T
(ũi − u(ti))

=

m∑
i=1

ũTi
∂P (α)

∂α
(ũi − u(ti))

=

m∑
i=1

ũTi
∂P (α)

∂α
(PT (α)ũi − u(ti))

=

m∑
i=1

ũTi
∂P (α)

∂α
PT (α)ũi − ũTi

∂P (α)

∂α
u(ti) .
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Because

∂P (α)

∂α
PT (α) =

 0 −1 0
1 0 0
0 0 0

 = A

and
ũTi Aũi = 0

we finally get

0 =
∂W

∂α
= −

m∑
i=1

ũTi

− sinα − cosα 0
cosα − sinα 0
0 0 0

u(ti)

=

m∑
i=1

(x̃i, ỹi, z̃i)

 sinα(a+ x(ti) + cosα(b+ y(ti))
− cosα(a+ x(ti) + sinα(b+ y(ti))

0

 .

This gives
G sinα+H cosα = 0, (23)

where

G =

m∑
i=1

x̃i(a+ x(ti)) + ỹi(b+ y(ti)), (24)

H =

m∑
i=1

x̃i(b+ y(ti))− ỹi(a+ x(ti)). (25)

The condition (23) gives

tgα = −H
G
. (26)

If
∂2W

∂α2
= G cosα−H sinα > 0 ,

then

α = arctg

(
−H
G

)
, (27)

otherwise we must use
α := α+ π (28)

to get the minimum.
Now similarly we have

∂W

∂β
=

m∑
i=1

uTi
∂Q(β)

∂β
QT (β)ui −

m∑
i=1

uTi
∂Q(β)

∂β
P (α)u(ti), (29)

∂W

∂γ
=

m∑
i=1

uTi
∂R(γ)

∂γ
RT (γ)ui −

m∑
i=1

uTi
∂R(γ)

∂γ
Q(β)P (α)u(ti) (30)
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to be zeroed. In both expressions the first terms vanish as before and the second
ones give equations like (23) for tgβ and tgγ.

2.3. Numerical algorithms

The principal algorithm used below is described in abstract form in [4] and it was
realized for the problems treated there and elsewhere. We propose realizations for
our function W (17), (18) in two different ways. The main idea is to fix all but one
variable or some group of variables, to globally minimize the corresponding W w.r.t.
the rest, then to fix this variable or these ones, and to globally minimize w.r.t. some
other variable or some other ones and so on. Applying this to our problem we first
have to notice the dependences:

a, b, p, q depend on α, β, γ, t (19), (20),

c depends on α, β, γ (21),

t depends on a, b, p, q, α, β, γ (22),

α, β, γ depend on a, b, t, α, β, γ (29), (30).

The announced two successive minimization algorithms for W are:
Algorithm A:

Step 0: Let α, β, γ, t be given as starting values, e.g. by

α = β = γ = 0, ti =
2π(i− 1)

m
(i = 1, . . . ,m).

Step 1: Use the necessary conditions (19),(20), (21) to calculate unique global min-
ima for a, b, c, p, q using the current values for a, β, γ, t.

Step 2: Calculate t by (22) using the current values for a, b, p, q, α, β, γ. Hereby
select ti such that this value minimizes the i-th term of W .

Step 3: Calculate α, β, γ as functions of the current values of a, b, α, β, γ, t always
using the latest values, i.e. for β use the new α, for γ use the new values of
α, β.

Step 4: Calculate W . If it has no longer decreased or if some maximum number of
iterations has exeeded, then STOP. Else go back to Step 2.

Algorithm B:

Step 0: Let a, b, c, p, q, α, β, γ be given as starting values, e.g. a, b, c as the means of
xi, yi, zi (i = 1, . . . ,m), p, q arbitrary, and α = β = γ = 0.

Step 1: Use Step 2 of Algorithm A.

Step 2: Use Step 3 of Algorithm A.

Step 3: Use Step 1 of Algorithm A.

Step 4: Use Step 4 of Algorithm A.

The numerical results for real world data with a slightly modified version of
Algorithm B in the case of the circle are given in Chapter 3.
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3. The circle

The easiest way of getting A and B for the circle from those for the ellipse is to use
p = q = r in (2), and to replace

∂W

∂p
=
∂W

∂q
= 0 by

∂W

∂r
= 0

and, as the circle (1) must not be rotated in the x − y plane, is to set α = 0 or
P (α) = I and finally to ignore ∂W

∂α = 0, respectively.

A second idea is to start with a cylinder of infinite length as model [3] and to
develop algorithms similar to A and B. Afterwards the length of that cylinder can
be reduced to zero resulting in a circle [4] and the former algorithms can be adapted,
see [4]. We used them for some real life example [4]. The m = 9 data were measured
in some constructed subway tunnel. They were

xi yi zi

21302.986 22912.496 22.928
21304.370 22915.276 23.079
21304.845 22916.347 25.817
21302.375 22911.485 26.589
21302.448 22911.462 24.205
21303.049 22912.764 28.050
21304.012 22914.706 28.082
21304.567 22915.054 27.141

.

In order to verify whether some cross-section is a good circle or not we fitted the
data by some circle and got really sufficient results:

a = 21303.5852
b = 22913.7068
c = 25.3418
r = 2.8095
β = 1.0875
γ = −1.5681 .

4. The hyperbola

Considering the right branch (3) you simply have to replace (sin, cos) by (sinh, cosh)
in (18) and in derived formulas for the ellipse. In the case of the left branch (3)
(sin, cos) have to be replaced by (sinh,− cosh). Some further smaller changes are
needed as described in [2].

If you would like to use the two branches simultaneously as a model, then the
best you can do is to associate each ui (i = 1, . . . ,m) with either the right or the
left branch of the hyperbola and to modify W correspondingly [2].
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5. The parabola

We consider our model (4) in the form

x(t) = dt2, d 6= 0, y(t) = t, z(t) = 0

The objective function V corresponding to W (18)is then

V = V (a, b, c, d, α, β, γ, t)

=
1

2

m∑
i=1

(x̂i − a− dt2i )2 + (ŷi − b− ti)2 + (ẑi − c)2 .

The partial derivatives w.r.t. a, b, c, d, α, β, γ are very similar to those for the ellipse.
The main difference is

∂V

∂ti
= 2d2t3i − ti(2d (x̂i − a)− 1)− (ŷi − b) (i = 1, . . . ,m)

which have to be zeroed. These are m polynomials of degree 3 with one or three
real zeroes instead of those of degree 4 for the ellipse or for the hyperbola. The
details for the model without α, β, γ in 3-space but with just one angle ϕ for some
parabola in the plane can be found in [1] and could easily be adjusted in the case of
the above V .
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