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Abstract. In this work, we give some new characterizations for inclined curves and slant
helices in n-dimensional Euclidean space En.Morever, we consider the pre-characterizations
about inclined curves and slant helices and restructure them.
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1. Introduction

The helices share common origins in the geometries of the platonic solids, with
inherent hierarchical potential that is typical of biological structures. The helices
provide an energy-efficient solution to close-packing in molecular biology, a common
motif in protein construction, and a readily observable pattern at many size levels
throughout the body. The helices are described in a variety of anatomical structures,
suggesting their importance to structural biology and manual therapy [10].

In [9], Özdamar and Hacısalihoğlu defined harmonic curvature functions Hi

(1 ≤ i ≤ n− 2) of a curve α in n-dimensional Euclidean space En. They general-
ized inclined curves in E3 to En and then gave a characterization for the inclined
curves in En :

“A curve α is an inclined curve if and only if

n−2∑
i=1

H
2

i = constant”. (1)

Harmonic curvature functions have an important role in characterizations of general
helices in higher dimensions. Because the notion of a general helix can be generalized
to higher dimension in different ways. But, these ways are not easy to show which
curves are general helices and finding the axis of a general helix is complicated in
higher dimension. Thanks to harmonic curvature functions, we can easily obtain the
axis of such curves. Moreover, this way is confirmed in 3-dimensional spaces.

Then, Izumiya and Takeuchi defined a new kind of helix (slant helix) and gave
a characterization of slant helices in Euclidean 3-space E3 [7]. In 2008, Önder et al.
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defined a new kind of slant helix in Euclidean 4-space E4 which is called a B2-slant
helix and they gave some characterizations of these slant helices in Euclidean 4-
space E4 [8]. And then in 2009, Gök et al. defined a new kind of slant helix in
Euclidean n-space En, n > 3, which they called a Vn-slant helix and they gave some
characterizations of these slant helices in Euclidean n-space [5]. The new kind of
helix is a generalization of a B2-slant helix to Euclidean 4-space E4. On the other
hand, Camcı et al. give some characterizations for a non-degenerate curve to be a
generalized helix by using its harmonic curvatures in Euclidean n-space [3].

Since Özdamar and Hacısalihoğlu defined harmonic curvature functions, lots of
authors have used them in their papers to characterize inclined curves and slant
helices. In these studies, they gave some characterizations similar to (1) for inclined
curves and slant helices. But, Camcı et al. see for the first time that the charac-
terization of inclined curves in (1) is true for the case necessity but not true for
the case sufficiency and gave an example of inclined curve in order to show why
the case sufficiency is not true [3]. Also, they gave a property of inclined curves [3,
Theorem 3.3, p. 2594]. But, they did not obtain when the condition of curves to
be inclined. And then, Gök et al. [5] corrected the characterization of a B2-slant
helix ([8, Theorem 3.1, p. 1436]) like the characterization in (1). But, they also did
not give the answer of the question: When the condition of curves to be inclined?
After them, Ahmad and Lopez [1] and Ahmad and Melih [2] gave the definition of
Gi (1 ≤ i ≤ n) functions and obtain a characterization of inclined curves and slant
helices, that is, V1 and V2-slant helix, respectively.

In this paper, we investigate the answer of the following question by the similar
method in Theorem 4.1 in [4]:

When do the conditions of inclined curves and slant helices in Euclidean n-space
En which are similar to (1) turn to be necessary and sufficient?

2. Preliminaries

Let α : I ⊂ R −→ En be an arbitrary smooth curve in En. Recall that the
curve α is said to be a curve of unit speed (or parameterized by its arclength ) if
〈α′(s), α′(s)〉 = 1 where 〈, 〉 denotes the standart inner product of Rn given by

〈X,Y 〉 =

n∑
i=1

xiyi

for each X = (x1, x2,...,xn), Y = (y1, y2,...,yn) ∈ Rn. In particular, the norm of a
vector X ∈ Rn is given by

‖X‖2 = 〈X,X〉 .

Let {V1, V2, . . . , Vn} be the moving Frenet frame along the unit speed curve α. Here
Vi (i = 1, 2, . . . , n) denotes the ith Frenet vector field. Then the Frenet formulas are
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given by

V
′

1

V
′

2

V
′

3
...

V
′

n−2

V
′

n−1

V
′

n


=



0 k1 0 0 . . . 0 0 0
−k1 0 k2 0 . . . 0 0 0

0 −k2 0 k3 . . . 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 kn−2 0
0 0 0 0 . . . −kn−2 0 kn−1

0 0 0 0 . . . 0 −kn−1 0





V1

V2

V3

...
Vn−2

Vn−1

Vn


,

where ki(i = 1, 2, . . . , n − 1) denotes the ith curvature function of the curve [6]. If
all of the curvatures ki (i = 1, 2, . . . , n − 1) of the curve vanish nowhere in I ⊂ R,
the curve is said to be non-degenerate and of order n.

Definition 1. Let α : I ⊂ R → En be a curve in En with arc-length parameter s
and let X be a unit constant vector of En. For all s ∈ I, if

〈V1, X〉 = cos(ϕ), ϕ 6= π

2
, ϕ = constant,

then the curve α is called a general helix or inclined curve (V1-slant helix) in En

where V1 is the unit tangent vector of α at its point α(s) [9].

Definition 2. Let α : I ⊂ R → En be a curve in En with arc-length parameter s
and let X be a unit constant vector of En. For all s ∈ I, if

〈V2, X〉 = cos(ϕ), ϕ 6= π

2
, ϕ = constant,

then the curve α is called a slant helix or a V2-slant helix in En where V2 is the 2nd
vector field of α and ϕ is a constant angle between the vector fields V2 and X [1].

Definition 3. Let α : I ⊂ R→ En be a unit speed curve with nonzero curvatures ki
(1 ≤ i ≤ n− 1) in En and let {V1, V2, . . . , Vn} denote the Frenet frame of the curve
α. We call α a Vn-slant helix if the n-th unit vector field Vn makes a constant angle
ϕ with a fixed direction X, that is,

〈Vn, X〉 = cos(ϕ), ϕ 6= π

2
, ϕ = constant,

along the curve α. [5].

From now on, a smooth curve α is supposed to be non-degenerate throughout of
this paper.

3. Inclined curves and their harmonic curvature functions

In this section, we restructure some known characterizations by using harmonic
curvatures for inclined curves.
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Definition 4. Let α be a unit curve in En. The harmonic curvatures Hi : I → R,
i = 0, 1, . . . , n− 2, of α are defined inductively by

H0 = 0, H1 =
k1

k2
, Hi =

{
H´

i−1 + kiHi−2

} 1

ki+1

for 2 ≤ i ≤ n− 2, where ki 6= 0 for i = 1, 2, . . . , n− 1[9] .

Lemma 1. Let α be a unit curve in En(n ≥ 3). Suppose Hn−2 6= 0. Then,
H2

1 +H2
2 + · · ·+H2

n−2 is a nonzero constant if and only if H´
n−2 = −kn−1Hn−3.

Proof. First, we assume that H2
1 +H2

2 + · · ·+H2
n−2 is a nonzero constant. By the

definition of Hi, we can write

ki+1Hi = H´
i−1 + kiHi−2, 3 ≤ i ≤ n− 2. (2)

Hence, in (2), if we take i+ 1 instead of i, we get

H´
i = ki+2Hi+1 − ki+1Hi−1, 2 ≤ i ≤ n− 3 (3)

together with

H´
1 = k3H2. (4)

On the other hand, since H2
1 +H2

2 + · · ·+H2
n−2 is constant, we have

H1H
´
1 +H2H2́ + · · ·+Hn−2H

´
n−2 = 0

and so,

Hn−2H
´
n−2 = −H1H

´
1 −H2H

´
2 − · · · −Hn−3H

´
n−3. (5)

By using (3) and (4), we obtain

H1H
´
1 = k3H1H2 (6)

and

HiH
´
i = ki+2HiHi+1 − ki+1Hi−1Hi, 2 ≤ i ≤ n− 3. (7)

Therefore, by using (5), (6) and (7), algebraic calculus shows that

Hn−2H
´
n−2 = −kn−1Hn−3Hn−2.

Since Hn−2 6= 0, we get the relation H´
n−2 = −kn−1Hn−3.

Conversely, we assume that

H´
n−2 = −kn−1Hn−3. (8)

By using (8) and Hn−2 6= 0, we can write

Hn−2H
´
n−2 = −kn−1Hn−2Hn−3. (9)
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From (7), we have

for i = n− 3, Hn−3H
´
n−3 = kn−1Hn−3Hn−2 − kn−2Hn−4Hn−3,

for i = n− 4, Hn−4H
´
n−4 = kn−2Hn−4Hn−3 − kn−3Hn−5Hn−4,

for i = n− 5, Hn−5H
´
n−5 = kn−3Hn−5Hn−4 − kn−4Hn−6Hn−5,

...

for i = 2, H2H
´
2 = k4H2H3 − k3H1H2

and from (6), we have

H1H
´
1 = k3H1H2.

So, algebraic calculus shows that

H1H
´
1 +H2H

´
2 + · · ·+ Hn−5H

´
n−5 +Hn−4H

´
n−4 +Hn−3H

´
n−3 +Hn−2H

´
n−2 = 0. (10)

And, by integrating (10), we can easily obtain that

H2
1 +H2

2 + · · ·+H2
n−2

is a non-zero constant. This completes the proof.

Theorem 1. Let α be an inclined curve and X the axis of α . Then,

〈Vi+2, X〉 = Hi 〈V1, X〉 , 1 ≤ i ≤ n− 2,

where {V1, V2, . . . , Vn} denote the Frenet frame of a curve α of order n ≥ 3 and
{H1, H2, . . . ,Hn−2} denote the harmonic curvature functions of α [6] or [9].

Theorem 2. Let {V1, V2, . . . , Vn} be the Frenet frame of a curve α of order n ≥ 3
and let {H1, H2, . . . ,Hn−2} be the harmonic curvature functions of α. Then, α is
an inclined curve (with the curvatures ki 6= 0, i = 1, 2, . . . , n− 1) in En if and only
if its harmonic curvatures satisfy that

n−2∑
i=1

H2
i

is equal to the constant and Hn−2 6= 0.

Proof. Let α be an inclined curve. According to Definition 1,

〈V1, X〉 = cos(ϕ) = constant (11)

where X is the axis of α. And, from Theorem (1),

〈Vi+2, X〉 = Hi 〈V1, X〉 (12)
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for 1 ≤ i ≤ n − 2. Moreover, from (11) and Frenet equations, we can write
〈V2, X〉 = 0. Since the orthonormal system{V1, V2, . . . , Vn} is a basis of χ(En)
(tangent bundle), X can be expressed in the form

X =

n∑
i=1

〈Vi, X〉Vi. (13)

Hence, by using the equations (11), (12) and (13), we obtain

X = cos(ϕ)V1 +

n−2∑
i=1

Hi cos(ϕ)Vi+2.

Since X is a unit vector field (see Definition 1),

cos2(ϕ) +

n−2∑
i=1

H2
i cos2(ϕ) = 1

and so

n−2∑
i=1

H2
i = tan2(ϕ) = constant.

Now, we show that Hn−2 6= 0. We assume that Hn−2 = 0. Then, for i = n − 2 in
Theorem 1,

〈Vn, X〉 = Hn−2 〈V1, X〉 = 0.

So, 〈DTVn, X〉 = 〈−kn−1Vn−1, X〉 = 0. We deduce that 〈Vn−1, X〉 = 0. On the
other hand, for i = n− 3 in Theorem 1,

〈Vn−1, X〉 = Hn−3 〈V1, X〉 .

And, since 〈Vn−1, X〉 = 0, Hn−3 = 0. Continuing this process, we get that H1 = 0.

Recalling that H1 =
k1

k2
, we find it is a contradiction because all the curvatures are

nowhere zero. Consequently, Hn−2 6= 0.

Conversely, we assume that
n−2∑
i=1

H2
i = tan2(ϕ) = constant and Hn−2 6= 0. We

consider the vector field

X = cos(ϕ)V1 +

n∑
i=3

Hi−2 cos(ϕ)Vi.
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We shall verify that X is parallel along α, i.e. DV1X = 0. We have,

DV1
X = DV1

(cos(ϕ)V1) +

n∑
i=3

DV1
(Hi−2 cos(ϕ)Vi)

= cos(ϕ)DV1V1 +

n∑
i=3

(
H´

i−2 cos(ϕ)Vi +Hi−2 cos(ϕ)DV1Vi
)

= cos(ϕ)(k1V2 +

n−1∑
i=3

(
H´

i−2Vi − ki−1Hi−2Vi−1 + kiHi−2Vi+1

)
+H´

n−2Vn − kn−1Hn−2Vn−1).

On the other hand, by using (3), we can write

H´
i−2 = kiHi−1 − ki−1Hi−3 (14)

for 4 ≤ i ≤ n− 1 together with (4). Moreover, from Lemma 1, we know that

H´
n−2 = −kn−1Hn−3 (15)

Therefore, by using (4), (14) and (15), an algebraic calculus shows that DV1
X = 0.

Since

‖X‖ = cos2(ϕ) +

n∑
i=3

H2
i−2 cos2(ϕ)

= cos2(ϕ)

(
1 +

n−2∑
i=1

H2
i

)
= cos2(ϕ)

(
1 + tan2(ϕ)

)
= 1 ,

X is a unit vector field. Furthermore, 〈V1, X〉 = cos(ϕ) =constant. Hence, we
deduce that α is an inclined curve.

Remark 1. The following corollary is the restructuring of Theorem 3.4 in [3].

Corollary 1. Let {V1, V2, . . . , Vn} be the Frenet frame of a curve α of order n ≥ 3
and let {H1, H2, . . . ,Hn−2} be the harmonic curvature functions of α. Then, α is
an inclined curve (with the curvatures ki 6= 0, i = 1, 2, . . . , n− 1) in En if and only
if H´

n−2 = −kn−1Hn−3 and Hn−2 6= 0.

Proof. It is obvious by using Lemma 1 and Theorem 2.

4. Vn-slant helices and their harmonic curvature functions

In this section, we restructure some known characterizations by using harmonic
curvatures for Vn-slant helices.
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Definition 5. Let α : I ⊂ R → En be a unit speed curve with nonzero curvatures
ki (i = 1, 2, . . . , n− 1) in En. Harmonic curvature functions H∗i : I ⊂ R→ R of α
are defined inductively by

H∗0 = 0, H∗1 =
kn−1

kn−2
, H∗i =

{
kn−iH

∗
i−2 −H∗′i−1

} 1

kn−(i+1)

for 2 ≤ i ≤ n− 2 [5].

Lemma 2. Let α be a unit curve in En of order n ≥ 3. When H∗n−2 6= 0, the sum
H∗21 +H∗22 + · · ·+H∗2n−2 is a nonzero constant if and only if H∗′n−2 = k1H

∗
n−3.

Proof. First, we assume that H∗21 + H∗22 + · · · + H∗2n−2 is a nonzero constant. By
the definition of H∗i , we can write

kn−(i+1)H
∗
i = kn−iH

∗
i−2 −H∗′i−1, 3 ≤ i ≤ n− 2. (16)

Hence, in (16), if we take i+ 1 instead of i, we get

H∗′i = kn−(i+1)H
∗
i−1 − kn−(i+2)H

∗
i+1, 2 ≤ i ≤ n− 3 (17)

together with

H∗′1 = −kn−3H
∗
2 . (18)

On the other hand, since H∗21 +H∗22 + · · ·+H∗2n−2 is constant, we have

H∗1H
∗′
1 +H∗2H

∗′
2 + · · ·+H∗n−2H

∗′
n−2 = 0

and so,

H∗n−2H
∗′
n−2 = −H∗1H∗′1 −H∗2H∗′2 − · · · −H∗n−3H

∗′
n−3. (19)

By using (17) and (18), we obtain

H∗1H
∗′
1 = −kn−3H

∗
1H
∗
2 (20)

and

H∗i H
∗′
i = kn−(i+1)H

∗
i−1H

∗
i − kn−(i+2)H

∗
i H
∗
i+1, 2 ≤ i ≤ n− 3. (21)

Therefore, by using (19), (20) and (21), algebraic calculus shows that

H∗n−2H
∗′
n−2 = k1H

∗
n−3H

∗
n−2.

Since H∗n−2 6= 0, we get the relation H∗′n−2 = k1H
∗
n−3.

Conversely, we assume that

H∗′n−2 = k1H
∗
n−3. (22)

By using (22) and H∗n−2 6= 0, we can write

H∗n−2H
∗′
n−2 = k1H

∗
n−2H

∗
n−3. (23)
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From (21), we have

for i = n− 3, H∗n−3H
∗′
n−3 = k2H

∗
n−4H

∗
n−3 − k1H

∗
n−3H

∗
n−2,

for i = n− 4, H∗n−4H
∗′
n−4 = k3H

∗
n−5H

∗
n−4 − k2H

∗
n−4H

∗
n−3,

for i = n− 5, H∗n−5H
∗′
n−5 = k4H

∗
n−6H

∗
n−5 − k3H

∗
n−5H

∗
n−4,

...

for i = 2, H∗2H
∗′
2 = kn−3H

∗
1H
∗
2 − kn−4H

∗
2H
∗
3

and from (20), we have

H∗1H
∗′
1 = −kn−3H

∗
1H
∗
2 .

So, algebraic calculus shows that

H∗1H
∗′
1 +H∗2H

∗′
2 +· · ·+ H∗n−5H

∗′
n−5+H∗n−4H

∗′
n−4+H∗n−3H

∗′
n−3+H∗n−2H

∗′
n−2 = 0. (24)

And, by integrating (24), we can easily say that

H∗21 +H∗22 + · · ·+H∗2n−2

is a nonzero constant. This completes the proof.

Proposition 1 (see [5]). Let α : I ⊂ R→ En be an arc-lengthed parametrized curve
in En and X a unit constant vector field of Rn. We denote by {V1, V2, . . . , Vn} the
Frenet frame of the curve α and by

{
H∗1 , H

∗
2 , . . . ,H

∗
n−2

}
the harmonic curvature

functions of the curve α. If α : I ⊂ R→ En is an Vn-slant helix with X as its axis,
then we have for all i = 0, 1, . . . , n− 2〈

Vn−(i+1), X
〉

= H∗i 〈Vn, X〉 .

Remark 2. The following Theorem is new version of Theorem 4 in [5] which adds
the sufficiency case.

Theorem 3. Let {V1, V2, . . . , Vn} be the Frenet frame of a curve α of order n ≥ 3
and let

{
H∗1 , H

∗
2 , . . . ,H

∗
n−2

}
be the harmonic curvature functions of α. Then, α is

a Vn-slant helix (with the curvatures ki 6= 0, i = 1, 2, . . . , n− 1) in En if and only if
it satisfies that

n−2∑
i=1

H∗2i

is equal to constant and H∗n−2 6= 0.

Proof. Suppose α is a Vn-slant helix. According to Definition 3,

〈Vn, X〉 = cos(ϕ) = constant (25)

where X is the axis of α. From Proposition 1 we have〈
Vn−(i+1), X

〉
= H∗i 〈Vn, X〉 (26)
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for 1 ≤ i ≤ n − 2. Moreover, from (25) and Frenet equations, we can write
〈Vn−1, X〉 = 0. Since the orthonormal system{V1, V2, . . . , Vn} is a basis of κ(En)
(tangent bundle), X can be expressed in the form

X =

n∑
i=1

〈Vi, X〉Vi. (27)

Hence, by using the equations (25), (26) and (27), we obtain

X = cos(ϕ)Vn +

n−2∑
i=1

H∗i cos(ϕ)Vn−(i+1).

Since X is a unit vector field (see Definition 3),

cos2(ϕ) +

n−2∑
i=1

H∗2i cos2(ϕ) = 1

and so

n−2∑
i=1

H∗2i = tan2(ϕ) = constant.

Now, we show that H∗n−2 6= 0. We assume that H∗n−2 = 0. Then, for i = n − 2 in
(26),

〈V1, X〉 = H∗n−2 〈Vn, X〉 = 0.

So, 〈DTT,X〉 = 〈k1V2, X〉 = 0. We deduce that 〈V2, X〉 = 0. On the other hand,
for i = n− 3 in (26),

〈V2, X〉 = H∗n−3 〈Vn, X〉 .

And since 〈V2, X〉 = 0 and H∗n−3 = 0. Continuing this process, we get that H∗1 = 0.

Let us recall thatH∗1 =
kn−1

kn−2
, thus we have a contradiction because all the curvatures

are nowhere zero. Consequently, H∗n−2 6= 0.

Conversely, we assume that
n−2∑
i=1

H∗2i = tan2(ϕ) =constant and H∗n−2 6= 0. We

take the vector field

X = cos(ϕ)Vn +

n∑
i=3

H∗i−2 cos(ϕ)Vn−(i−1),
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and it is parallel along α, i.e. DV1X = 0. By direct calculation, we have

DV1X = DV1 (cos(ϕ)Vn) +

n∑
i=3

DV1

(
H∗i−2 cos(ϕ)Vn−(i−1)

)
= cos(ϕ)DV1

Vn +

n∑
i=3

(
H∗′i−2 cos(ϕ)Vn−(i−1) +H∗i−2 cos(ϕ)DV1

Vn−(i−1)

)
= cos(ϕ)(−kn−1Vn−1

+

n−1∑
i=3

(
H∗′i−2Vn−(i−1) − kn−iH∗i−2Vn−i + kn−(i−1)H

∗
i−2Vn−(i−2)

)
+H∗′n−2V1 + k1H

∗
n−2V2).

Here, in the case n = 3 we omit the term of sum.

On the other hand, by using (17), we can write

H∗′i−2 = kn−(i−1)H
∗
i−3 − kn−iH∗i−1 (28)

for 4 ≤ i ≤ n− 1 together with (18). Moreover, from Lemma 2, we know that

H∗′n−2 = k1H
∗
n−3. (29)

Therefore, by using (18), (28), (29) and by the definition of H∗1 , and the Einstein
tensor, algebraic calculus shows that DV1X = 0. Since

‖X‖ = cos2(ϕ) +

n∑
i=3

H∗2i−2 cos2(ϕ)

= cos2(ϕ)

(
1 +

n−2∑
i=1

H∗2i

)
= cos2(ϕ)

(
1 + tan2(ϕ)

)
= 1 ,

X is a unit vector field. Furthermore, 〈Vn, X〉 = cos(ϕ) =constant. Hence, we
deduce that α is a Vn.-slant helix.

Remark 3. The following corollary is a restructuring of Theorem 2 in [5].

Corollary 2. Let {V1, V2, . . . , Vn} be the Frenet frame of a curve α of order n ≥ 3
and let

{
H∗1 , H

∗
2 , . . . ,H

∗
n−2

}
be the harmonic curvature functions of α. Then, α is

a Vn-slant helix (with the curvatures ki 6= 0, i = 1, 2, . . . , n− 1) in En if and only if
H∗′n−2 = k1H

∗
n−3 and H∗n−2 6= 0.

Proof. It is obvious by using Lemma 2 and Theorem 3.
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5. Slant helices and their Gi differentiable functions

In this section, we restructure some known characterizations of slant helices by using
differentiable functions which are similar to harmonic curvature functions.

Definition 6. Let α : I → En be a unit speed curve (with the curvatures ki 6= 0,
i = 1, 2, . . . , n− 1) in En. Define the functions Gi inductively by

G1 =

∫
k1(s)ds , G2 = 1 , G3 =

k1

k2
G1 , Gi =

1

ki−1

[
ki−2Gi−2 +G′i−1

]
(30)

where 4 ≤ i ≤ n [1].

Lemma 3. Let α be a unit curve in En. Suppose Gn 6= 0. Then, G2
1 +G2

2 + · · ·+G2
n

is a nonzero constant if and only if G´
n = −kn−1Gn−1.

Proof. First, we assume that G2
1 + G2

2 + · · · + G2
n is a nonzero constant. By the

definition of Gi, we can write

ki−1Gi = G´
i−1 + ki−2Gi−2, 5 ≤ i ≤ n. (31)

Hence, in (31), if we take i+ 1 instead of i, we get

G´
i = kiGi+1 − ki−1Gi−1, 4 ≤ i ≤ n− 1. (32)

together with

G1 =

∫
k1(s)ds , G2 = 1 , G3 =

k1

k2
G1. (33)

On the other hand, since G2
1 +G2

2 + · · ·+G2
n is constant, we have

G1G
´
1 +G2G2́ + · · ·+GnG

´
n = 0

and so,
GnG

´
n = −G1G

´
1 −G2G2́ − · · · −Gn−1G

´
n−1. (34)

By using (32) and (33), we obtain

G2G
′
2 = 0 and k3G3G4 = G1G

′
1 +G3G

′
3 (35)

and
GiG

´
i = kiGiGi+1 − ki−1Gi−1Gi , 4 ≤ i ≤ n− 1. (36)

Therefore, by using (34), (35) and (36), algebraic calculus shows that

GnG
´
n = −kn−1Gn−1Gn .

Since Gn 6= 0, we get the relation G´
n = −kn−1Gn−1.

Conversely, we assume that

G´
n = −kn−1Gn−1 . (37)
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By using (37) and Gn 6= 0, we can write

GnG
´
n = −kn−1Gn−1Gn . (38)

From (36), we have

for i = n− 1, Gn−1G
´
n−1 = kn−1Gn−1Gn − kn−2Gn−2Gn−1,

for i = n− 2, Gn−2G
´
n−2 = kn−2Gn−2Gn−1 − kn−3Gn−3Gn−2,

for i = n− 3, Gn−3G
´
n−3 = kn−3Gn−3Gn−2 − kn−4Gn−4Gn−3,

...

for i = 4, G4G
´
4 = k4G4G5 − k3G3G4

and so, from (38) and the last system, we have

G4G
′
4 +G5G

′
5 + · · ·+GnG

′
n = −k3G3G4 (39)

by doing algebraic calculus. On the other hand, from (35), we know that

G2G
′
2 = 0 and k3G3G4 = G1G

′
1 +G3G

′
3 . (40)

Finally, from (39) and (40) we obtain

G1G
´
1 +G2G2́ + · · ·+GnG

´
n = 0 . (41)

And by integrating (41) we can easily say that

G2
1 +G2

2 + · · ·+G2
n

is a nonzero constant. This completes the proof.

Corollary 3. Let α : I ⊂ R → En be an arc-lengthed parametrized curve with
nonzero curvatures ki (1 ≤ i ≤ n − 1) in En and X a unit constant vector field of
Rn. {V1, V2, . . . , Vn} denote the Frenet frame of the curve α. If α : I ⊂ R → En is
a V2-slant helix with X as its axis, then we have for all i = 1, . . . , n

〈Vi, X〉 = Gi 〈V2, X〉 .

Proof. It is obvious by using the proof of Theorem 1.2 in [1].

Remark 4. The following Theorem is new version of Theorem 1.2 in [1].

Theorem 4. Let {V1, V2, . . . , Vn} be the Frenet frame of a curve α of order n ≥ 3.
Then, α is a V2-slant helix (with the curvatures ki 6= 0, i = 1, 2, . . . , n− 1) in En if
and only if

n∑
i=1

G2
i

is equal to constant and Gn 6= 0. Here,

G1 =

∫
k1(s)ds , G2 = 1 , G3 =

k1

k2
G1 , Gi =

1

ki−1

[
ki−2Gi−2 +G′i−1

]
where 4 ≤ i ≤ n.
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Proof. Let α be a V2-slant helix. According to Definition 2,

〈V2, X〉 = cos(ϕ) = constant, (42)

where X is the axis of α. And from Corollary 3

〈Vi, X〉 = Gi 〈V2, X〉 (43)

for 1 ≤ i ≤ n. Since the orthonormal system{V1, V2, . . . , Vn} is a basis of κ(En)
(tangent bundle), X can be expressed in the form

X =

n∑
i=1

〈Vi, X〉Vi. (44)

Hence, by using the equations (42), (43) and (44), we obtain

X =

n∑
i=1

Gi cos(ϕ)Vi.

Since X is a unit vector field (see Definition 2),

cos2(ϕ)

(
n∑

i=1

G2
i

)
= 1

and so

n∑
i=1

G2
i =

1

cos2(ϕ)
= constant .

Now, we are going to show that Gn 6= 0. We assume that Gn = 0. Then, for i = n
in (43),

〈Vn, X〉 = Gn 〈V2, X〉 = 0.

So, 〈DTVn, X〉 = 〈−kn−1Vn−1, X〉 = 0. We deduce that 〈Vn−1, X〉 = 0. On the
other hand, for i = n− 1 in (43),

〈Vn−1, X〉 = Gn−1 〈V2, X〉 .

And since 〈Vn−1, X〉 = 0, we obtain Gn−1 = 0. Continuing this process, we get that

G3 = 0. Let us recall that G3 =
k1

k2

∫
k1 (s) ds, thus we have a contradiction because

all the curvatures are nowhere zero. Consequently Gn 6= 0.

Conversely, we assume that
n∑

i=1

G2
i =

1

cos2(ϕ)
=constant and Gn 6= 0. We

consider the vector field

X =

n∑
i=1

Gi cos(ϕ)Vi.
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Then, by taking account

G1 =

∫
k1(s)ds , G2 = 1 , G3 =

k1

k2
G1 , Gi =

1

ki−1

[
ki−2Gi−2 +G′i−1

]
, 4 ≤ i ≤ n

and Frenet equations, an algebraic calculus shows that DV1
X = 0. That is, X is a

constant along α. Also, since

‖X‖ =

n∑
i=1

G2
i cos2(ϕ)

= cos2(ϕ)

(
n∑

i=1

G2
i

)

= cos2(ϕ)
1

cos2(ϕ)

= 1 ,

X is a unit vector field. Furthermore, 〈V2, X〉 = cos(ϕ) =constant. Hence, we
deduce that α is a V2.-slant helix.

Remark 5. The following corollary is a restructuring of Theorem 3.1 in [1].

Corollary 4. Let {V1, V2, . . . , Vn} be the Frenet frame of a curve α of order n ≥ 3.
Then, α is a V2-slant helix in En if and only if G´

n = −kn−1Gn−1 and Gn 6= 0,
where the functions {G1, G2, . . . , Gn} are defined in (30).

Proof. It is obvious by using Lemma 3 and Theorem 4.
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