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Abstract. This paper studies the construction and approximation of neural network op-
erators with a centered bell-shaped Gaussian activation function. Using a univariate Gaus-
sian function a class of Cardaliaguet-Euvrard type network operators is constructed to
approximate the continuous function, and the Jackson type theorems of the approximation
and some discussions about the convergence are given. Furthermore, to approximate the
multivariate function, a class of bivariate Cardaliaguet-Euvrard type network operators is
introduced, and the corresponding estimates of the approximation rate are deduced.
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1. Introduction

Mathematically, feed-forward neural networks (FNNs) with one hidden layer are
expressed as

Nn(x) =
n∑

j=1

cjσ(Ajx+ bj), x ∈ Rs, s ∈ N, (1)

where σ is the activation function defined on Rd, and for 1 ≤ j ≤ n, cj ∈ R are the
coefficients, Aj are real matrices of d× s, bj ∈ Rd are the thresholds. If σ is defined
on R, then (1) becomes

Nn(x) =

n∑
j=1

cjσ(⟨Aj · x⟩+ bj), (2)

where ⟨Aj · x⟩ is the inner product of aj and x, bj ∈ R. If Aj is restricted within
diagonal matrices, then Nn(x) is a linear combination of translates and dilates of
one or several functions.
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It is well known that FNNs are universal approximators. Theoretically, any
continuous function defined on a compact set can be approximated by a FNN to
any desired degree of accuracy by increasing the number of hidden neurons. It was
proved by Cybenko [17] and Funahashi [19], that any continuous function can be
approximated on a compact set with uniform topology by a network of the form
given in Equation (1), using any continuous, sigmoidal activation function. Further-
more, various density results on FNN approximations of multivariate functions were
later established by many authors using various methods, for more or less general
situations: [14] by Chen and Chen, [16] by Chui and Li, [20] by Hartman et al., [21]
by Hornik et al., [23] by Leshno et al., [27] by Mhaskar and Micchelli, etc.

Yet a related and important problem is that of complexity: determining the
number of neurons required to guarantee that all functions (belonging to a certain
class) can be approximated to the prescribed degree of accuracy ϵ. For example, a
classical result of Barrom [5] shows that if the function is assumed to satisfy certain
conditions expressed in terms of its Fourier transform, and if each of the neurons
evaluates a sigmoidal activation function, then at most O(ϵ−2) neurons are needed
to achieve the order of approximation ϵ. Up till now, many authors have published
similar results on the complexity of FNN approximations: Cao et al. [11], Chen
[13], Ferrari and Stengel [18], Maiorov and Meir [30], Makovoz [31], Mhaskar and
Micchelli [28], Suzuki [36], Xu and Cao [38] etc.

A function b : R 7→ R is said to be centered bell-shaped if b belongs to L1

and its integral is nonzero, if it is nondecreasing on (−∞, 0) and nonincreasing on
[0,+∞). Let f : R 7→ R be a continuous and bounded function and b be a centered
bell-shaped function, Cardaliaguet and Euvrard [12] introduced the neural network
operators defined by

F 1
n(f, x) =

n2∑
k=−n2

f
(
k
n

)
Inα

b

(
nx− k

nα

)
, (3)

where I =
∫∞
−∞ b(t)dt, which are called Cardaliaguet-Euvrard neural network oper-

ators. If f : Rs 7→ R is a continuous and bounded function, then it is natural to
define the multivariate Cardaliaguet-Euvrard neural network operators as (see [12])

F s
n(f ;x1, . . . , xs)

=

n2∑
k1=−n2

· · ·
n2∑

ks=−n2

f
(
k1

n , · · · , ks

n

)
Inα

b

(
nx1 − k1

nα

)
× · · · × b

(
nxs − ks

nα

)
.

Anastassiou [1] considered the centered bell-shaped function with compact support
and a nonnegative number, and gave the pointwise estimates for continuous function
f defined on R:

|F 1
n(f, x)− f(x)| ≤ |f(x)|

∣∣∣∣∣∣
[nx+nα]∑

k=⌈nx−nα⌉

1

nα
b

(
nx− k

nα

)
− 1

∣∣∣∣∣∣
+b(0)

(
2 +

1

nα

)
ω

(
f ;

1

n1−α

)
, (4)
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where b has support [−1, 1] with
∫ 1

−1
b(x)dx = 1, and ω(f ; t) is the first modulus

of continuity of f (see [24]). Anastassiou [3] further proved that F 1
n(f, x) 7→ f(x)

as n → ∞. For s-dimensional centered bell-shaped function with support [−1, 1]s,
Anastassiou [2, 3] obtained the similar pointwise estimate to (4).

For the important sigmoidal activation function defined by

s(x) =
1

1 + e−x
,

it is not difficult to see that the function

ϕ(x) =
1

2
(s(x+ 1)− s(x− 1)) (5)

is a centered bell-shaped function with support R (see [4]).
Let f(x1, x2) be a continuous function defined on [−1, 1]2. Recently, Anastassiou

[4] constructed an interesting operator defined by

Gn(f ;x1, x2) =

[n]∑
k1=⌈−n⌉

[n]∑
k2=⌈−n⌉

f(k1

n , k2

n )ϕ(nx1 − k1)ϕ(nx2 − k2)

[n]∑
k1=⌈−n⌉

[n]∑
k2=⌈−n⌉

ϕ(nx1 − k1)ϕ(nx2 − k2)

, (6)

and gave the estimate

|Gn(f ;x1, x2)−f(x1, x2)|≤(5.250312578)2
(
ω

(
f ;

1

nα
,
1

nα

)
+ 6.3984∥f∥∞e−n(1−α)

)
,

where [·] denotes the integral part of a number, ⌈·⌉ the ceiling of a number, ∥f∥∞
the uniform norm of f, and 0 < α < 1, and ω(f ; t1, t2) is the modulus of continuity
of two-variate f defined by (see [34])

ω(f ; t1, t2) = sup
|h1|≤t1,|h2|≤t2

|f(x1 + h1, x2 + h2)− f(x1, x2)| .

Yet, (6) is an operator of rational type.
It is well known that s-dimensional Gaussian function defined by

G(x) =
1

π
s
2
e−∥x∥2

, x ∈ Rs

is a class of important radial basis function (RBF), which is centered bell-shaped
function, but has not compact support. Nevertheless, there have been many applica-
tions in numerical approximation and neural networks (for example, see [7, 8, 9, 10],
[15], [22], [25, 26], [29], [32], [35], [37]).

In this paper, we will construct Cardaliaguet-Euvrard type neural network op-
erators with a Gaussian activation function, and give more refined error estimates
of Jackson type. In addition, it is not difficult to see that Cardaliaguet-Eurrard
network operators are also a kind of Quasi-interpolation operators without polyno-
mial reproduction (see [6]). Using the method of approximate partition of unity, the
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quasi-interpolation operators with Gaussian are constructed, and the approximation
rates are estimated in [15] and [32]. Therefore, for bell-shaped generating functions,
it is natural to study the construction and approximation of quasi-interpolation
operators by using the way of the constructive methods of Cardaliaguet-Euvrard
operators.

This paper is organized as follows. Section 2 constructs two kinds of Cardaliaguet-
Euvrard type neural network operators with univariate Gaussian radial basis acti-
vation function, and gives the discussions of rate of approximation on R and its
compact subset, respectively. Section 3 introduces the neural network operators
with bivariate Gaussian radial basis activation function and estimates the corre-
sponding rate of approximation. In Section 4 we give numerical results to show the
approximation does converge and agree with the rate claimed in the paper.

2. Approximation on R

For a Gaussian function

G(x) =
1√
π
e−x2

, x ∈ R, (7)

and d > 0, we set

gd(x) =
1√
πd

e−
x2

d2 , x ∈ R.

We denote the class of continuous and bounded functions defined on R by C(R),
and construct neural network operators with activation function gd for f ∈ C(R) as

G1
n,d(f, x) =

[n2+nα]∑
k=⌈−n2−nα⌉

f( kn )

nα
gd

(
nx− k

nα

)
.

To prove our first result, we need the following lemma.

Lemma 1. If −n ≤ x ≤ n, we have
1) When ⌈nx⌉+ 1 ≤ k ≤ [n2 + nα], then

∫ [n2+nα]+1

⌈nx⌉+1

gd

(
nx− t

nα

)
dt ≤

[n2+nα]∑
k=⌈nx⌉+1

gd

(
nx− k

nα

)
≤
∫ [n2+nα]

⌈nx⌉
gd

(
nx− t

nα

)
dt.

2) When ⌈−n2 − nα⌉ ≤ k ≤ [nx]− 1, then

∫ [nx]−1

⌈−n2−nα⌉−1

gd

(
nx− t

nα

)
dt≤

[nx]−1∑
k=⌈−n2−nα⌉

gd

(
nx− k

nα

)
≤
∫ [nx]

⌈−n2−nα⌉
gd

(
nx− t

nα

)
dt.

Proof. 1) Since −n ≤ x ≤ n, we have

⌈nx⌉+ 1 ≤ k ≤ [n2 + nα]



The construction and approximation of neural networks 189

and

x− k

n
≤ x− t

n
≤ x− k − 1

n
≤ 0, nx ≤ k − 1 ≤ t ≤ k.

Hence

gd

(
n1−α

(
x− k

n

))
≤ gd

(
n1−α

(
x− t

n

))
≤ gd

(
n1−α

(
x− (k − 1)

n

))
,

that is

gd

(
nx− k

nα

)
≤ gd

(
nx− t

nα

)
≤ gd

(
nx− (k − 1)

nα

)
.

Thus

gd

(
nx− k

nα

)
≤
∫ k

k−1

gd

(
nx− t

nα

)
dt.

Let nx ≤ k ≤ t ≤ k + 1, then

x− k + 1

n
≤ x− t

n
≤ x− k

n
≤ 0.

Therefore,

gd

(
nx− (k + 1)

nα

)
≤ gd

(
nx− t

nα

)
≤ gd

(
nx− k

nα

)
.

Hence ∫ k+1

k

gd

(
nx− t

nα

)
dt ≤ gd

(
nx− k

nα

)
.

By summation we have

∫ [n2+nα]+1

⌈nx⌉+1

gd

(
nx− t

nα

)
dt ≤

[n2+nα]∑
k=⌈nx⌉+1

gd

(
nx− k

nα

)
≤
∫ [n2+nα]

⌈nx⌉
gd

(
nx− t

nα

)
dt,

for ⌈nx⌉+ 1 ≤ k ≤ [n2 + nα].

The proof of 2) is similar to 1). We omit the details.

We now give the first main result.

Theorem 1. Let f ∈ C(R), 0 < α < 1, and nα > 2. Then for x ∈ [−n, n], we have

∣∣G1
n,d(f, x)− f(x)

∣∣ ≤ ω

(
f ;

1

n1−α

)(
1 +

1√
πdnα

)
+ 6∥f∥∞

(
1√
πdnα

+ de−
1

4d2

)
,

where ∥f∥∞ = sup
|x|≤n+1

|f(x)|.
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Proof. Since∣∣∣∣∣∣
[n2+nα]∑

k=⌈−n2−nα⌉

f( kn )

nα
gd

(
nx− k

nα

)
− f(x)

∣∣∣∣∣∣ ≤
[n2+nα]∑

k=⌈−n2−nα⌉

|f( kn )− f(x)|
nα

gd

(
nx− k

nα

)

+∥f∥∞

∣∣∣∣∣∣
[n2+nα]∑

k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
− 1

∣∣∣∣∣∣
=: I1 + ∥f∥∞I2,

it is easy to see that

|I1| =
∑

|nx−k|≤nα

|f( kn )− f(x)|
nα

gd

(
nx− k

nα

)
+

∑
|nx−k|>nα

|f( kn )− f(x)|
nα

gd

(
nx− k

nα

)

≤ ω

(
f ;

1

n1−α

) [n2+nα]∑
k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
+ 2∥f∥∞

∑
|nx−k|>nα

1

nα
gd

(
nx− k

nα

)
.

By computation, we can obtain

[n2+nα]∑
k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
=

1√
πdnα

[n2+nα]∑
k=⌈−n2−nα⌉

e−
(nx−k)2

d2n2α

≤ 1√
πdnα

(
1 +

∫ +∞

−∞
e−

x2

d2n2α dx

)
= 1 +

1√
πdnα

,

and when nα > 2, it follows that∑
|nx−k|>nα

1

nα
gd

(
nx− k

nα

)
=

1√
πdnα

∑
|nx−k|>nα

e−
(nx−k)2

d2n2α

≤ 2√
πdnα

∫ +∞

nα−1

e−
x2

d2n2α dx

≤ de−
1

4d2 ,

here, the inequality (see Section 3.7.3 of [33])∫ ∞

a

e−x2

dx < min

(√
π

2
e−a2

,
1

2a
e−a2

)
, a > 0,

is applied. Hence

|I1| ≤ ω

(
f ;

1

n1−α

)(
1 +

1√
πdnα

)
+ 2∥f∥∞de−

1
4d2 .
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On the other hand,

I2 ≤

∣∣∣∣∣∣
[n2+nα]∑

k=⌈nx⌉+1

1

nα
gd

(
nx− k

nα

)
− 1

2

∣∣∣∣∣∣+ 1

nα
gd

(
nx− ⌈nx⌉

nα

)

+

∣∣∣∣∣∣
[nx]−1∑

k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
− 1

2

∣∣∣∣∣∣+ 1

nα
gd

(
nx− [nx]

nα

)
=: ∆1 +∆2 +∆3 +∆4.

Obviously,

∆2 =
1√
πdnα

e−
(nx−⌈nx⌉)2

d2n2α ≤ 1√
πdnα

,

∆4 =
1√
πdnα

e−
(nx−[nx])2

d2n2α ≤ 1√
πdnα

.

Also, the case 1) of Lemma 1 yields that

Λ1 :=
1√
πdnα

∫ [n2+nα]+1

⌈nx⌉+1

e−
(nx−t)2

d2n2α dt− 1√
π

∫ 0

−∞
e−t2dt

≤
[n2+nα]∑

k=⌈nx⌉+1

1

nα
gd

(
nx− k

nα

)
− 1

2

≤ 1√
πdnα

∫ [n2+nα]

⌈nx⌉
e−

(nx−t)2

d2n2α dt− 1√
π

∫ 0

−∞
e−t2dt =: Λ2.

Therefore,

∆1 ≤ max{|Λ1|, |Λ2|}.

From

−2 < nx− ⌈nx⌉ − 1 ≤ 1, nx− [n2 + nα]− 1 ≤ −nα,

we get

|Λ1| =

∣∣∣∣∣ 1√
πdnα

∫ [n2+nα]+1

⌈nx⌉+1

e−
(nx−t)2

d2n2α dt− 1√
πdnα

∫ 0

−∞
e−

t2

d2n2α dt

∣∣∣∣∣
=

1√
πdnα

∣∣∣∣∣
∫ [nx−⌈nx⌉−1

nx−[n2+nα]−1

e−
t2

d2n2α dt−
∫ 0

−∞
e−

t2

d2n2α dt

∣∣∣∣∣
≤ 1√

πdnα

(∫ 0

−2

e−
t2

d2n2α dt+

∫ −nα

−∞
e−

t2

d2n2α dt

)

≤ 2√
πdnα

+ de−
1

4d2 ,
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and

|Λ2| =

∣∣∣∣∣ 1√
πdnα

∫ [n2+nα]

⌈nx⌉
e−

(nx−t)2

d2n2α dt− 1√
πdnα

∫ 0

−∞
e−

t2

d2n2α dt

∣∣∣∣∣
=

1√
πdnα

∣∣∣∣∣
∫ nx−⌈nx⌉

nx−[n2+nα]

e−
t2

d2n2α dt−
∫ 0

−∞
e−

t2

d2n2α dt

∣∣∣∣∣
≤ 1√

πdnα

(∫ 0

−1

e−
t2

d2n2α dt+

∫ −nα+1

−∞
e−

t2

d2n2α dt

)

≤ 1√
πdnα

+ de−
1

4d2 .

Combining the estimates of |Λ1| with |Λ2|, we have

∆1 ≤ 2√
πdnα

+ de−
1

4d2 .

Considering
0 ≤ nx− [nx] < 1, nx− ⌈−n2 − nα⌉ ≥ nα − 1,

in the similar way we obtain the estimate of ∆1 that

|Λ3| :=
1√
πdnα

∣∣∣∣∣
∫ nx−⌈−n2−nα⌉+1

nx−[nx]+1

e−
t2

d2n2α dt−
∫ +∞

0

e−
t2

d2n2α dt

∣∣∣∣∣
≤ 1√

πdnα

(∫ 2

0

e−
t2

d2n2α dt+

∫ ∞

nα

e−
t2

d2n2α dt

)
≤ 2√

πdnα
+ de−

1
d2 ,

and

|Λ4| :=
1√
πdnα

∣∣∣∣∣
∫ nx−⌈k=−n2−nα⌉

nx−[nx]

e−
t2

d2n2α dt−
∫ +∞

0

e−
t2

d2n2α dt

∣∣∣∣∣
≤ 1√

πdnα

(∫ 1

0

e−
t2

d2n2α dt+

∫ ∞

nα−1

e−
t2

d2n2α dt

)
≤ 1√

πdnα
+ de−

1
4d2 .

Thus, from the case 2) of Lemma 1 it follows that

∆3 =

∣∣∣∣∣∣
[nx]−1∑

k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
− 1√

π

∫ +∞

0

e−t2dt

∣∣∣∣∣∣
≤ max{|Λ3|, |Λ4|}

≤ 2√
πdnα

+ de−
1

4d2 .
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Hence,

I2 ≤ 6√
πdnα

+ 2de−
1

4d2 .

Therefore,

∣∣G1
n,d(f, x)− f(x)

∣∣ ≤ ω

(
f ;

1

n1−α

)(
1 +

1√
πdnα

)
+6∥f∥∞

(
1√
πdnα

+ de−
1

4d2

)
.

If we choose d and n such that n
α
2 d = 1, then

∣∣G1
n,d(f, x)− f(x)

∣∣ ≤ 2ω

(
f ;

1

n1−α

)
+ 6∥f∥∞(n−α

2 + d)

= 2ω

(
f ;

1

n1−α

)
+ 12d∥f∥∞.

Remark 1. For given n, we choose f(x) = 1. Then, when |x| > n+ nα+1
n , we have

[n2+nα]∑
k=⌈−n2−nα⌉

f( kn )

nα
gd

(
nx− k

nα

)
− f(x) =

[n2+nα]∑
k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
− 1,

and

[n2+nα]∑
k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
=

1√
πdnα

[n2+nα]∑
k=⌈−n2−nα⌉

e−
(nx−k)2

d2n2α

≤ 1√
πdnα

∫ +∞

0

e−
t2

d2n2α dt =
1

2
.

Thus ∣∣∣∣∣∣
[n2+nα]∑

k=⌈−n2−nα⌉

1

nα
gd

(
nx− k

nα

)
− 1

∣∣∣∣∣∣ ≥ 1

2
.

This shows that when |x| > n+ nα+1
n , G1

n,d(f, x)−f(x) has no the convergent degree
in general.

Remark 2. If f ∈ C(R), then for x ∈ R

G1
n,d(f, x) → f(x), as n → ∞ and d → 0 (but nαd → ∞),

and the above convergence is pointwise.
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Remark 3. From Theorem 1 and Remark 1, we know that an essential change
occurs to the error of G1

n,d(f, x) − f(x) on n < |x| < n + nα+1
n . However, if we

construct following operators G2
n,d(f, x) defined by

G2
n,d(f, x) =

∞∑
k=−∞

f( kn )

nα
gd

(
nx− k

nα

)
,

then the error of G2
n,d(f, x)− f(x) can be estimated. In fact, since

|G2
n,d(f, x)− f(x)| =

∣∣∣∣∣
∞∑

k=−∞

f( kn )

nα
gd

(
nx− k

nα

)
− f(x)

∣∣∣∣∣
≤ ω

(
f ;

1

n1−α

) ∞∑
k=−∞

1

nα
gd

(
nx− k

nα

)
+2∥f∥∞

∑
|nx−k|>nα

1

nα
gd

(
nx− k

nα

)

+∥f∥∞

∣∣∣∣∣
∞∑

k=−∞

1

nα
gd

(
nx− k

nα

)
− 1

∣∣∣∣∣
≤ ω

(
f ;

1

n1−α

)(
1 +

1√
πdnα

)
+ 2d∥f∥∞e−

1
4d2 + ∥f∥∞I3,

and

I3 ≤ 6√
πdnα

,

we have

|G2
n,d(f, x)− f(x)| ≤ 2ω

(
f ;

1

n1−α

)
+ 8d∥f∥∞,

provided n
α
2 d = 1.

3. Approximation on compact sets of R2

Write

Gd (t1, t2) = gd (t1) gd (t2) . (8)

For f(x1, x2) ∈ C([−1, 1]2), we construct operators

G3
n,d(f ;x1, x2) =

[n+nα]∑
k1=⌈−n−nα⌉

[n+nα]∑
k2=⌈−n−nα⌉

f( k1

n+nα ,
k2

n+nα )

n2α
Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)
.

To estimate the error G3
n,d(f ;x1, x2)− f(x1, x2), we need the following lemma.
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Lemma 2. For Gd given by (8), we have
1) ∫ [nx1]−1

⌈−n−nα⌉−1

∫ [nx2]−1

⌈−n−nα⌉−1

Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2

≤
[nx1]−1∑

k1=⌈−n−nα⌉

[nx2]−1∑
k2=⌈−n−nα⌉

Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)

≤
∫ [nx1]

⌈−n−nα⌉

∫ [nx2]

⌈−n−nα⌉
Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2;

2) ∫ [nx1]−1

⌈−n−nα⌉−1

∫ [n+nα]+1

⌈nx2⌉+1

Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2

≤
[nx1]−1∑

k1=⌈−n−nα⌉

[n+nα]∑
k2=⌈nx2⌉+1

Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)

≤
∫ [nx1]

⌈−n−nα⌉

∫ [n+nα]

⌈nx2⌉
Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2;

3) ∫ [n+nα]+1

⌈nx1⌉+1

∫ [nx2]−1

⌈−n−nα⌉−1

Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2

≤
[n+nα]∑

k1=⌈nx1⌉+1

[nx2]−1∑
k2=⌈−n−nα⌉

Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)

≤
∫ [n+nα]

⌈nx1⌉

∫ [nx2]

⌈−n−nα⌉
Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2;

4) ∫ [n+nα]+1

⌈nx1⌉+1

∫ [n+nα]+1

⌈nx2⌉+1

Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2

≤
[n+nα]∑

k1=⌈nx1⌉+1

[n+nα]∑
k2=⌈nx2⌉+1

Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)

≤
∫ [n+nα]

⌈nx1⌉

∫ [n+nα]

⌈nx2⌉
Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2.

Proof. Noting that when 0 ≤ ti ≤ t′i(i = 1, 2), Gd (t1, t2) ≤ Gd (t
′
1, t

′
2), and using

the way of proving the case 2) of Lemma 1, we can finish the proof of case 1).
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Now we prove the case 2). Noting that when ⌈−n2−nα⌉ ≤ k1 ≤ [nx1]−1, ⌈nx2⌉+
1 ≤ k2 ≤ [n2 + nα],∫ k1

k1−1

∫ k2+1

k2

Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2

≤
∫ k1

k1−1

∫ k2+1

k2

Gd

(
nx1 − k1

nα
,
nx2 − t2

nα

)
dt1dt2

=

∫ k2+1

k2

Gd

(
nx1 − k1

nα
,
nx2 − t2

nα

)
dt2 ≤ Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)
≤
∫ k2

k2−1

Gd

(
nx1 − k1

nα
,
nx2 − t2

nα

)
dt2

≤
∫ k1+1

k1

∫ k2

k2−1

Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2,

it is not difficult to complete the proof of case 2).

The proof of case 3) is similar to the proof of case 2).

The proof of case 4) is easy if we note that when ti ≤ t′i ≤ 0(i = 1, 2), Gd (t1, t2)
≤ Gd (t

′
1, t

′
2) . We omit the details.

Now we give the main result of this section.

Theorem 2. Let f ∈ C([−1, 1]2), and 0 < α < 1. Then for nα > 2, we have

|G3
n,d(f ;x1, x2) − f(x1, x2)| ≤ ω

(
f ;

2

n1−α
,

2

n1−α

)(
1 +

1√
πdnα

)2

+ 4∥f∥∞

((
3

2
de−

1
4d2 +

1√
πdnα

)(
3 +

1√
πdnα

)2

+
d√
π
e−

1
4d2

)
,

where ∥f∥∞ = sup
(x1,x2)∈[−1,1]2

|f(x1, x2)|.

Proof. It is not difficult to see that

Gn,d(f ;x1, x2)− f(x1, x2)

=

[n+nα]∑
k1=⌈−n−nα⌉

[n+nα]∑
k2=⌈−n−nα⌉

f( k1

n+nα ,
k2

n+nα )− f(x1, x2)

n2α
Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)

+f(x1, x2)

 [n+nα]∑
k1=⌈−n−nα⌉

[n+nα]∑
k2=⌈−n−nα⌉

Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

− 1


=: I4 + I5.
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Write

I4 =

 ∑
|nx1−k1|≤nα

∑
|nx2−k2|≤nα

+
∑

|nx1−k1|>nα

∑
|nx2−k2|≤nα


+

 ∑
|nx1−k1|≤nα

∑
|nx2−k2|>nα

+
∑

|nx1−k1|>nα

∑
|nx2−k2|>nα


f( k1

n+nα ,
k2

n+nα )− f(x1, x2)

n2α
Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)
=: I41 + I42 + I43 + I44.

From −1 ≤ xi ≤ 1 and |nxi − ki| ≤ nα(i = 1, 2), we get∣∣∣∣ ki
n+ nα

− xi

∣∣∣∣ ≤ 2nα

n+ nα
≤ 2

n1−α
,

which implies

|I41| ≤ ω

(
f ;

2

n1−α
,

2

n1−α

) ∑
|nx1−k1|≤nα

∑
|nx2−k2|≤nα

1

n2α
Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)

= ω

(
f ;

2

n1−α
,

2

n1−α

) ∑
|nx−k|≤nα

1

nα
gd

(
nx− k

nα

)2

≤ ω

(
f ;

2

n1−α
,

2

n1−α

)(
1 +

1√
πdnα

)2

,

|I42| ≤ 2∥f∥∞
∑

|nx1−k1|>nα

1

nα
gd

(
nx1 − k1

nα

) ∞∑
k=−∞

1

nα
gd

(
nx− k

nα

)

≤ 2d∥f∥∞e−
1

4d2

(
1 +

1√
πdnα

)
,

|I43| ≤ 2d∥f∥∞e−
1

4d2

(
1 +

1√
πdnα

)
,

and

|I44| ≤ 2d∥f∥∞e−
1

4d2

(
1 +

1√
πdnα

)
,

where we have used the condition nα > 2 to estimate
∑

|nx−k|>nα
1
nα gd

(
nx−k
nα

)
.

Therefore,

|I4| ≤
(
ω(f ;

2

n1−α
,

2

n1−α
) + 6d∥f∥∞e−

1
4d2

)(
1 +

1√
πdnα

)2

.
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On the other hand,

|I5| ≤ ∥f∥∞

∣∣∣∣∣∣
[n2+nα]∑

k1=⌈−n2−nα⌉

[n2+nα]∑
k2=⌈−n2−nα⌉

Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

− 1

∣∣∣∣∣∣
=: ∥f∥∞∆5.

Set

D :=

[nx1]−1∑
k1=⌈−n−nα⌉

[nx2]−1∑
k2=⌈−n−nα⌉

+

[nx1]−1∑
k1=⌈−n−nα⌉

[n+nα]∑
k2=⌈nx2⌉+1

+

[n+nα]∑
k1=⌈nx1⌉+1

[nx2]−1∑
k2=⌈−n−nα⌉

+

[n+nα]∑
k1=⌈nx1⌉+1

[n+nα]∑
k2=⌈nx2⌉+1

.

Then

|∆5| ≤

(
D
Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

− 1

)
+

gd

(
nx1−[nx1]

nα

)
n2α

[n+nα]∑
k2=⌈−n−nα⌉

gd

(
nx2 − k2

nα

)

+
gd

(
nx1−⌈nx1⌉

nα

)
n2α

[n+nα]∑
k2=⌈−n−nα⌉

gd

(
nx2 − k2

nα

)

+
gd

(
nx2−[nx2]

nα

)
n2α

[n+nα]∑
k1=⌈−n−nα⌉

gd

(
nx1 − k1

nα

)

+
gd

(
nx2−⌈nx2⌉

nα

)
n2α

[n+nα]∑
k1=⌈−n−nα⌉

gd

(
nx1 − k1

nα

)

≤

(
D
Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

− 1

)
+

4√
πdnα

(
1 +

1√
πdnα

)
.

From the case 1) of Lemma 2 it follows that

ΩL :=

∫ [nx1]−1

⌈−n−nα⌉−1

∫ [nx2]−1

⌈−n−nα⌉−1

1

n2α
Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2

≤
[nx1]−1∑

k1=⌈−n−nα⌉

[nx2]−1∑
k2=⌈−n−nα⌉

1

n2α
Gd

(
nx1 − k1

nα
,
nx2 − k2

nα

)

≤
∫ [nx1]

⌈−n−nα⌉

∫ [nx2]

⌈−n−nα⌉

1

n2α
Gd

(
nx1 − t1

nα
,
nx2 − t2

nα

)
dt1dt2 =: ΩR.

Since

0 ≤ nxi − [nxi]

nα
≤ 1

nα
,

nxi − ⌈−n− nα⌉
nα

> 1− 1

nα
, i = 1, 2,

1

nα
≤ nxi − [nxi] + 1

nα
≤ 2

nα
,

nxi − ⌈−n− nα⌉+ 1

nα
> 1, i = 1, 2,
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and

∫ +∞

0

gd (t1) dt1

∫ +∞

1

gd (t2) dt2 ≤ 1

2
· 1√

π

∫ +∞

1
d

e−x2

dx,∫ ∞

a

e−x2

dx < min

(√
π

2
e−a2

,
1

2a
e−a2

)
, a > 0,

we obtain

ΞL :=

∣∣∣∣ΩL −
∫ +∞

0

∫ +∞

0

gd (t1) gd (t2) dt1dt2

∣∣∣∣
=

∣∣∣∣∣
(∫ nx1−⌈−n−nα⌉

nα

nx1−[nx1]
nα

∫ nx2−⌈−n−nα⌉
nα

nx2−[nx2]
nα

−
∫ +∞

0

∫ +∞

0

)
gd (t1) gd (t2) dt1dt2

∣∣∣∣∣
≤
∫ 2

nα

0

gd (t1) dt1

∫ +∞

0

gd (t2) dt2 +

∫ +∞

0

gd (t1) dt1

∫ 2
nα

0

gd (t2) dt2

+

∫ +∞

0

gd (t1) dt1

∫ +∞

1

gd (t2) dt2 +

∫ +∞

1

gd (t1) dt1

∫ +∞

0

gd (t2) dt2

≤ 2√
πdnα

+
d

2
√
π
e−

1
d2 ,

and

ΞR :=

∣∣∣∣ΩR −
∫ +∞

0

∫ +∞

0

gd (t1) gd (t2) dt1dt2

∣∣∣∣
=

∣∣∣∣∣
(∫ nx1−⌈−n−nα⌉+1

nα

nx1−[nx1]+1
nα

∫ nx2−⌈−n−nα⌉+1
nα

nx2−[nx2]+1
nα

−
∫ +∞

0

∫ +∞

0

)
gd (t1) gd (t2) dt1dt2

∣∣∣∣∣
≤
∫ 2

nα

0

gd (t1) dt1

∫ +∞

0

gd (t2) dt2 +

∫ +∞

0

gd (t1) dt1

∫ 1
nα

0

gd (t2) dt2

+

∫ +∞

0

gd (t1) dt1

∫ +∞

1− 1
nα

gd (t2) dt2 +

∫ +∞

1− 1
nα

gd (t1) dt1

∫ +∞

0

gd (t2) dt2

≤ 1√
πdnα

+
d√
π
e−

1
4d2 .

Thus∣∣∣∣∣∣
[nx1]−1∑

k1=⌈−n−nα⌉

[nx2]−1∑
k2=⌈−n−nα⌉

Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

−
∫ +∞

0

∫ +∞

0

gd (t1) gd (t2) dt1dt2

∣∣∣∣∣∣
≤ max{ΞL,ΞR} ≤ 2√

πdnα
+

d√
π
e−

1
4d2 .
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We use the cases 2), 3) and 4) of Lemma 2 and obtain in a similar way that∣∣∣∣∣∣
[nx1]−1∑

k1=⌈−n−nα⌉

[n+nα]∑
k2=⌈nx2⌉+1

Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

−
∫ +∞

0

∫ 0

−∞
gd (t1) gd (t2) dt1dt2

∣∣∣∣∣∣
≤ 2√

πdnα
+

d√
π
e−

1
4d2 ,∣∣∣∣∣∣

[n+nα]∑
k1=⌈nx1⌉+1

[nx2]−1∑
k2=⌈−n−nα⌉

Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

−
∫ 0

−∞

∫ +∞

0

gd (t1) gd (t2) dt1dt2

∣∣∣∣∣∣
≤ 2√

πdnα
+

d√
π
e−

1
4d2 ,

and ∣∣∣∣∣∣
[n+nα]∑

k1=⌈nx1⌉+1

[n+nα]∑
k2=⌈nx2⌉+1

Gd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

−
∫ 0

−∞

∫ 0

−∞
gd (t1) gd (t2) dt1dt2

∣∣∣∣∣∣
≤ 2√

πdnα
+

d√
π
e−

1
4d2 .

These imply that∣∣∣∣∣DGd

(
nx1−k1

nα , nx2−k2

nα

)
n2α

− 1

∣∣∣∣∣ ≤ 8√
πdnα

+
4d√
π
e−

1
4d2 .

Therefore, we have

|G3
n,d(f ;x1, x2)− f(x1, x2)|

≤ ω

(
f ;

2

n1−α
,

2

n1−α

)(
1 +

1√
πdnα

)2

+6d∥f∥∞e−
1

4d2

(
1 +

1√
πdnα

)2

+∥f∥∞
(

4√
πdnα

(
1 +

1√
πdnα

)
+

8√
πdnα

+
4d√
π
e−

1
4d2

)
≤ ω

(
f ;

2

n1−α
,

2

n1−α

)(
1 +

1√
πdnα

)2

+4∥f∥∞

((
3

2
de−

1
4d2 +

1√
πdnα

)(
3 +

1√
πdnα

)2

+
d√
π
e−

1
4d2

)
.

If we choose d and n such that n
α
2 d = 1, then

|G3
n,d(f ;x1, x2)− f(x1, x2)| ≤ 4ω

(
f ;

2

n1−α
,

2

n1−α

)
+ 164d∥f∥∞.
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4. Numerical experiments and discussions

In this section, w well give some numerical experiments and discussions.

Example 1. We take the target function f1(x) = |1 − 2x|, and consider the ap-
proximation network G1

n,d(f1, x) defined in Section 2. Taking n = 5 and α = 0.5,
Figure 1 shows the approximation effect with different values of d (d = 1.5 and
d = 0.5, respectively).
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(a) : n = 5, d = 1.5, α = 0.5
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(b) : n = 5, d = 0.5, α = 0.5

Figure 1: Approximation effect of G1
n,d(f1, x) with different values of d

We denote the approximation error by error1 = maxx∈[−n,n] |f1(x)−G1
n,d(f1, x)|.

In Table 1, with d = 0.35 and α = 0.5, we give the approximation error for f1 with
different values of n. If we fix n = 5 and α = 0.5, the approximation error with
different values of d is shown in Table 2. It can be verified that f1 ∈ Lip21 and
∥f1∥∞ = 11, so we have ω(f1;

1
n1−α ) ≤ 2

n1−α . We then denote the control error (see
the right side of the result in Theorem 1) by

con(error1) =
2

n1−α

(
1 +

1√
πdnα

)
+ 66

(
1√
πdnα

+ de−
1

4d2

)
.

For d = 0.35 and α = 0.5, Figure 2 (a) shows that the approximation error decreases
as n increases. If we fix n = 5 and α = 0.5, we can see the changes of the approx-
imation error with different values of d in Figure 2 (b), where the error is smallest
when d in close to 0.35 (with n and α fixed). In Figure 3, we show the change of
control error about different values of n and d, where the trend is the same as in
Figure 2, so that the error estimate in Theorem 1 is reasonable and effective.

n 5 10 25 50 100 200
error1 0.2137 0.1061 0.0813 0.0543 0.0390 0.0277

Table 1: Approximation error for f1 with different values of n
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d 0.25 0.35 0.4 0.45 0.5 1
error1 1.0069 0.2137 0.2306 0.2505 0.2722 0.6632

Table 2: Approximation error for f1 with different values of d
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(b) : n = 5, α = 0.5

Figure 2: Approximation error of G1
n,d(f1, x) about different values of n and d
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Figure 3: Control error of G1
n,d(f1, x) about different values of n and d

Example 2. For the case of approximation on compact sets of R2. We take the
target function f2(x1, x2) = |sin(πx1) cos(πx2)|, x1, x2 ∈ [−1, 1], and consider the
approximation network G3

n,d(f ;x1, x2) defined in Section 3. With d = 0.35 and
α = 0.5, Figure 4 shows the approximation effect with different values of n. We
denote the approximation error of f2 by

error2 = max
x1,x2∈[−1,1]

∣∣f2(x1, x2)−G3
n,d(f2;x1, x2)

∣∣ .
In Table 3, with d = 0.35 and α = 0.5, we give the approximation error for f2 with
different values of n. If we fix n = 5 and α = 0.5, the approximation error with
different values of d is shown in Table 4.
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Figure 4: Approximation effect of G3
n,d(f ;x1, x2) with different values of n

n 5 25 50 100 200 500
error2 0.7892 0.4917 0.3760 0.2803 0.2054 0.1339

Table 3: Approximation error for f2 with different values of n, d = 0.35, α = 0.5

d 0.25 0.35 0.4 0.6 0.8 1.5
error2 0.9696 0.7892 0.7673 0.6975 0.6184 0.6664

Table 4: Approximation error for f2 with different values of d, n = 5, α = 0.5

It can be verified that f2 ∈ Lip2π1 and ∥f2∥∞ = 1, so we have

ω(f2;
2

n1−α
,

2

n1−α
) ≤ 8π

n1−α
.

We then denote the corresponding control error for f2 (see the right-hand side of the
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result in Theorem 2) by

con(error2) =
8π

n1−α

(
1 +

1√
πdnα

)2

+4

((
3

2
de−

1
4d2 +

1√
πdnα

)(
3 +

1√
πdnα

)2

+
d√
π
e−

1
4d2

)
.

For d = 0.35 and α = 0.5, Figure 5 (a) shows that the approximation error decreases
as n increases. If we fix n = 5 and α = 0.5, we can see the changes of the approx-
imation error with different values of d in Figure 5 (b). In Figure 6, we show the
change of control error with different values of n and d, where the trend is the same
as in Figure 5, so that the error estimate in Theorem 2 is reasonable and effective.
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Figure 5: Approximation error for f2 with different values of n and d
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Figure 6: Control error for f2 with different values of n and d

Remark 4. It is easy to see that we can obtain corresponding results by replacing
G given by (7) with ϕ defined by (5).
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Remark 5. For s > 2, we can construct network operators similarly to approximate
functions f ∈ C([−1, 1]s) with activation function

G(x) =
1

π
s
2
e−∥x∥2

=
1√
π
e−x2

1 · · · 1√
π
e−x2

s , x = (x1, . . . , xs) ∈ Rs.

Remark 6. For a general centered bell-shaped activation function we can construct
network operators and obtain the error estimates, provided that the decay rate of
activation function σ(x) is given when |x| → ∞.

Remark 7. For general centered bell-shaped activation functions we can extend to
more than 2 dimensions.

Remark 8. Network operators constructed in the paper are the form of feed-forward
neural networks with a single hidden layer. Also, they are quasi-interpolation op-
erators. However, they are not quasi-interpolation with polynomial reproduction.
Because the coefficients of network operators are related with the target function, the
operators include the information of the target function. Therefore, compared to the
existing algorithms, such as interpolation operators, we do not need to solve the lin-
ear system to obtain the coefficients, which results in lower computational complexity
and good convergence. The given numerical results also agree with the rate claimed
in theorems.
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