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1. Introduction

We are interested in fractional-in-time diffusion-wave equations with random initial
conditions as models of random fields which describe the singular and fractal behav-
iour of data arising in many applied fields such as hydrology, ecology, geophysics,
turbulence, economics and finance (see Friedman [13], Prüss [22], Anh and Leo-
nenko [3], [5], [4], [6] and the references therein). A typical example is the following
fractional integro-differential equation of the Volterra type:

u (t, x) = u0 (x) +
1

Γ (β)

∫ t

0

(t− τ)β−1 ∆u (τ, x) dτ, t > 0, x ∈ R
n, 0 < β ≤ 1, (1)

under some initial condition
u (0, x) = u0 (x) , (2)

where ∆ is the n-dimensional Laplacian. Equation (1) was introduced by Friedman
[13], whose other variants may be found in Schneider and Wyss [24], Prüss [22],
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Engler [12] and Anh and Leonenko [3], [5], [4], [6]. Equation (1) is equivalent to the
fractional-in-time diffusion equation

∂βu

∂tβ
= ∆u, 0 < β ≤ 1 (3)

subject to the initial condition (2), where the fractional derivative-in-time is inter-
preted in the Caputo-Djrbashian sense (see Schneider and Wyss [24], Kochubei [16],
[17], Anh and Leonenko [1], [2], [3], [5], [4], [6]), that is,

∂βu

∂tβ
=

{
∂u
∂t (t, x) if β = 1,(

Dβ
t u
)

(t, x) if β ∈ (0, 1],

where (
Dβ

t u
)

(t, x) =
1

Γ (1 − β)

[
∂

∂t

∫ t

0

(t− τ)−β u (τ, x) dτ − u (0, x)
tβ

]
.

Using some results of Schneider and Wyss [24], Schneider [23], and Anh and Leo-
nenko [3], [4], the solution of the Cauchy problem (1) and (2) (or (3) and (2)) may
be written as

u (t, x) =
∫

Rn

Gβ (t, x− y)u0 (y) dy, (4)

where the Green function Gβ (t, x) is radial in x and satisfies∫
Rn

ei〈λ,x〉Gβ (t, x) dx = Eβ,1

(
−tβ |λ|2

)
, λ ∈ R

n (5)

with
∫

Rn Gβ (t, x) dx = 1, 0 < β < 2. Here, Eβ,1 is a special case of the generalized
Mittag-Leffler function

Ea,b (z) =
∞∑

k=0

zk

Γ (ak + b)
, a, b > 0, z ∈ C (6)

(see Djrbashian [9], Mainardi and Gorenflo [21]). Other special cases of Ea,b (z) are

E1,1 (−x) = e−x, E1/2,1 (−x) =
2√
π

∫ ∞

0

e−y2−2xydy,

E1/2,3/2 (−x) =
2√
πx

∫ ∞

0

e−y2 (
e−2yx − 1

)
dy, E1,2 (−x) =

1 − e−x

x
, x ≥ 0.

Note that for n = 1, by definition

G0 (t, x) =
1
2
e−|x|, G1 (t, x) =

e−x2/4t

√
4πt

, G2 (t, x) =
δ (t− x) + δ (t + x)

2
.

Along the same line, we may introduce the fractional equation

u (t, x) = u0 (x) + tu1 (x) +
1

Γ (β)

∫ t

0

(t− τ)β−1 ∆u (τ, x) dτ, 1 < β ≤ 2, (7)
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which reduces to the integrated wave equation when β = 2. The solution of (7) can
be expressed in terms of the initial conditions

u (t, x)|t=0 = u0 (x) ;
∂

∂t
u (t, x)

∣∣∣∣
t=0

= u1 (x) (8)

as

u (t, x) =
∫

Rn

Gβ (t, x− y)u0 (y) dy +
∫

Rn

G
(1)
β (t, x− y)u1 (y) dy, 1 < β ≤ 2, (9)

where Gβ is defined in (5) and

G
(1)
β (t, x) =

∫ t

0

Gβ (τ, x) dτ. (10)

Note that for n = 1 and u1 (x) ≡ 0, the Green function Gβ , 0 < β ≤ 2, can
be expressed in terms of Wright’s function (see Mainardi [20], Anh and Leonenko
[2]). In a stochastic situation, this type of equations has been studied by Anh and
Leonenko [4]. They obtained Gaussian and non-Gaussian scenarios as limits of the
rescaled solution of (4) or (7) with random initial condition (2) or (8). These scaling
laws are mostly concerned with random initial conditions which are subordinated
to Gaussian random fields with weak or strong dependence.

In this paper, we generalize the above results and obtain new Gaussian and non-
Gaussian scenarios for random initial conditions (2) or (8) which are subordinated
to chi-square random fields. In a sense, our results are analogous to the Gaussian
and non-Gaussian central limit theorems for local functionals of random fields with
weak or strong dependence (see Taqqu [26], Dobrushin and Major [10], Breuer and
Major [8]), but the normalizing factors and types of non-Gaussian limiting fields
obtained in this paper are new.

2. Spectral representation of mean-square solutions

We shall use extensively the spectral theory of random fields (see Yadrenko [29]
or Leonenko [18] and the references therein). Let ηj (x) = ηj (ω, x) , x ∈ Rn, ω ∈
Ω, j ∈ {0, 1} be two real, uncorrelated, mean-square continuous homogeneous (in
the wide sense) random fields on the complete probability space (Ω,F , P ) with
means

Eηj (x) = mj , j ∈ {0, 1}
and covariance functions

Bj (x) = cov (ηj (0) , ηj (x)) =
∫

Rn

ei〈λ,x〉Fj (dλ) , (11)

where Fj , j ∈ {0, 1} are the spectral measures. In view of Karhunen’s Theorem (see
Gihman and Skorokhod [14]), there exist a complex-valued orthogonally scattered
random measures Zj , j ∈ {0, 1} , such that the random fields have the spectral
representations

ηj (x) = mj +
∫

Rn

ei〈λ,x〉Zj (dλ) , j ∈ {0, 1} , (12)
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where
E |Zj (A)|2 = Fj (A) , A ∈ B (Rn) , j ∈ {0, 1} .

For 0 < β ≤ 1 we define the mean-square solution of the initial-value problem (1)
and (2) with random initial condition

u0 (x) = η0 (x) , x ∈ R
n, (13)

as the stochastic integral in L2 (Ω)-sense:

u (t, x) =
∫

Rn

Gβ (t, x− y) η0 (y)dy = m0 +
∫

Rn

ei〈λ,x〉Eβ,1

(
−tβ |λ|2

)
Z0 (dλ) (14)

with covariance structure

cov (u (t, x) , u (s, y)) =
∫

Rn

ei〈λ,x−y〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−sβ |λ|2

)
F0 (dλ) , (15)

Eβ,1 being the Mittag-Leffler function defined in (5) and (6).
For 1 < β ≤ 2, we define the mean-square solution of the initial-value problem

(7) and (8) with random initial conditions

u0 (x) = η0 (x) , u1 (x) = η1 (x) , x ∈ R
n, (16)

as the stochastic integral in L2 (Ω)-sense:

u (t, x) = m0 + m1t +
∫

Rn

ei〈λ,x〉Eβ,1

(
−tβ |λ|2

)
Z0 (dλ)

+t

∫
Rn

ei〈λ,x〉Eβ,2

(
−tβ |λ|2

)
Z1 (dλ) (17)

with covariance structure

cov (u (t, x) , u (s, y)) =
∫

Rn

ei〈λ,x−y〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−sβ |λ|2

)
F0 (dλ)

+ts

∫
Rn

ei〈λ,x−y〉Eβ,2

(
−tβ |λ|2

)
Eβ,2

(
−sβ |λ|2

)
F1 (dλ) , (18)

where Eβ,1 and Eβ,2 are Mittag-Leffler functions (6). Note that (17) follows from
(5), (9), (10) and the following formula (see Djrbashian [9], p. 1):∫ t

0

Eβ,1

(
−tβ |λ|2

)
dτ = tEβ,2

(
−tβ |λ|2

)
. (19)

3. Chi-square random fields

We consider a class of chi-square random fields

χd (x) =
1
2

d∑
k=1

ξ2
k (x) , x ∈ R

n, (20)
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where ξ1 (x) , ..., ξd (x) are independent copies of a homogeneous isotropic Gaussian
random field ξ (x) , x ∈ Rn, with Eξ (x) = 0 and Eξ (x) ξ (y) = Bξ (x− y) , x, y ∈
Rn. Note that the random field (20) has a marginal density of the form

p (u) = e−uu
d
2−1/Γ (d/2) , u > 0. (21)

It is known that a complete orthogonal system in the Hilbert space L2 ((0,∞) , p (u) du)
has the form

ek (u) = L
( d

2−1)
k (u)

{
k!Γ
(
d

2

)
/Γ
(
d

2
+ k

)}1/2

,

where L
(c)
k are generalized Laguerre polynomials of index c for k ≥ 0 (see, for

instance, Srivastava and Manocka [25], p. 74). The two-dimensional density of the
random field (20) has the form

p (u,w, r) = p (u) p (w)

[
1 +

∞∑
k=1

rkek (u) ek (w)

]

=
(uw

r

)( d
2−1)/2

exp
{
−u + w

1 − r

}
I d

2−1

(
2
√
uwr

1 − r

)
1

(1 − r) Γ (d/2)
, (22)

u,w > 0, 0 < r ≤ 1, Iν (z) =
∑∞

m=ν

(
z
2

)2m+ν
/ [m!Γ (m + ν + 1)] , z > 0 being the

modified Bessel function of the first kind of order ν, and

r = Rχd
(x− y) = cov (χd (x) , χd (y)) /varχd (0)

= B2
ξ (x− y) , x, y ∈ R

n (23)

(see Anh and Leonenko [1] for further details). We note that the formula (22) is
known as the Hille-Hardy formula.

From (20) - (23), we obtain the following moment properties:

Eχd (x) =
d

2
, varχd (x) =

d

2
,

Eek (χd (x)) = 0, Eek (χd (x)) em (χd (y)) = δm (k)Rm
χd

(x− y) , (24)

where δm (k) is the Kronecker delta function.
In the next section, we will consider the Cauchy problem (1) and (2) with

random initial condition (13) for β ∈ (0, 1] and the Cauchy problem (7) and (8)
with random initial condition (16) for β ∈ (1, 2) . For these initial conditions, we
introduce the following conditions:

A. The initial conditions (13) and (16) specify independent random fields which
are subordinated to chi-square random fields, that is,

uj (x) = hj

(
χdj (x)

)
, x ∈ R

n, j ∈ {0, 1} , (25)

where

χd0 (x) =
1
2

d0∑
k=1

[
ξ
(0)
k (x)

]2
, χd1 (x) =

1
2

d1∑
k=1

[
ξ
(1)
k (x)

]2
, x ∈ R

n,
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ξ
(j)
1 , ..., ξ

(j)
dj

, j ∈ {0, 1} , are independent copies of homogeneous isotropic Gaussian
random fields ξ(j) (x) , j ∈ {0, 1} , with Eξ(j) (x) = 0, Eξ(j) (x) ξ(j) (y) = Bξ(j) (x− y) ,
x, y ∈ R

n, j ∈ {0, 1} , and hj , j ∈ {0, 1} , are two real non-random Borel functions
such that

Eh2
j

(
χdj (x)

)
< ∞, j ∈ {0, 1} . (26)

Under the condition A, we have the following expansion in the Hilbert space
L2 ((0,∞) , p (u) du) :

hj (u) =
∞∑

k=0

C
(j)
k ek (u) , C(j)

k =
∫ ∞

0

hj (u) ek (u) p (u) du, k = 0, 1, 2, ..., j ∈ {0, 1} .
(27)

Additionally, we assume that the functions hj , j ∈ {0, 1} satisfy the following
condition:

B. Condition A holds and there exist integers mj ≥ 1, j ∈ {0, 1} such that

C
(j)
1 = ... = C

(j)
mj−1 = 0, C(j)

mj
�= 0, j ∈ {0, 1} . (28)

The integers m0 ≥ 1 and m1 ≥ 1 are the Laguerre ranks of the functions h0 and
h1, respectively.

For random fields with long-range dependence (LRD), we introduce the following
condition:

C. Condition A holds and

Rχdj
(x) =

(
1 + |x|2

)−κj

, 0 < κj < n/2, j ∈ {0, 1} . (29)

Note that (29) means that

Bξ(j) (x) =
(
1 + |x|2

)−κj/2

, 0 < κj < n, j ∈ {0, 1} . (30)

By the Bochner-Khintchine Theorem, the correlation functions (30) have the spec-
tral representations

Bξ(j) (x) =
∫

Rn

cos 〈λ, x〉 fj (λ) dλ, j ∈ {0, 1} , (31)

where the isotropic spectral densities fj (λ) , λ ∈ R
n, j ∈ {0, 1} , have the following

explicit form (see Donoghue [11], p. 293):

fj (λ) =
[
πn/22((κj−n)/2)Γ (κj/2)

]−1

K(κj−n)/2 (|λ|) |λ|(κj−n)/2

= c (n,κj) |λ|κj−n (1 − θj (|λ|)) , j ∈ {0, 1} , (32)

with

c (n,κ) = Γ
(
n− κ

2

)
/
[
2κπn/2Γ

(
κ

2

)]
,κ ∈ (0, n) , (33)
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and θj (|λ|) → 0 as |λ| → 0, j ∈ {0, 1} ; moreover θj (|λ|) = O
(
|λ|n−κj

)
, j ∈ {0, 1} .

Note that we have used the following expansion of the modified Bessel function of
the third kind or McDonald’s function (see Watson [27]):

Kν (z) =
π

2 sin (πν)
(I−ν (z) − Iν (z)) ∼ Γ (ν) 2ν−1z−ν (34)

as z ↓ 0, ν > 0. As z → ∞, the following expansion holds (see Watson [27]):

Kν (z) =
√

π

2
z−1/2e−z

(
1 +

4ν2 − 1
8z

+ ...

)
. (35)

Relation (32), which can be found in Donoghue [11], p. 295, is a special case of
Tauberian theorem, and constant (33) is known as the Tauberian constant (see
Leonenko [18], pp. 64-66).

Observe that under condition C∫
Rn

Rχdj
(x) dx = ∞, j ∈ {0, 1} , (36)

and fj (0) = ∞, j ∈ {0, 1} . Thus, the random fields with correlation functions (29)
display LRD.

4. Gaussian and non-Gaussian scenarios

We now give our main results which present the Gaussian and non-Gaussian scenar-
ios for renormalized random fields (14) or (17) with random initial conditions (25)
with weak or strong dependence. The results yield Gaussian and non-Gaussian cen-
tral limit theorems for fractional Volterra equations. These results are analogous to
the results by Anh and Leonenko [2], [3], [5], [4], [6] for Gaussian random fields and
their subordinated ones, but the normalizing factors and the type of non-Gaussian
limiting fields are new.

Theorem 1. Let n = 1, 2 or 3. Consider the random field u (t, x) , t > 0,
x ∈ Rn, defined by (14), in which η0 (x) is of the form (25) with j = 0, where
χd0 (x) is a chi-square random field satisfying conditions A and B with j = 0, that
is, the non-random function h0 has Laguerre rank 1 and∫

Rn

∣∣Rχd0
(x)
∣∣ dx < ∞, σ2

0 =
∞∑

k=1

[
C

(0)
k

]2 ∫
Rn

[
Rχd0

(x)
]k

dx > 0. (37)

Then the finite-dimensional distributions of random fields

Uε (t, x) =
1

εnβ/4

[
u

(
t

ε
,

x

εβ/2

)
− C

(0)
0

]
, t > 0, x ∈ R

n, 0 < β ≤ 1, ε > 0, (38)

converge weakly as ε → 0 to the finite-dimensional distributions of the homogeneous
(in space) Gaussian random fields U (t, x) , t > 0, x ∈ Rn, with EU (t, x) = 0 and
covariance function

EU (t, x)U (s, y) =
σ2

0

(2π)n

∫
Rn

cos 〈λ, x− y〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−sβ |λ|2

)
dλ, (39)
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where σ2
0 is defined in (37) and Eβ,1 is defined in (6).

We will give the proof in Section 5. Note that for β < 2, β �= 1, there is an
asymptotic expansion:

Ea,b (z) = −
N∑

k=1

z−k

Γ (b− ak)
+ O

(
|z|−N−1

)
(40)

as z → ∞, which is valid in a sector about the negative real axis (see, for example,
Djrbashian [9], p. 5). Thus, if β < 2, β �= 1, and n = 1, 2 or 3

T (λ) = Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−sβ |λ|2

)
∈ L1 (Rn) (41)

since by (40) T (λ) = O
(
|λ|−4

)
.

The non-Gaussian scenarios for renormalized random field (14) with a strongly
dependent initial condition (26) (with j = 0), which satisfies condition C (with
j = 0) are obtained in Anh and Leonenko [3], [4] in terms of Wiener-Itô multiple
stochastic integrals. These non-Gaussian limiting random fields may possess LRD
and/or intermittency.

Theorem 2. Let n = 1, 2 or 3. Consider the random field u (t, x) , t > 0,
x ∈ Rn, defined by (17) with random initial conditions (26) satisfying conditions A
and B with mj = 1, j = 1, 2 and∫

Rn

∣∣∣Rχdj
(x)
∣∣∣ dx < ∞, σ2

0 =
∞∑

k=1

[
C

(j)
k

]2 ∫
Rn

[
Rχdj

(x)
]k

dx > 0, j ∈ {0, 1} . (42)

Then the finite-dimensional distributions of random fields

Vε (t, x) = ε
(4−nβ)

4

[
u

(
t

ε
,

x

εβ/2

)
− C

(0)
0 − C

(1)
0

t

ε

]
, (43)

t > 0, x ∈ R
n, ε > 0, 1 < β < 2,

converge weakly as ε → ∞ to the finite-dimensional distributions of the Gaussian
random field V (t, x) , t > 0, x ∈ Rn, with EV (t, x) = 0 and covariance function

EV (t, x) V (s, y) =
σ2

1

(2π)n ts

∫
Rn

cos 〈λ, x− y〉Eβ,2

(
−tβ |λ|2

)
Eβ,2

(
−sβ |λ|2

)
dλ, (44)

where σ2
1 is defined in (42) and Eβ,2 is defined in (6).

Let us now consider the case when the random fields u0 (x) , x ∈ Rn, and u1 (x) ,
x ∈ R

n, have LRD (see condition C and (36)). Anh and Leonenko [3], [4] developed
the theory of renormalization for the case β ∈ (0, 1] and the Laguerre rank m0 = 1
or m0 = 2. Now, we consider the case β ∈ (1, 2) . For simplicity, we include in the
analysis the Laguerre ranks m0 = 1 and m1 = 1, but similar results (with necessary
modifications) can be obtained for the Laguerre ranks m0 ≥ 1 and m1 ≥ 1.

Theorem 3. Let n = 1, 2 or 3 and β ∈ (1, 2) . Consider the random fields
u (t, x) , t > 0, x ∈ Rn, in which the fields uj (x) , x ∈ Rn, j ∈ {0, 1} satisfy the
conditions A, B, C with mj = 1, κj ∈ (0, n/2) , j ∈ {0, 1} . Then
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1) if 2κ0β < 2κ1β − 4, the finite-dimensional distributions of the random fields

T ′
ε (t, x) =

1
εκ0β/2

[
u

(
t

ε
,

x

εβ/2

)
− C

(0)
0 − C

(1)
0

t

ε

]
, t > 0, x ∈ R

n, (45)

converge weakly, as ε → 0, to the finite-dimensional distributions of the random
field

T (t, x) = −C
(0)
1 c (n,κ0)√

2d0

d0∑
k=1

∫ ′

R2n

ei〈λ1+λ2,x〉

×Eβ,1

(
−tβ |λ1 + λ2|2

)W
(0)
k (dλ1)W

(0)
k (dλ2)

|λ1λ2|
n−κ0

2

, t > 0, x ∈ R
n, (46)

where Wk are independent copies of Gaussian measure W (0) such that E
∣∣W (0) (dλ)

∣∣2
=dλ,

∫ ′
R2n ... is a multiple Wiener-Itô stochastic integral and c (n,κ0) is defined in

(33);
2) If 2κ1β − 4 < 2κ0β, the finite-dimensional distributions of random fields

T ′′
ε (t, ε) =

1
ε(κ1β−2)/2

[
u

(
t

ε
,

x

εβ/2

)
− C

(0)
0 − C

(1)
0

t

ε

]
, t > 0, x ∈ R

n, (47)

converge weakly, as ε → 0, to the finite-dimensional distributions of the random
field

T (t, ε) = −C
(1)
1 c (n,κ1)√

2d1

d1∑
k=1

∫ ′

R2n

ei〈λ1+λ2,x〉

×tEβ,2

(
−tβ |λ1 + λ2|2

)W
(1)
k (dλ1)W

(1)
k (dλ2)

|λ1λ2|
n−κ1

2

, t > 0, x ∈ R
n, (48)

where W
(1)
k are independent copies of Gaussian measure W (1), which is independent

of W (0);
3) If 2κ0β = 2κ1β − 4, the finite-dimensional distributions of random fields

T ′′′
ε (t, x) =

1
εκ0β/2

[
u

(
t

ε
,

x

εβ/2

)
− C

(0)
0 − C

(1)
0

t

ε

]
, t > 0, x ∈ R

n, (49)

converge weakly, as ε → 0, to the finite-dimensional distributions of the random
field

T ′′′ (t, x) = T ′ (t, x) + T ′′ (t, x) , t > 0, x ∈ R
n, (50)

where the two independent random fields T ′ and T ′′ are defined in (46) and (48),
respectively.

Remark 1. It is not difficult to modify the results of Theorems1 - 3 for the
case when a) u0 (x) has weak dependence in the sense of condition (37) but u1 (x)
has LRD in the sense of condition C with j = 1, or b) u0 (x) has LRD in the sense
of condition C with j = 0 but u1 (x) has weak dependence in the sense of condition
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(42) with j = 1. Thus, with necessary modifications of the conditions of Theorems1
- 3 we have the following results for the rescaled solutions

Tε (t, x) =
1
Aε

[
u

(
t

ε
,

x

εβ/2

)
− C

(0)
0 − C

(0)
1

t

ε

]
of Eq. (7) as ε → 0 :

a) Tε (t, x) d→ T ′′ (t, x) with Aε = ε(κ1β−2)/2;

b) Tε (t, x) d→ T (t, x) with Aε = εκ0β/2 if 2κ0β < nβ − 4;

Tε (t, x) d→ V (t, x) with Aε = nβ−4
4 if nβ − 4 < 2κ0β;

Tε (t, x) d→ T (t, x)+V (t, x) with Aε = εκ0β/2 if 2κ0β = nβ−4, where d→ stands
for convergence of finite-dimensional distributions of the random fields defined in
Theorems 2 - 3.

Remark 2. For the wave equations (ν = 2), similar results may be obtained
for d’Alembert random field u (t, x) = m0 +

∫
R1 e

iλx cos (λt)Z0 (dλ) using exact
hyperbolic renormalization (see Woyczynski [28]):[

u

(
t

ε
,
x

ε

)
− Eu

(
t

ε
,
x

ε

)]
/Aε

as ε → 0 and Aε = ε−κ0 (see Anh and Leonenko [6]).

5. Proofs

We will use the standard notations
p→ and d→ for convergence of random variables

in probability and distribution, respectively, and d= for equality of random variables
in distribution.

Proof of Theorem 1
From (5), we obtain∫

Rn

Gβ (t, u)Gβ (t′, x′ − x + z + u)du

=
1

(2π)n

∫
Rn

∫
Rn

δ (λ− λ′) e−i〈λ̃,x′−x+z〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−t′β |λ|2

)
dλdλ′

=
1

(2π)n

∫
Rn

e−i〈λ,z−x+x′〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−t′β |λ|2

)
dλ,

where

δ
(
λ− λ̃

)
=

1
(2π)n

∫
Rn

ei〈x,λ−λ̃〉dx (51)
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is the Dirac delta function. From (4), (14), (25) and (51), we obtain the covariance
function of the random field u (t, x) as

cov (u (t, x) , u (t′, x′)) =
∫

Rn

cos 〈λ, x− x′〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−sβ |λ|2

)
F0 (dλ)

=
∫

Rn

∫
Rn

B (y − y′)G (t′, x′ − y′)G (t, x− y) dydy′

=
∫

Rn

B (z)
∫

Rn

G (t, u)G (t′, x′ − x + z + u)du, (52)

where F0 and B are the spectral measure and the covariance function of the random
field (25) with j = 0, which satisfies condition (26) with j = 0 and (37). From (24),
(25) and (26), we can write

cov (h0 (χd0 (x)) , h0 (χd0 (0))) =
∞∑

k=m0

[
C

(0)
k

]2
Rk

χd0
(x) . (53)

Thus, from (4), (51) to (53), we obtain

cov (u (t, x) , u (t′, x′)) =
∞∑

k=m0

[
C

(0)
k

]2
×
∫

Rn

Rk
χd0

(z)
[

1
(2π)n

∫
Rn

e−i〈λ,z−x+x′〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−t′β |λ|2

)
dλdz

]
.(54)

From (37) and (54), we can write

lim
ε→0

cov (Uε (t, x) , Uε (t′, x′)) = lim
ε→0

ε−nβ/2 cos
(
u

(
t

ε
,

x

εβ/2

)
− u

(
t′

ε
,

x′

εβ/2

))
= lim

ε→0
ε−nβ/2

∞∑
k=m0

[
C

(0)
k

]2 ∫
Rn

Rk
χd0

(z)

×
[

1
(2π)n

∫
Rn

e
−i
〈

λ,z− x−x′
εβ/2

〉
Eβ,1

(
−
(
t

ε

)β

|λ|2
)
Eβ,1

(
−
(
t′

ε

)β

|λ|2
)
dλ

]
dz

= lim
ε→0

∞∑
k=m0

[
C

(0)
k

]2 ∫
Rn

Rk
χd0

(z)

×
[

1
(2π)n

∫
Rn

cos
〈
λ, zε1/β − (x− x′)

〉
Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−t′β |λ|2

)
dλ

]
dz

=
σ2

0

(2π)n

∫
Rn

cos 〈λ, x− x′〉Eβ,1

(
−tβ |λ|2

)
Eβ,1

(
−t′β |λ|2

)
dλ (55)

by the dominated convergence theorem (see (41)).
Our proof is based on the Markov method of moments (see for example Breuer

and Major [8] or Ivanov and Leonenko [15], p. 72), which consists of showing that
for any integer p ≥ 2

lim
ε→0

E (ζε)
p = Eζp, (56)
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where for uj ∈ R1, j = 1, ..., k

ζε =
k∑

j=1

ujUε (tj , xj) , ζ =
k∑

j=1

ujU (tj , xj) ,

Uε and U being defined in Theorem 1. It is well-known that for a Gaussian random
field U (t, s)

Eζp =

{
(p− 1)!!

[∑k
j=1

∑k
j′=1 ujuj′EU (tj , xj)U (tj′ , xj′ )

]p/2

, p = 2ν,
0, p = 2ν + 1.

(57)

To prove (56), we use the properties of multidimensional Hermite polynomials

Πν (u) =
d0∏

j=1

Hkj (uj) , u = (u1, ..., ud0) ∈ R
d0 , ν = (k1, ..., kd0) , kj ≥ 0, j = 1, ..., d0,

where

Hk (u) = (−1)m eu2/2 dm

dum
e−u2/2, m = 0, 1, 2, ...

are Hermite polynomials. The polynomials {eν (u)}ν form a complete orthogonal
system in the Hilbert space

L2

(
R

d0 , φ (|u|) du) =
{
h :
∫

Rd0

h2 (u)φ (|u|) du < ∞
}
,

where

φ (|u|) =
d0∏

j=1

φ (uj) , φ (uj) =
1√
2π

e−u2
j/2.

Now, the function h0 (u1, ..., ud0) = 1
2

∑d0
j=1 u

2
j ∈ L2

(
Rd0 , φ (|u|) du) and admits the

expansion

h0 (u1, ..., ud0) =
∞∑

k=0

∑
ν∈Sk

C̃νΠν (u)
ν!

,

where

Sk =

ν = (k1, ..., kd0) :
d0∑

j=1

kj = k, kj ≥ 0

 ,

ν! = k1!...kd0 ! and

C̃ν =
∫

Rd0

1
2

d0∑
j=1

u2
j

Πν (u)φ (|u|) du.
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We then have the following representation of the nonlinear functional of the Gaussian
vector field ξ (x) = (ξ1 (x) , ..., ξd0 (x)) :

h0

1
2

d0∑
j=1

ξ2
j (x)

 = h0 (ξ1 (x) , ..., ξd (x))

= C̃0 +
∞∑

k=1

∑
ν∈Sk

(
C̃ν

ν!

)
Πν (ξ (x)) .

It is clear that C̃0 = C
(0)
0 , where C

(0)
0 is the zero Laguerre coefficient in the Laguerre

expansion of the function

h0

1
2

d0∑
j=1

ξ2
j (x)

 =
d0∑

j=1

C
(0)
j ek

1
2

d0∑
j=1

ξ2
j (x)

 .

Thus, the random field

Uε (t, x) =
1

εnβ/4

[∫
Rn

Gβ

(
t

ε
,

x

εβ/2
− y

)
h0 (χd0 (y)) dy − C

(0)
0

]
=

∞∑
k=1

∑
ν∈Sk

1
εnβ/4

∫
Rn

Gβ

(
t

ε
,

x

εβ/4
− y

)

=
∞∑

k=1

∑
ν∈Sk

C̃ν

ν!
1

εnβ/4

∫
Rn

Gβ

(
t

ε
,

x

εβ/4
− y

)
Πν (ξ (y)) dy. (58)

The diagram formulae are valid for our situation (see Arcones [7], Leonenko and
Deriev [19]). Thus, the main statement (55) can be proved by using (57), (58) and
the diagram method for multidimensional Hermite polynomials. The details are
given in Anh and Leonenko ([5]) for one-dimensional Hermite expansion. The mul-
tidimensional generalization is straightforward since our multidimensional Hermite
polynomials are the products of one-dimensional Hermite polynomials. A detailed
exposition of multidimensional Hermite polynomial expansions can be found in Ar-
cones [7], Leonenko and Deriev [19].

Proof of Theorem 2
Similar to the proof of Theorem 1, we may represent the random fields

Vε (t, x) = ε
4−nβ

4

[∫
Rn

Gβ

(
t

ε
,

x

εβ/2
− y

)
h0 (χd0 (y)) dy

+
∫

Rn

G
(1)
β

(
t

ε
,

x

εβ/2
− y

)
h1 (χd1 (y)) dy − C

(0)
0 − C

(1)
0

t

ε

= R1ε + R2ε,

where

R1ε =
∞∑

k=1

∑
ν∈Sk

C̃
(0)
ν

ν!
ε

4−nβ
4

∫
Rn

Gβ

(
t

ε
,

x

εβ/2
− y

)
Πν

(
ξ(0) (y)

)
dy,
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R2ε =
∞∑

k=1

∑
ν∈Sk

C̃
(1)
ν

ν!
ε

4−nβ
4

∫
Rn

G
(1)
β

(
t

ε
,

x

εβ/2
− y

)
Πν

(
ξ(1) (y)

)
dy,

ξ(0) (x) =
(
ξ
(0)
1 (x) , ..., ξ(0)

d0
(x)
)
, ξ(1) (x) =

(
ξ
(1)
1 (x) , ..., ξ(1)

d1
(x)
)

being two inde-
pendent Gaussian vector fields, and

C̃(j)
ν =

∫
R

dj

1
2

dj∑
k=1

[
u

(j)
k

]2Πν

(
u(j)
)
du, j ∈ {0, 1}

being Hermite coefficients. From an asymptotic variance analysis, we obtain that

varR1ε → 0, ε → 0

and by Slutsky’s argument, the limiting distribution of this functional is the same
as the limiting distribution of R2ε, which can be analyzed in a similar fashion to the
proof of Theorem 1 by making use of the diagram formula (see Anh and Leonenko
[5]).

Proof of Theorem 3
We use the Laguerre polynomial expansion (see Anh and Leonenko [1]), from

which we obtain the following expansion:

u

(
t

ε
,

x

εβ/2

)
− C

(0)
0 − C

(1)
0

t

ε
= Q1ε + Q2ε,

where

Q1ε =
∞∑

k=1

C
(0)
k

∫
Rn

Gβ

(
t

ε
,

x

εβ/2
− y

)
ek (χd0 (y)) dy

= C
(0)
1

∫
Rn

Gβ

(
t

ε
,

x

εβ/2
− y

)
e1 (χd0 (y)) dy + S1ε,

Q2ε =
∞∑

k=1

C
(1)
k

∫
Rn

G
(1)
β

(
t

ε
,

x

εβ/2
− y

)
ek (χd1 (y)) dy

= C
(1)
1

∫
Rn

G
(1)
β

(
t

ε
,

x

εβ/2
− y

)
e1 (χd1 (y)) dy + S2ε.

Note that for case (1)

var
[
ε−κ0β/2S1ε

]
→ 0, var

[
ε−κ0β/2Q2ε

]
→ 0 as ε → 0 ,

and for case (2)

var
[
ε(2−κ1β)/2Q1ε

]
→ 0, var

[
ε(2−κ1β)/2S2ε

]
→ 0 as ε → 0.
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Thus, in case (1), the asymptotic distribution of T ′
ε (t, ε) is the same as the asymp-

totic distribution of the functional

C
(0)
1

εβκ0/2

∫
Rn

Gβ

(
t

ε
,

x

εβ/2
− y

)
e1 (χd0 (y)) dy, (59)

while for case (2), the asymptotic distribution of T ′′
ε (t, ε) is the same as the asymp-

totic distribution of the functional

ε−(κ1β−2)/2

∫
Rn

G
(1)
β

(
t

ε
,

x

εβ/2
− y

)
e1 (χd1 (y)) dy. (60)

In case (3), the asymptotic distribution is the same as the asymptotic distribution
of the sum (59) and (60). To obtain the asymptotic distribution of (59), we note

that the first Laguerre polynomial e1 (u) =
(

d0
2 − u

)
/
√

d0
2 , and as a result

e1

(
1
2

d0∑
k=1

(
ξ
(0)
k (x)

)2
)

= − 1√
2d0

d0∑
k=1

H2

(
ξ
(0)
k (x)

)
,

where H2 (u) = u2 − 1 is the second Hermite polynomial. The asymptotic distrib-
ution of the functional

1
εκ0β/2

C
(0)
1

∫
Rn

Gβ

(
t

ε
,

x

εβ/2
− y

)
H2

(
ξ
(0)
k (y)

)
dy

is obtained in Anh and Leonenko [5]. Thus, our limiting distribution is the sum
(46) of d0 copies of such asymptotic distributions.

In the same manner, we may derive the asymptotic distributions for cases (2)
and (3).
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