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Abstract. In this paper we consider the ruin probabilities of a multidimensional insurance
risk model perturbed by Brownian motion. A Lundberg-type upper bound is derived for
the infinite-time ruin probability when claims are light-tailed. The proof is based on the
theory of martingales. An explicit asymptotic estimate is obtained for the finite-time ruin
probability in the heavy-tailed claims case.
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1. The model

Multidimensional models with a common arrival process describe situations where
each claim event usually produces more than one type of claim. One common ex-
ample is natural catastrophe insurance where an accident could cause claims for
different types of bodily injuries and property damages. The same situations exist
in motor insurance.

We consider a multidimensional insurance risk process

(t) = (R1(t), ..., Rn(t))T perturbed by a multidimensional Brownian motion

R (t) Ul Cc1 N(t) Xq; 1B, (t)
el =0+t - fz e+ - ,t>0. (1)

R, (t) Uy, Cn i=1 \ X onBn(t)
Here W = (u1,...,u,)T stands for the initial surplus vector, = (c1y...,cn)T for
the premium rate vector, while X; = (X14,...,X,;)7, i =1,2,... denote n-tuples of

claims whose common arrival times constitute a counting process { N(t),¢ > 0}. The
process {N(t),t > 0} is a Poisson process with intensity A > 0 and {X;,i=1,2,...}
is a sequence of independent copies of the random n-tuple = (Xq,..., X7
with a joint distribution function F(zy,...,z,) and marginal distribution func-
tions Fy(x1),...,Fn(x,). The vector B(t) = (Bi(t),...,Bn(t))T denotes a stan-
dard multidimensional Brownian motion with constant correlation coefficients r;; €
[-1,1],¢ = 1,....,n— 1,7 = ¢+ 1,...,n, while 0; > 0,4 = 1,...,n denote the
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marginal volatility coefficients of ?(t) All vectors }1 fori =1,2,..., 4 and @
consist of only nonnegative components. The random processes {X;,i = 1,2,...},
{N(t),t > 0} and {ﬁ(t), t > 0} are all mutually independent.

Let @ = (21,...,2,)T and ¥ = (y1,...,yn)T be two n-dimensional vectors.
Then we write 7 < 7 if z; <wy;,t=1,...,n and in the same way we define other
inequalities.

The ruin time of the model (1) can be defined in two different ways:
Tinin = inf{t > 0| min{ Ry (¢),..., Ry (t)} <0}
or
Tinar = inf{t > 0| R(t) < 0} = inf{t > 0| max{R;(t),...,R.(t)} < 0}.

Here we assume that inf § = co. Tjpa. is the first time when all R;(¢),i =1,...,n go
below zero. At time T},;, the insurance company may be able to survive more easily
because probably only one of its subsidiary companies gets ruined. That means that
Tnaz TEpPresents a more critical time than T,;,. We also define the infinite-time ruin
probability of the model (1) in two ways:

W) = P(Tynin < 00| B(0) = @) 2)

or

(@) = P(Tpas < 00| B(0) = ),

respectively.
Finally, we define the finite-time ruin probability

$(T;T) = P(Taw < T|R(0) = @), T > 0. 3)

In Section 2, we derive a Lundberg-type upper bound for the case of light-tailed
claims and for the infinite-time ruin probability (). We use the techniques from
martingale theory with no restrictions on the dependence structure of the process

. In Section 3, we derive an explicit asymptotic estimate for the finite-time ruin
probability 1/)(7;T) for the case of heavy-tailed claims, where we do assume that
X1,...,X, are independent.

2. A Lundberg-type upper bound for the ruin probability of
light-tailed claims

Throughout this section we consider only the claims with light tails. We also assume

that the claim vector 73 has a finite mean vector ﬁ = (p1,.--,pn)T and that the
safety loading condition 7> )\ﬁ holds.

Our main result - an upper bound for the infinite-time ruin probability is given
by the following theorem:

Theorem 1. Let
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(1) m(s1,...,8n) = Elexp{s1 X1+ -+ s, Xn}];
(”) f(517 ce 75n) = Am(sla s asn) —A- Z:L:l CiS;
=
+ 30 ofst + 2300 Yo Ti0i0siss;

¢ = sup{s1|m(s1,0,...,0) < oo},...,s2 = sup{s,|m(0,...,0,s,) < o0o};

(iiz) s
(iv) GY={(s1,.--,80)|81 > 0,...,8, > 0,7(s1,...,8,) <00} \(0,...,0);
(v) A% ={(s1,...,8n) € G°f(s1,...,8,) =0}

If s >0,...,82 >0 and SUP (s, ,....sp)eco f (815 8n) > 0, then

T (S1yeeeySn ) EAO

W(W) < inf exp{ - ilsu} (4)

Hélder inequality gives that the set G is non-empty provided that s > 0, ...,
sY > 0. First we will prove a proposition:

Proposition 1. Let s) > 0,...,s% >0 and SUP(s, s yeco (51,5 80) > 0. Then
the following statements hold:

(a) The set A is non-empty.

(b) If v > 0 solves the equation f(s1,...,ls1,...) = 0 for given I > 0, then
f(s1,...,181,...) > 0 for every s1 > v and f(s1,...,181,...) < 0 for ev-
ery 0 < sy < v. Here lsy comes in the i-th position and s; = sy for j # 1,
1=1,...,n.

Proof. (a): For some given ! > 0 and s; =Is1, i =1,...,n, we calculate

df(s1,...,1ls1,...) _)\[ i oM (s1,..-,5n) +lam(sl,...,si,...)}
dsy =1, 83]' s si=ls1,5;=51,j#1
n n i—1
_ Z cj — le; + Z 0'32»81 + ZZZTjZ‘UiO'jSl
j=1,j#i J=1g#i j=1
n n—1 n
+21 Z rij0i0581 + 2 Z Z Tjk0;j0kS1 + ZQU?SD
Jj=i+1 j=1,j#i k=j+1,k#i
so that
df(s ls ) -
17.a.7 T1ye-- _ Z (Cj—)\/Lj)—l(Ci_AMi)<O,
o1 9=0  j=1j#i

because of the safety loading conditions. This means that the function s; —
f(s1,...,ls1,...) decreases when s; > 0 is sufficiently close to the point s; = 0.
For | = oo, the equation s; = ls; represents the line s; = 0 and in this case we can
easily show that the function f(0,...,s;,...) takes smaller values than f(0,...,0)
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when s; > 0. Now we conclude that f(s1,...,8;,...) < 0 holds for all (sq,...,8,)
sufficiently close to the origin, because f(0,...,0) = 0 and 0 < [ < oo can be ar-
bitrary. By this and the condition sup,,  yeqo f(s1,--.,8,) > 0 we see that (a)
holds.

(b): Let sy > 0 and [ > 0. We have

n

d®f(s1,...,081,...) 0*Mm(s1,. .., 5n)
3 Y Z ’ ’

2 2
dsy T 0s;
Lol i 0?m(s1,...,8n) +l282m(51, 2 sn)}
j=1,j#i 68i88j 6Si si=ls1,5;=s1,j7#1
Z a + 2127“]1020] + 21 Z Tij0i0;
j=1 J#l j=it1
+2 Z Z rikojoy + 120}
J=1,571 k=j+1 ki
n n
>\ Y E[X;+1X)%+ Y oy 1o >0,
J=1,j#i J=1,j#i
where s; = ls1, 4 =1,...,n. We conclude that the function s; — f(s1,...,181,...)
is convex on (0, s9), so the equation f(si,...,ls1,...) = 0 can have only one root in
(0,59) and the result (b) obviously follows. O

Now we will prove the theorem using Proposition 1.

Proof of the theorem. First we are going to construct a martingale based on the

surplus process {ﬁ(t)7 t > 0}. This martingale is needed for establishing a Lundberg-
type upper bound for the ruin probability. Let sq,...,s, be real numbers such that
m(s1,...,8n) < 0o. We will show that the process

M(E(1)) —exp{ Zs” sl,...,sn)t}7t>0,

is an F-martingale, where F = {F;,t > 0} represents the natural filtration of

(B(t),t>0).

For every t,h > 0 we have

n

E[exp{ = si(Ri(t+h) - Rz'(t))H

i=1

= exp { — hz sici} exp{A\m(s1,...,8,)h — Ah}

=1

n n—1 n
Xexp{;|:201'2312+2z Z TijO'iCTjSiSj]h}
=1

i=1 j=i+1
=exp{f(s1,...,8n)h},
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since the Poisson process { N(t),t > 0} has stationary independent increments. This
gives that
t}

E[M(ﬁ(t—l—h)ﬂ}'t]: [exp{ ZSR t+h)— f(sl,...,sn)(t—i-h)}

—oxp{ = Y stt) ~ flon,. st | = MR )
i=1
and we conclude that M (ﬁ(t)) is a martingale with respect to . Now the equation

E[M(E(1)] = exp{ Zsu} t>0 (5)

follows from M(ﬁ(O)) = exp { -y, siul} and the definition of a martingale.

Next we will show that T7,,;, and M(ﬁ(t)) are a stopping time and a martingale,
respectively, with respect to a common filtration 7" = {F/,¢ > 0}.
Let {Ft,t > 0} be a complete o-algebra of {F;,t > 0} with respect to P and

let Frp = Ng=eFs. M( (t)) is an right-continuous F-martingale, so it is also a
martingale with respect to {F:,t > 0} (see [1, Theorem VI.1.3]). The definition

of Tnin and the fact that { R(¢),t > 0} is a cddlag process, gives that Ty, is an
{Fiy,t > 0}-stopping time, hence an {F;,,t > 0}-stopping time since F;. C Fpy
(see [3, 1.1.28 Proposition]). So, if we select F' = {F;1,t > 0}, we get that Ty, is
an F'-stopping time and M ( R(t)) is an F'-martingale, respectively.

Let 14 be the indicator function of an event A. By equality (5) and by the fact

that Ty and M(ﬁ(t)) are a stopping time and a martingale, for every (si, ..., sy,)
such that m(s1,...,s,) < co we have

exp{ _ leluz} — E[M(R ()] = BIM(B (1)1, <)

- E{E[M(FM»FT m]l@mq)}

(6)

Since there is at least one i € {1,...,n} such that R;(Tinn) < 0, we can find
(81,---,8n) € GY for which

n

€xp { - 251R1(Tm1n)} 2 1.
i=1
By rearranging inequality (6) using the definition of M (ﬁ(t)) and the above in-
equality we get

P(Thin <t) <exp { Z sluz} sup exp{f(sl, ...y Sp)h}.
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We define A~ = {(s1,...,8,) € G°|f(s1,...,8,) <0} and

AT ={(s1,...,8,) € G°|f(s1,...,8,) > 0}. For (s1,...,s,) € AT, the right-hand
side of the above relation tends to co as ¢ — oo so this case makes no sense. We
conclude that

(81,--,8n)EATUAL

P(Tmin S t) S inf exp { — Z Siui}-
i=1

By Proposition 1(a) we know that the equation f(s1,...,s,) = 0 has at least one
root in GV. Applying Proposition 1(b) it is easy to see that the infimum in the above
inequality can be attained on A%, It follows that

P(Thin <t) < inf exp { - Z siul}
i=1

(81500+,8n)EAD

and for ¢t — oo we get a Lundberg-type upper bound for the infinite-time ruin
probability (4) when the ruin time equals T, In view of the obvious inequality

P(Thaz <t) < P(Thin <)

we can see that the relation (4) also holds when we take T4, to be the ruin time
of the process. O

3. Asymptotics for the finite-time ruin probability

In this section we consider the risk process (1) with heavy-tailed claims. We fur-
%&er assume that the claim vector % and the multidimensional Brownian motion
(t) consist of independent components. Here we do not assume the safety loading
condition.
A well-known class of heavy-tailed distribution functions is the subexponential
class. A distribution function F on [0,00) is said to be subexponential if for some
(or, equivalently, for all) n =2,3,... the relation

F*n(z) ~ nF(x),  — 0 (7)

holds, where F*" denotes the n-fold convolution of F and if F(z) > 0 for all x > 0.
Here ~ means that the quotient of the left-hand and the right-hand side tends to 1
according to the indicated limit procedure. We write F' € S. More on subexponential
distributions can be found in [6, 2.5].

In the following theorem we derive an asymptotic estimate for the finite-time
ruin probability w(ﬁ; T) defined in (3). The limit procedure used in this theorem
is always (u1,...,u,) = (00,...,00).

Theorem 2. Let F,...,F, bein S. Then

¢(7;T) ~ fn)Fy(ur). .. Fr(un), (8)
for every fixed time T > 0 and for each positive integer n, where f(0) =1, f(1) = AT
and 1) =31 (153 ()76
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Proof. First we define

B,(T) = it B;(t), B;(T)= Oi‘tlgTBj(t)aJ =1...,n

By the reflection principle (see [4, 2.6]) there is
P(B,(T) < —2) = P(B;(T) > z) = 2P(B,(T) > 1),
so because F; € S

P(B;(T) < —x) = P(B;(T) > x) = o(F;())

for every x > 0 and j = 1,...,n. Obviously,
W(T:T) = P(R(t) < 0 for some 0 < ¢ < T|R(0) = )
N(t)

P( Z Yift?)f(alBl(t), o 0n B ()T > for some 0<t§T).
i=1

9)

First we will find an asymptotic upper bound for ¥(@;7T). From the assumed
independence of random vector components we get

N(T)

w(ﬁ,T) S P( Z ?i - (UIEI(T)a e 7an§n(T))T > 7)

i=1

= ZP(N(T) = k‘) H P(ZXW - O'jﬁj(T) > Uj>.
j=1 Ni=1
Now we need the result from [2, Lemma 1.3.5]:

e If F' is a subexponential distribution, then for every € > 0 there exists a
constant C. > 0 such that

F(z) < O(1 + €)"F(x) (11)
holds for alln =1,2,... and all z > 0.

By inequality (11) for every € > 0 there exist constants Ce(l), CE(Q) > 0 such that
forallk=1,2,...,

k
P(ZXM — Ulﬁl(T) > U1>
=1

0 k

= / P<ZX11- —z> u1>P(alBl(T) =dz)+ P(01B,(T) < —uy)
U i=1

<CW 1+ ek ’ P(X, — 2> wu)P(61B,(T) = dz) + P(61.B,(T) < —uy)

<CWA +e)*P(X) — 1B, (T) > uy) + P(01B,(T) < —uy)
< CWCA (1 + ) F, (uy).
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In the last step we used P(X;—01B;(T) > uy) ~ Fi(uy) which follows from the fact
that for nonnegative independent random variables X and Y with X distributed by
F € S it holds that

P(X-Y >x)~F(z), * = 00 (12)
[7, Lemma 4.2]. We also used P(01B;(T) < —uy) = o(1)F;(u1). For every fixed
k= ..., by (7) and from the fact that for distribution functions F,G € S on

[0, oo) satlsfymg G(z) = o(F(x)) it holds that
FxG(x) ~ F(z); (13)

[6, Lemma 2.5.2], we have
k J—
P(ZXU — Ulﬁl(T) > ul) ~ k‘Fl(ul).
i=1

The same relations also hold for P(Ef_l Xji — 0;B;(T) > uj), where

k=1,2... and j = 1,...,n. Now using the dominated convergence theorem,
we can see that the right-hand side of (10) is asymptotic to

Y P(N(T) = k)E"Fi(uy) ... Fo(un) = f(n)F1(ur) ... Fr(un),
k=0
where f(0) =1, f(1) = AT and f(n) = AT(Z?_(} (":1)]‘(1))
This proves that
WU T) < (1+0(1)f(n)F1(u) ... Fr(uy). (14)

Next, we derive asymptotic lower bound for the ruin probability w(ﬁ; T). From
relation (9) we have

N(T)

W(u;T) > ( Z X~ T — (nBu(T),...,00Bn(t)T > 7)
(15)

:iP(N(T):k)ﬁP(Z )>uJ+CJT)

k=0 j=1 i=1

As in the first part of the proof we can see that

(Z (1) 15 + 5T ) ~ KF (w5)

forevery j = 1,...,n and for each fixed k = 1,2..... Therefore, using the dominated
convergence theorem, the right-hand side of (16) is also asymptotic to

ZP = k)k"F1(u1) ... Fo(up) = f(n)F1(uy) ... Fnluy),
k=0
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where f(0) =1, f(1) =AT1i f(n) = AT(E?_OI (”Zl)f(z)) This proves that

BT T) = (14 0(1) () () ... F (). (16)
Finaly, using inequalities (14) and (16) we obtain the required relation (8). O
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