On a class of module maps of Hilbert C^* -modules

Damir Bakić* and Boris Guljaš[†]

Abstract. The paper describes some basic properties of a class of module maps of Hilbert C^* -modules.

In Section 1 ideal submodules are considered and the canonical Hilbert C^* -module structure on the quotient of a Hilbert C^* -module over an ideal submodule is described. Given a Hilbert C^* -module V, an ideal submodule $V_{\mathcal{I}}$, and the quotient $V/V_{\mathcal{I}}$, canonical morphisms of the corresponding C^* -algebras of adjointable operators are discussed.

In the second part of the paper a class of module maps of Hilbert C^* -modules is introduced. Given Hilbert C^* -modules V and V and a morphism $\varphi: \mathcal{A} \to \mathcal{B}$ of the underlying C^* -algebras, a map $\Phi: V \to W$ belongs to the class under consideration if it preserves inner products modulo $\varphi: \langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$ for all $x, y \in V$. It is shown that each morphism Φ of this kind is necessarily a contraction such that the kernel of Φ is an ideal submodule of V. A related class of morphisms of the corresponding linking algebras is also discussed.

Key words: C^* -algebra, Hilbert C^* -module, adjointable operator

AMS subject classifications: Primary 46C50; Secondary 46L08

Received July 11, 2002 Ac

Accepted December 12, 2002

Introduction

A (right) Hilbert C^* -module over a C^* -algebra \mathcal{A} is a right \mathcal{A} -module V equipped with an \mathcal{A} -valued inner product $\langle \cdot, \cdot \rangle$ which is \mathcal{A} -linear in the second and conjugate linear in the first variable such that V is a Banach space with the norm $||v|| = ||\langle v, v \rangle||^{1/2}$. Hilbert C^* -modules are introduced and initially investigated in [3], [5] and [8].

The present paper is organized as an introduction to a study of extensions of Hilbert C^* -modules.

Section 1 contains a detailed discussion on ideal submodules. As their basic properties are already known (see [10] and [7]), some of the results are stated without proof. The starting point is *Theorem 1.6* which states that the quotient of a

^{*}Department of Mathematics, University of Zagreb, Bijenička 30, HR-10000 Zagreb, Croatia, e-mail: bakic@math.hr

[†]Department of Mathematics, University of Zagreb, Bijenička 30, HR-10000 Zagreb, Croatia, e-mail: guljas@math.hr

Hilbert C^* -module over an ideal submodule admits a natural Hilbert C^* -module structure. Considering a Hilbert C^* -module V, an ideal submodule $V_{\mathcal{I}} \subseteq V$, and the quotient $V/V_{\mathcal{I}}$, we describe canonical morphisms of the corresponding C^* -algebras of adjointable operators $\mathbf{B}(V)$, $\mathbf{B}(V_{\mathcal{I}})$ and $\mathbf{B}(V/V_{\mathcal{I}})$. Also, some properties of ideal submodules arising from essential ideals are obtained. In particular, we show in Theorem 1.12 that the canonical morphism $\alpha: \mathbf{B}(V) \to \mathbf{B}(V_{\mathcal{I}})$ sending each operator T to its restriction $T|V_{\mathcal{I}}$ is an injection if and only if \mathcal{I} is an essential ideal in the underlying C^* -algebra \mathcal{A} .

In Section 2 a class of module maps of Hilbert C^* -modules over possibly different C^* -algebras is introduced. We consider morphisms of Hilbert C^* -modules which are in a sense supported by morphisms of the underlying C^* -algebras. Their basic properties are collected and a couple of examples is provided. In Theorem 2.15 we establish a correspondence between the class of module maps under consideration and a class of morphisms of the corresponding linking algebras.

The present material provides a necessary tool for the later study of extensions of Hilbert C^* -modules. A related discussion will appear in our subsequent paper.

Throughout the paper we denote the C^* -algebras of all adjointable and "compact" operators on a Hilbert C^* -module V by $\boldsymbol{B}(V)$ and $\boldsymbol{K}(V)$, respectively. We also use $\boldsymbol{B}(\cdot,\cdot)$ and $\boldsymbol{K}(\cdot,\cdot)$ to denote spaces of all adjointable, resp. "compact" operators acting between different Hilbert C^* -modules.

We denote by $\langle V, V \rangle$ the closed linear span of all elements in the underlying C^* -algebra \mathcal{A} of the form $\langle x, y \rangle$, $x, y \in V$. Obviously, $\langle V, V \rangle$ is an ideal in \mathcal{A} . (Throughout the paper, an ideal in a C^* -algebra always means a closed two-sided ideal.) V is said to be a full \mathcal{A} -module if $\langle V, V \rangle = \mathcal{A}$.

For this and other general facts concerned with Hilbert C^* -modules we refer to [4], [7] and [9].

1. Ideal submodules and quotients of Hilbert C^* -modules

We begin with the definition of an ideal submodule. A related discussion can be found in [10].

Definition 1.1. Let V be a Hilbert C^* -module over A, and I an ideal in A. The associated ideal submodule V_I is defined by

$$V_{\mathcal{I}} = [V\mathcal{I}]^{-} = [\{vb : v \in V, b \in \mathcal{I}\}]^{-}$$

(the closed linear span of the action of \mathcal{I} on V).

Clearly, $V_{\mathcal{I}}$ is a closed submodule of V. It can be also regarded as a Hilbert C^* -module over \mathcal{I} .

In general, there exist closed submodules which are not ideal submodules. For instance, if a C^* -algebra \mathcal{A} is regarded as a Hilbert \mathcal{A} -module (with the inner product $\langle a,b\rangle=a^*b\rangle$, then ideal submodules of \mathcal{A} are precisely ideals in \mathcal{A} , while closed submodules of \mathcal{A} are closed right ideals in \mathcal{A} .

We proceed with a couple of basic properties of ideal submodules. Our first proposition is already known ([10]).

Proposition 1.2. Let V be a Hilbert C^* -module over A, and let \mathcal{I} be an ideal in A. Then $V_{\mathcal{I}} = V\mathcal{I} = \{vb : v \in V, b \in \mathcal{I}\}.$

Proof. The associated ideal submodule $V_{\mathcal{I}}$ is by definition equal to $V_{\mathcal{I}} = [V\mathcal{I}]^- = [\{vb : v \in V, b \in \mathcal{I}\}]^-$. Regarding $V_{\mathcal{I}}$ as a Hilbert \mathcal{I} -module we may apply the Hewitt-Cohen factorization theorem ([6], Theorem 4.1, see also [7], Proposition 2.31): for each $x \in V_{\mathcal{I}}$ there exist $y \in V_{\mathcal{I}}$ and $b \in \mathcal{I}$ such that x = yb. This shows $V\mathcal{I} \subseteq [V\mathcal{I}]^- = V_{\mathcal{I}} \subseteq V_{\mathcal{I}}\mathcal{I} \subseteq V\mathcal{I}$, i.e. $V_{\mathcal{I}} = V\mathcal{I}$.

Proposition 1.3. Let V be a Hilbert A-module, \mathcal{I} an ideal in A, and $V_{\mathcal{I}}$ the associated ideal submodule. Then

$$V_{\mathcal{I}} = \{ x \in V : \langle x, x \rangle \in \mathcal{I} \} = \{ x \in V : \langle x, v \rangle \in \mathcal{I}, \, \forall v \in V \}.$$

If V is full, then $V_{\mathcal{I}}$ is full as a Hilbert \mathcal{I} -module.

Proof. $\langle vb, vb \rangle = b^* \langle v, v \rangle b \in \mathcal{I}, \forall b \in \mathcal{I}, \forall v \in V$. This shows $x = vb \in V_{\mathcal{I}} \Rightarrow \langle x, x \rangle \in \mathcal{I}$. A well known formula ([9], Lemma 15.2.9)

$$x = \lim_{n} x \left(\langle x, x \rangle + \frac{1}{n} \right)^{-1} \langle x, x \rangle, \, \forall x \in V$$

implies the converse. The second equality is now an immediate consequence.

Suppose that V is full as a Hilbert C^* -module over \mathcal{A} . Then there is an approximate unit (a_{λ}) for \mathcal{A} such that each a_{λ} is a finite sum of the form $a_{\lambda} = \sum_{i=1}^{n(\lambda)} \langle x_i^{\lambda}, x_i^{\lambda} \rangle$ ([1], Remark 1.9). Take any positive $b \in \mathcal{I}$, let ε be given.

Since (a_{λ}) is an approximate unit for \mathcal{A} , there exists λ such that $||b^{1/2} - a_{\lambda}b^{1/2}||$ is small enough so that $||b^{1/2}(b^{1/2} - a_{\lambda}b^{1/2})|| < \varepsilon$. It remains to observe that the left-hand side of the above inequality can be rewritten in the form

$$||b - b^{1/2}a_{\lambda}b^{1/2}|| = ||b - \sum_{i=1}^{n(\lambda)} \langle x_i^{\lambda}b^{1/2}, x_i^{\lambda}b^{1/2} \rangle||.$$

This shows that b can be approximated by inner products of elements from V_{τ} , i.e. $b \in \langle V_{\tau}, V_{\tau} \rangle$.

Now we introduce a natural Hilbert C^* -module structure on the quotient of a Hilbert C^* -module over an ideal submodule.

Definition 1.4. Let V be a Hilbert C^* -module over \mathcal{A} , \mathcal{I} an ideal in \mathcal{A} , and $V_{\mathcal{I}}$ the associated ideal submodule. Denote by $\pi: \mathcal{A} \to \mathcal{A}/\mathcal{I}$ and $q: V \to V/V_{\mathcal{I}}$ the quotient maps. A right action of \mathcal{A}/\mathcal{I} on the linear space $V/V_{\mathcal{I}}$ is defined by $q(v)\pi(a) = q(va)$.

The action of \mathcal{A}/\mathcal{I} on the quotient $V/V_{\mathcal{I}}$ given by $q(v)\pi(a)=q(va)$ is well defined precisely because $V_{\mathcal{I}}$ is an ideal submodule of V. Indeed, if $\pi(a)=\pi(a')$ then $q(v)\pi(a)=q(v)\pi(a')$ is ensured by definition of an ideal submodule: $vb\in V_{\mathcal{I}}, \forall b\in \mathcal{I}, \forall v\in V$.

If X is an arbitrary closed submodule of V one can also consider the quotient of linear spaces V/X. Further, denote by $\mathcal{I} = \langle X, X \rangle \subseteq \mathcal{A}$ the closed linear span of

the set of all $\langle x, y \rangle$, $x, y \in X$. Since X is by assumption a closed submodule of V, \mathcal{I} is an ideal in \mathcal{A} .

Now an action of \mathcal{A}/\mathcal{I} on V/X given by $q(x)\pi(a)=q(xa)$ will be unambiguously defined if and only if $vb \in X$ is satisfied for each $b \in \mathcal{I}$ and $v \in V$; i.e. $V\mathcal{I} \subseteq X$. Since X is a closed submodule, this implies $V_{\mathcal{I}} \subseteq X$. Because the reverse inclusion is always satisfied, we conclude: the action of \mathcal{A}/\mathcal{I} on V/X is well defined if and only if X is the ideal submodule $V_{\mathcal{I}}$ associated with $\mathcal{I} = \langle X, X \rangle$.

- **Remark 1.5.** The role of ideal submodules in the preceding discussion should be compared with Proposition 3.25 in [7]. Recall that each right Hilbert A -module V is also equipped with a natural left Hilbert K(V)-module structure. Moreover, there is a standard Hilbert K(V) A bimodule structure on V. Now one easily show the following assertions (which are stated without proofs):
- (1) Each ideal submodule $V_{\mathcal{I}}$ of V is also an ideal submodule of the left Hilbert K(V)-module V.
- (2) Let X be a closed submodule of a right Hilbert C^* -module V. Then X is an ideal submodule of V if and only if X is a closed subbimodule of the Hilbert $K(V) \mathcal{A}$ bimodule V.

The following theorem is known ([7], Proposition 3.25, [10], Lemma 3.1). We state it for the sake of completeness.

Theorem 1.6. Let V be a Hilbert A-module, \mathcal{I} an ideal in A, and $V_{\mathcal{I}}$ the associated ideal submodule. Then $V/V_{\mathcal{I}}$ equipped with a right A / \mathcal{I} -action from Definition 1.4 is a pre-Hilbert A/\mathcal{I} -module with the inner product given by $\langle q(v), q(w) \rangle = \pi(\langle v, w \rangle)$. The resulting norm $||q(v)|| = ||\pi(\langle v, v \rangle)||^{1/2}$ coincides with the quotient norm $d(v, V_{\mathcal{I}})$ defined on the quotient of Banach spaces $V/V_{\mathcal{I}}$. In particular, $V/V_{\mathcal{I}}$ is complete, hence a Hilbert C^* -module over A/\mathcal{I} .

Remark 1.7. V/V_{τ} is a full \mathcal{A}/\mathcal{I} -module if and only if V is full. This follows at once from the evident equality $\langle V/V_{\tau}, V/V_{\tau} \rangle = \pi(\langle V, V \rangle)$.

Example 1.8. Let us briefly describe an application of Theorem 1.6. Consider a Hilbert C^* -module V over \mathcal{A} and a surjective morphism of C^* -algebras $\varphi: \mathcal{A} \to \mathcal{B}$. Define

$$N_{\varphi} = \{ x \in V : \varphi(\langle x, x \rangle) = 0 \}.$$

One easily shows that N_{φ} is a closed submodule of V. There is a standard construction ([2], p. 19) which provides a pre-Hilbert \mathcal{B} -module structure on V/N_{φ} : one defines $q(v)\varphi(a)=q(va)$ and $\langle q(x),q(y)\rangle=\varphi(\langle x,y\rangle)$. However, it seems to be overlooked that V/N_{φ} is already complete with respect to the resulting norm.

To prove this, first observe that $\mathcal{A}/\mathrm{Ker}\varphi$ and \mathcal{B} are isomorphic C^* -algebras. This enables us to regard V/N_{φ} as a Hilbert $\mathcal{A}/\mathrm{Ker}\varphi$ -module. Now, $N_{\varphi}=\{x\in V: \langle x,x\rangle\in\mathrm{Ker}\varphi\}=(by\ \mathrm{Proposition}\ 1.3)=V_{\mathrm{Ker}\varphi};\ i.e.\ N_{\varphi}$ is the ideal submodule associated to the ideal $\mathrm{Ker}\varphi$. It remains to apply Theorem 1.6.

Theorem 1.6 also implies that a property of the Rieffel correspondence is that, assuming that two C^* -algebras are Morita equivalent, the corresponding ideals and

quotients are Morita equivalent themselves (Proposition 3.25 in [7]). We shall proceed in a different direction. Our goal is to compare the C^* -algebras of all adjointable and "compact" operators acting on a Hilbert C^* -module V with the corresponding algebras of operators on an ideal submodule V_{τ} and the quotient V/V_{τ} , respectively.

To fix our notation, we recall the definition of the ideal of all "compact" operators on a Hilbert C^* -module V. Given $v, w \in V$, let $\theta_{v,w} : V \to V$ denote the operator defined by $\theta_{v,w}(x) = v\langle w, x \rangle$. Each $\theta_{v,w}$ is an adjointable operator on V and the linear span

$$[\{\theta_{v,w}: v, w \in V\}]$$

is a two-sided ideal in B(V). Its closure in the operator norm

$$\boldsymbol{K}(V) = [\{\theta_{v,w} : v, w \in V\}]^- \subseteq \boldsymbol{B}(V)$$

is an ideal in $\boldsymbol{B}(V)$ and elements of $\boldsymbol{K}(V)$ are called "compact" operators.

Let V be a Hilbert \mathcal{A} -module. Assume that \mathcal{I} is an ideal in \mathcal{A} , and let $V_{\mathcal{I}}$ be the associated ideal submodule. Observe that $V_{\mathcal{I}}$ is invariant for each $T \in \mathcal{B}(V)$; namely $T(vb) = (Tv)b \in V_{\mathcal{I}}, \forall b \in \mathcal{I}, \forall v \in V$. Consequently, there is an operator $T|V_{\mathcal{I}}$ on $V_{\mathcal{I}}$ induced by T such that $(T|V_{\mathcal{I}})^* = T^*|V_{\mathcal{I}}$. This gives a well defined map $\alpha: \mathcal{B}(V) \to \mathcal{B}(V_{\mathcal{I}}), \ \alpha(T) = T|V_{\mathcal{I}}$. Clearly, α is a morphism of C^* -algebras.

We shall prove that the map α is an injection if and only if \mathcal{I} is an essential ideal in \mathcal{A} . (An ideal \mathcal{I} in a C^* -algebra \mathcal{A} is said to be essential if its annihilator $\mathcal{I}^{\perp} = \{a \in \mathcal{A} : a\mathcal{I} = \{0\}\}$ is trivial: $\mathcal{I}^{\perp} = \{0\}$.)

To do this, we need a few simple results on ideal submodules associated to essential ideals. We start with a property of essential ideals which is certainly known. Since we are unable to provide a reference, the proof is included.

Lemma 1.9. Let \mathcal{I} be an ideal in a C^* -algebra \mathcal{A} . Then \mathcal{I} is an essential ideal in \mathcal{A} if and only if there exists a faithful representation $\rho: \mathcal{A} \to \mathbf{B}(H)$ of \mathcal{A} on a Hilbert space H such that \mathcal{I} acts non-degenerately on H.

Proof. Suppose $\mathcal{I} \subset \mathcal{A} \subseteq \boldsymbol{B}(H)$ such that \mathcal{I} acts non-degenerately on H. Let (u_{λ}) be an approximate unit for \mathcal{I} . Then $\xi = \lim_{\lambda} u_{\lambda} \xi$, $\forall \xi \in H$. Now $a \in \mathcal{I}^{\perp}$ implies $au_{\lambda} = 0$, $\forall \lambda$, hence a = 0.

To prove the converse, suppose that \mathcal{I} is an essential ideal in \mathcal{A} . Taking any faithful representation of \mathcal{A} we may write $\mathcal{I} \subset \mathcal{A} \subseteq B(H)$. Define $H_0 = [\mathcal{I}H]^-$. Clearly, \mathcal{I} acts non degenerately on H_0 . Since \mathcal{I} is an ideal in \mathcal{A} , H_0 reduces \mathcal{A} . We shall show that $a \mapsto a|H_0$ is also a faithful representation of \mathcal{A} . Let $a|H_0 = 0$. Since H_0 is invariant for each $b \in \mathcal{I}$, this implies $ab|H_0 = 0$, $\forall b \in \mathcal{I}$. On the other hand, $ab \in \mathcal{I}$ shows $ab|H_0^{\perp} = 0$, $\forall b \in \mathcal{I}$ (observe $H_0^{\perp} = \cap_{b \in \mathcal{I}} \operatorname{Ker} b$). This gives ab = 0, $\forall b \in \mathcal{I}$ and, since \mathcal{I} is essential, a = 0.

Lemma 1.10. Let \mathcal{I} be an ideal in a C^* -algebra \mathcal{A} . The following conditions are mutually equivalent:

- (a) \mathcal{I} is an essential ideal in \mathcal{A} .
- (b) $||a|| = \sup_{b \in \mathcal{I}, ||b|| < 1} ||ab||, \forall a \in \mathcal{A}.$
- (c) $||a|| = \sup_{b \in \mathcal{I}, ||b|| \le 1} ||ba||, \forall a \in \mathcal{A}.$
- $(d) ||a|| = \sup_{b \in \tau, ||b|| \le 1} ||bab^*||, \forall a \in \mathcal{A}^+.$

Proof. $(a) \Rightarrow (b)$: By Lemma 1.9 we may assume $\mathcal{I} \subset \mathcal{A} \subseteq \mathbf{B}(H)$ such that \mathcal{I} acts non-degenerately on H. Given $a \in \mathcal{A}$, we have to show $||a|| \leq \sup_{b \in \mathcal{I}, ||b|| \leq 1} ||ab||$ (the opposite inequality is trivial). Let (u_{λ}) be an approximate unit for \mathcal{I} . Then $\xi = \lim_{\lambda} u_{\lambda} \xi, \forall \xi \in H$. Take $||\xi|| \leq 1$. Then

$$\|a\xi\| = \lim_{\lambda} \|au_{\lambda}\xi\| \leq \lim\sup_{\lambda} \|au_{\lambda}\| \|\xi\| \leq \sup_{b \in x, \|b\| \leq 1} \|ab\|.$$

- $(b) \Leftrightarrow (c)$ is obvious (by taking adjoints).
- $(c) \Rightarrow (d)$: Let a be positive. Then

$$||a|| = ||a^{1/2}||^2 = \text{by (c)} = \sup_{b \in \mathcal{I}, ||b|| \le 1} ||ba^{1/2}||^2 = \sup_{b \in \mathcal{I}, ||b|| \le 1} ||bab^*||.$$

 $(d) \Rightarrow (a)$: Take any $a \in \mathcal{I}^{\perp}$. Then (d) applied to a^*a gives $a^*a = 0$, thus $\mathcal{I}^{\perp} = \{0\}$.

Proposition 1.11. Let V be a Hilbert A-module, \mathcal{I} an essential ideal in \mathcal{A} , and $V_{\mathcal{I}}$ be the associated ideal submodule. Then

- (1) $||v|| = \sup_{b \in \mathcal{I}, ||b|| \le 1} ||vb||, \forall v \in V \text{ and }$
- (2) $||v|| = \sup_{y \in V_{\mathcal{I}}, ||y|| \le 1} ||\langle v, y \rangle||, \forall v \in V.$

Conversely, if V is a full A-module in which (1) or (2) is satisfied with respect to (the ideal submodule associated with) some ideal \mathcal{I} in \mathcal{A} , then \mathcal{I} is an essential ideal in \mathcal{A} .

Proof. Take any $v \in V$. Using Lemma 1.10(d) we find

$$\|v\|^2 = \|\langle v, v \rangle\| = \sup_{b \in \mathcal{I}, \|b\| \le 1} \|b^* \langle v, v \rangle b\| = \sup_{b \in \mathcal{I}, \|b\| \le 1} \|vb\|^2.$$

To prove the second formula, take any $v \in V$ such that ||v|| = 1. Then

$$||v|| = ||v||^2 = ||\langle v, v \rangle|| = (\text{by } Lemma \ 1.10(b)) = \sup_{b \in \mathcal{I}, ||b|| \le 1} ||\langle v, v \rangle b||$$
$$= \sup_{b \in \mathcal{I}, ||b|| \le 1} ||\langle v, vb \rangle|| \le \sup_{y \in V_{\mathcal{I}}, ||y|| \le 1} ||\langle v, y \rangle|| \le ||v||.$$

To prove the converse, suppose that V is a full \mathcal{A} -module and \mathcal{I} is not essential so that $\mathcal{I}^{\perp} \neq \{0\}$. Take any $c \in \mathcal{I}^{\perp}$, $c \neq 0$. Then there exists $v \in V$ such that $vc \neq 0$. Indeed, vc = 0, $\forall v \in V$ would imply $\langle v, vc \rangle = 0$, $\forall v \in V$ or $\langle v, v \rangle c = 0$, $\forall v \in V$. Since V is full, it would follow $c^*c = 0$, thus c = 0.

After all, it remains to observe that $x = vc \neq 0$ with $c \in \mathcal{I}^{\perp}$ contradicts to (1) and (2), respectively.

Theorem 1.12. Let V be a Hilbert A-module, \mathcal{I} an ideal in \mathcal{A} , and $V_{\mathcal{I}}$ the associated ideal submodule. If \mathcal{I} is an essential ideal in \mathcal{A} , then the map $\alpha : \mathbf{B}(V) \to \mathbf{B}(V_{\mathcal{I}})$, $\alpha(T) = T|_{V_{\mathcal{I}}}$ is an injection. Conversely, if V is full and if α is injective, then \mathcal{I} is an essential ideal in \mathcal{A} .

Proof. Suppose $\alpha(T) = T | V_{\mathcal{I}} = 0$ for some T. Observe that, since $V_{\mathcal{I}}$ is an ideal submodule, $vb \in V_{\mathcal{I}}$, $\forall b \in \mathcal{I}$, $\forall v \in V$. Since by assumption T vanishes on $V_{\mathcal{I}}$, this implies T(vb) = 0, $\forall b \in \mathcal{I}$, $\forall v \in V$. Now, taking arbitrary $v \in V$, we find

$$||Tv|| = (\text{by } Proposition 1.11) = \sup_{b \in x, ||b|| \le 1} ||(Tv)b|| = \sup_{b \in x, ||b|| \le 1} ||T(vb)|| = 0.$$

To prove the converse, let V be full and α injective. Assume that \mathcal{I} is not essential. For $c \in \mathcal{I}^{\perp}$, $c \neq 0$, find $v \in V$ such that $vc \neq 0$ (as in the preceding proof). Then $\theta_{vc,vc} \neq 0$, but $\alpha(\theta_{vc,vc}) = \theta_{vc,vc} | V_{\mathcal{I}} = 0$ - a contradiction.

Remark 1.13. In general, α is not surjective, even if \mathcal{I} is an essential ideal in \mathcal{A} . As an example, consider a nonunital C^* -algebra \mathcal{A} contained as an essential ideal in a unital C^* -algebra \mathcal{B} . Assume further that \mathcal{B} is not the maximal unitization of \mathcal{A} , i.e. that \mathcal{B} is properly contained in the multiplier algebra $M(\mathcal{A})$. Consider \mathcal{B} as a Hilbert \mathcal{B} -module. It is well known that, since \mathcal{B} is unital, $K(\mathcal{B}) = B(\mathcal{B}) = \mathcal{B}$. Further, \mathcal{A} is an ideal submodule of \mathcal{B} associated with the essential ideal \mathcal{A} of \mathcal{B} . We also know $K(\mathcal{A}) = \mathcal{A}$ and $B(\mathcal{A}) = M(\mathcal{A})$. One easily concludes that the map $\alpha : B(\mathcal{B}) = \mathcal{B} \to B(\mathcal{A}) = M(\mathcal{A})$ from Theorem 1.12 acts as the inclusion $\mathcal{B} \hookrightarrow M(\mathcal{A})$; thus, by assumption, α is not a surjection.

Consider again an arbitrary Hilbert \mathcal{A} -module and an ideal \mathcal{I} in \mathcal{A} . Using the map α one can easily determine $K(V_{\mathcal{I}})$. Our next proposition, in which $K(V_{\mathcal{I}})$ is recognized as an ideal in K(V), is known; hence we state it without proof. For the proof we refer to [7], Theorem 3.22. (Alternatively, it can be deduced from Theorem 1.12 above after observing that for each ideal \mathcal{I} in \mathcal{A} , we have $V_{\mathcal{I}} \oplus V_{\mathcal{I}^{\perp}} = V_{\mathcal{I} \oplus \mathcal{I}^{\perp}}$.)

Proposition 1.14. Let V be a Hilbert A-module, \mathcal{I} an ideal in A, and $V_{\mathcal{I}}$ be the associated ideal submodule. Then $J = [\{\theta_{x,y} : x, y \in V_{\mathcal{I}}\}]^- \subseteq K(V)$ is an ideal in K(V) and the restriction $\alpha' = \alpha | J : J \to K(V_{\mathcal{I}})$ is an isomorphism of C^* -algebras.

Remark 1.15. Using the same notation as above one easily concludes that $V_{\mathcal{I}}$ is also an ideal submodule of the left K(V)-module V (with the inner product $[x,y]=\theta_{x,y}$) associated with the ideal $J=[\{\theta_{x,y}:x,y\in V_{\mathcal{I}}\}]^-\subseteq K(V)$. As in Proposition 1.3 one obtains $V_{\mathcal{I}}=\{x\in V:\theta_{x,v}\in J,\,\forall v\in V\}$.

Corollary 1.16. Let V be a full Hilbert A-module, \mathcal{I} an ideal in A, t $V_{\mathcal{I}}$ the associated ideal submodule. Then:

- (i) $J = [\{\theta_{x,y} : x, y \in V_{\mathcal{I}}\}]^- \simeq K(V_{\mathcal{I}})$ is an essential ideal in K(V) if and only if \mathcal{I} is an essential ideal in \mathcal{A} .
- (ii) J = K(V) if and only if I = A.

Proof. Assume that \mathcal{I} is an essential ideal in \mathcal{A} and take $T \in K(V)$ such that $T \perp J$. By the preceding remark for each v in V and x in $V_{\mathcal{I}}$ the operator $\theta_{v,x}$ belongs to J, hence $T\theta_{v,x} = \theta_{Tv,x} = 0$. In particular, $Tv\langle x,y\rangle = 0, \forall x,y \in V_{\mathcal{I}}$. Since V is full, $V_{\mathcal{I}}$ is a full \mathcal{I} -module and now the first assertion of *Proposition 1.11* implies Tv = 0.

П

The proof of the second assertion is similar, hence omitted.

We end this section with the corresponding result on quotients. Let \mathcal{I} be an ideal in \mathcal{A} , and let $V_{\mathcal{I}}$ be the associated ideal submodule. Since $V_{\mathcal{I}}$ is invariant for each $T \in \boldsymbol{B}(V)$, there is a well defined induced operator T on $V/V_{\mathcal{I}}$ given by $\mathring{T}(q(v)) = q(Tv)$. Moreover, \mathring{T} is adjointable because $(\mathring{T})^* = \mathring{T}^*$. This enables us to define $\beta : \boldsymbol{B}(V) \to \boldsymbol{B}(V/V_{\mathcal{I}}), \ \beta(T) = \mathring{T}$. Obviously, β is a morphism of C^* -algebras. The following proposition is proved by applying β to the ideal $\boldsymbol{K}(V)$ of all "compact" operators on V. However, as the result is already known ([7], Proposition 3.25, see also [10]), we omit the proof.

Proposition 1.17. Let V be a Hilbert A-module, \mathcal{I} an ideal in A, $V_{\mathcal{I}}$ the associated ideal submodule, and let $\mathbf{J} = [\{\theta_{x,y} : x, y \in V_{\mathcal{I}}\}]^- \subseteq \mathbf{K}(V)$ be as in Proposition 1.14. Then $\mathbf{K}(V)/\mathbf{J}$ and $\mathbf{K}(V/V_{\mathcal{I}})$ are isomorphic C^* -algebras.

Corollary 1.18. Let V be a Hilbert A-module, \mathcal{I} an ideal in A, and $V_{\mathcal{I}}$ the associated ideal submodule. Then the map $\beta: \mathbf{B}(V) \to \mathbf{B}(V/V_{\mathcal{I}}), \beta(T) = \hat{T}$ is the unique morphism of C^* -algebras satisfying $\beta(\theta_{x,y}) = \theta_{q(x),q(y)}, \forall x,y \in V$ and $\beta(\mathbf{K}(V)) = \mathbf{K}(V/V_{\mathcal{I}})$. If V is countably generated, then β is surjective.

Proof. The equality $\beta(\theta_{x,y}) = \theta_{q(x),q(y)}$, $\forall x,y \in V$ is verified by a direct calculation. Since β is a morphism of C^* -algebras, this ensures $\beta(\mathbf{K}(V)) = \mathbf{K}(V/V_{\mathcal{I}})$. Now the small extension theorem applies (see [9], Propositions 2.2.16 and 2.3.7) because $\mathbf{B}(V)$ and $\mathbf{B}(V/V_{\mathcal{I}})$ are the multiplier algebras of $\beta(\mathbf{K}(V))$, resp. $\mathbf{K}(V/V_{\mathcal{I}})$. Thus $\beta: \mathbf{B}(V) \to \mathbf{B}(V/V_{\mathcal{I}})$ is uniquely determined as the extension of $\beta' = \beta |\mathbf{K}(V): \mathbf{K}(V) \to \mathbf{K}(V/V_{\mathcal{I}})$ by strict continuity.

The last assertion follows from Tietze's extension theorem. First, if V is countably generated, then K(V) is a σ -unital C^* -algebra ([4], Proposition 6.7]). Since $\beta': K(V) \to K(V/V_{\tau})$ is a surjection, Proposition 6.8 from [4] implies that β is also a surjective map.

2. Morphisms of Hilbert C^* -modules

In this section we introduce a class of module maps of Hilbert C^* -modules, not necessarily over the same C^* -algebra (cf. [2], p. 9, [4], p. 24 and also [7], p. 57). The motivating example is provided by the quotient map $q: V \to V/V_x$ taking values in the quotient module of V over an ideal submodule V_x satisfying $\langle q(x), q(y) \rangle = \pi(\langle x, y \rangle)$.

Definition 2.1. Let V and W be Hilbert C^* -modules over C^* -algebras \mathcal{A} and \mathcal{B} , respectively. Let $\varphi: \mathcal{A} \to \mathcal{B}$ be a morphism of C^* -algebras. A map $\Phi: V \to W$ is said to be a φ -morphism of Hilbert C^* -modules if $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle)$ is satisfied for all x, y in V.

Using polarization, one immediately concludes that Φ is a φ -morphism if and only if $\langle \Phi(x), \Phi(x) \rangle = \varphi(\langle x, x \rangle)$ is satisfied for each x in V.

It is also easy to show that each φ -morphism is necessarily a linear operator and a module map in the sense $\Phi(va)\Phi(v)\varphi(a), \forall v \in V, \forall a \in \mathcal{A}$.

Further, let $\varphi: \mathcal{A} \to \mathcal{B}$ and $\psi: \mathcal{B} \to \mathcal{C}$ be morphisms of C^* -algebras and let V, W, Z be Hilbert C^* -modules over $\mathcal{A}, \mathcal{B}, \mathcal{C}$, respectively. If $\Phi: V \to W$ is a φ -morphism and $\Psi: W \to Z$ is a ψ -morphism, then obviously $\Psi\Phi: V \to Z$ is a $\psi\varphi$ -morphism of Hilbert C^* -modules.

Example 2.2. Consider a Hilbert C^* -module V over a C^* -algebra \mathcal{A} . Let \mathcal{I} be an ideal in \mathcal{A} , and let $V_{\mathcal{I}}$ be the associated ideal submodule. Then we have an exact sequence of C^* -algebras $\mathcal{I} \xrightarrow{i} \mathcal{A} \xrightarrow{\pi} \mathcal{A}/\mathcal{I}$ and the corresponding sequence of Hilbert C^* -modules $V_{\mathcal{I}} \xrightarrow{j} V \xrightarrow{q} V/V_{\mathcal{I}}$. (Here i and j denote inclusions while π and q denote canonical quotient maps). Obviously, j is an i-morphism and q is a π -morphism in the sense of the above definition.

Theorem 2.3. Let V and W be Hilbert C^* -modules over C^* -algebras A and B, respectively. Let $\varphi: A \to B$ be a morphism of C^* -algebras and let $\Phi: V \to W$ be a φ -morphism of Hilbert C^* -modules. Then Φ is a contraction satisfying $Ker\Phi = V_{Ker\varphi}$. If φ is an injection, then Φ is an isometry, hence also injective. If V is a full A-module and if Φ is injective, then φ is also an injection.

Proof. $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle) \Rightarrow \|\Phi(x)\|^2 = \|\langle \Phi(x), \Phi(x) \rangle\| = \|\varphi(\langle x, x \rangle)\| \leq \|\langle x, x \rangle\| = \|x\|^2, \ \forall x \in V.$ This proves that Φ is a contraction. The same calculation also shows: if φ is an injection, then the inequality above is replaced by the equality, hence Φ is also an isometry.

Obviously, $\operatorname{Ker} \Phi$ is a closed submodule of V such that $V_{\operatorname{Ker} \varphi} \subseteq \operatorname{Ker} \Phi$.

Further, $x \in \operatorname{Ker} \Phi \Rightarrow \langle \Phi(x), \Phi(x) \rangle = 0 \Rightarrow \varphi(\langle x, x \rangle) = 0$; i.e. $\langle x, x \rangle \in \operatorname{Ker} \varphi$. By Proposition 1.3 we conclude $x \in V_{\operatorname{Ker} \varphi}$ which gives $\operatorname{Ker} \Phi \subseteq V_{\operatorname{Ker} \varphi}$.

Finally, suppose that Φ is an injection. Then $\operatorname{Ker} \Phi = V_{\operatorname{Ker} \varphi} = \{0\}$. Take any $a \in \operatorname{Ker} \varphi$. Then the last equality means $xa = 0, \forall x \in V$. In particular, $\langle y, xa \rangle = \langle y, x \rangle a = 0, \forall x, y \in V$. Since V is by hypothesis full, this implies a = 0.

Lemma 2.4. Let V and W be Hilbert C^* -modules over C^* -algebras \mathcal{A} and \mathcal{B} , respectively. Let $\varphi: \mathcal{A} \to \mathcal{B}$ be a morphism of C^* -algebras and let $\Phi: V \to W$ be a φ -morphism of Hilbert C^* -modules. Denote by φ and Φ the maps induced on the quotients by φ and Φ , respectively:

$$\stackrel{\wedge}{\varphi} : \mathcal{A}/Ker \varphi \to \mathcal{B}, \quad \stackrel{\wedge}{\varphi} (\pi(a)) = \varphi(a), \qquad \stackrel{\wedge}{\Phi} : V/Ker \Phi \to W, \quad \stackrel{\wedge}{\Phi} (q(v)) = \Phi(v).$$

Then $\stackrel{\wedge}{\Phi}$ is a well defined $\stackrel{\wedge}{\varphi}$ -morphism of Hilbert C^* -modules $V/\ker\Phi$ and W.

Proof. First, by Theorem 2.3, $\operatorname{Ker} \Phi = V_{\operatorname{Ker} \varphi}$. This ensures that $V/\operatorname{Ker} \Phi = V/V_{\operatorname{Ker} \varphi}$ is a Hilbert $\mathcal{A}/\operatorname{Ker} \varphi$ -module. Both maps are obviously well defined, so we only need to check that $\overset{\wedge}{\Phi}$ is a $\overset{\wedge}{\varphi}$ -morphism. Indeed:

$$\langle \stackrel{\wedge}{\Phi}(q(v)), \stackrel{\wedge}{\Phi}(q(w)) \rangle \langle \Phi(v), \Phi(w) \rangle = \varphi(\langle v, w \rangle) \stackrel{\wedge}{\varphi}(\pi(\langle v, w \rangle)) = \stackrel{\wedge}{\varphi}(\langle q(v), q(w) \rangle).$$

Proposition 2.5. Let V and W be Hilbert C^* -modules over C^* -algebras \mathcal{A} and \mathcal{B} , respectively. Let $\varphi: \mathcal{A} \to \mathcal{B}$ be a morphism of C^* -algebras and let $\Phi: V \to W$ be a φ -morphism of Hilbert C^* -modules. Then $\operatorname{Im} \Phi$ is a closed subspace of W. It is also a Hilbert C^* -module over the C^* -algebra $\operatorname{Im} \varphi \subseteq \mathcal{B}$ such that $\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\langle V, V \rangle)$. If V is a full \mathcal{A} -module, then $\operatorname{Im} \Phi$ is a full $\operatorname{Im} \varphi$ -module. In particular, if Φ is surjective, and if W is a full \mathcal{B} -module, then φ is also a surjection.

Proof. First suppose that φ is injective. Then by Theorem 2.3 Φ is an isometry which implies that $\operatorname{Im} \Phi$ is a closed subspace of W. Also, $\Phi(v)\varphi(a) = \Phi(va) \in \operatorname{Im} \Phi$ and $\langle \Phi(v), \Phi(w) \rangle = \varphi(\langle v, w \rangle) \in \operatorname{Im} \varphi$. This shows that $\operatorname{Im} \Phi$ is a Hilbert $\operatorname{Im} \varphi$ -module. The last equality also proves $\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\langle V, V \rangle)$.

If V is full, this implies $\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\mathcal{A})$ which means that $\operatorname{Im} \Phi$ is a full $\operatorname{Im} \varphi$ -module. If Φ is a surjection and if W is full, we additionally get $\mathcal{B} = \langle W, W \rangle = \langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle = \varphi(\langle V, V \rangle)$, hence φ is also a surjection.

To prove the general case, take the maps $\overset{\wedge}{\varphi}$ and $\overset{\wedge}{\Phi}$ from Lemma 2.4. Since $\overset{\wedge}{\varphi}$ is an injection, we may apply the first part of the proof.

To do this, one has only to observe $\operatorname{Im} \varphi = \operatorname{Im} \mathring{\varphi}$, $\operatorname{Im} \Phi = \operatorname{Im} \mathring{\Phi}$ and $\langle \operatorname{Im} \Phi, \operatorname{Im} \Phi \rangle \mathring{\varphi}$ $(\langle V/V_{\operatorname{Ker}\varphi}, V/V_{\operatorname{Ker}\varphi} \rangle) \mathring{\varphi}(\pi(\langle V, V \rangle)) = \varphi(\langle V, V \rangle)$. (The equality $\langle V/V_{\operatorname{Ker}\varphi}, V/V_{\operatorname{Ker}\varphi} \rangle \pi(\langle V, V \rangle)$ is noted in *Remark 1.7*.)

Remark 2.6. Let us observe: if V is a full A-module and if φ and Φ are surjective, then W is also a full \mathcal{B} -module.

On the other hand, we cannot conclude that Φ is a surjection if φ is surjective, even if V and W are full. As an example we may take $V = A, W = A \oplus A$, $\varphi = id, \Phi(a) = (a, 0)$.

Example 2.7. Let \mathcal{A} and \mathcal{B} be C^* -algebras considered as Hilbert C^* -modules over \mathcal{A} and \mathcal{B} , respectively. Let $\varphi: \mathcal{A} \to \mathcal{B}$ be a morphism of C^* -algebras and let $\Phi: \mathcal{A} \to \mathcal{B}$ be a surjective φ -morphism of Hilbert C^* -modules \mathcal{A} and \mathcal{B} . Then there exists an isometry m in the multiplier C^* -algebra of \mathcal{B} , $m \in M(\mathcal{B})$, such that $\Phi(a) = m\varphi(a), \forall a \in \mathcal{A}$.

To prove this, let us take any approximate unit (e_j) for \mathcal{A} . We shall show that $(\Phi(e_j))$ is a net in \mathcal{B} strictly convergent in $M(\mathcal{B})$. First observe that \mathcal{A} and \mathcal{B} are full, so φ is also surjective.

For each $b \in \mathcal{B}$ there exists $a \in \mathcal{A}$ such that $\varphi(a) = b$. Now, $\Phi(e_j)b = \Phi(e_j)\varphi(a) = \Phi(e_ja)$ converges since (e_j) is an approximate unit for \mathcal{A} and Φ is continuous. On the other hand, since Φ is by assumption a surjection, there exists $c \in \mathcal{A}$ such that $(\Phi(c))^* = b$. This implies $b\Phi(e_j) = (\Phi(c))^*\Phi(e_j) = \langle \Phi(c), \Phi(e_j) \rangle = \varphi(\langle c, e_j \rangle) = \varphi(c^*e_j)$, hence $b\Phi(e_j)$ converges too.

Let $m \in M(\mathcal{B})$ be the strict limit: $m = (st.) \lim_{j} \Phi(e_{j})$; i.e. $mb = \lim_{j} \Phi(e_{j})b$, $bm = \lim_{j} b\Phi(e_{j})$, $\forall b \in \mathcal{B}$. Using continuity of Φ we get $\Phi(a) = \Phi(\lim_{j} e_{j}a) \lim_{j} \Phi(e_{j}a)$ $= \lim_{j} \Phi(e_{j})\varphi(a) = m\varphi(a)$, $\forall a \in \mathcal{A}$. It remains to show that m is an isometry. First, $\langle \Phi(x), \Phi(y) \rangle = \langle m\varphi(x), m\varphi(x) \rangle = \varphi(x)^*m^*m\varphi(y)$. On the other hand, $\langle \Phi(x), \Phi(y) \rangle = \varphi(\langle x, y \rangle) = \varphi(x^*y) = \varphi(x)^*\varphi(y)$. Since φ is a surjection, this gives $bm^*mc = bc$, $\forall b, c \in \mathcal{B}$ i.e. $(bm^*m - b)c = 0$, $\forall b, c \in \mathcal{B}$. Taking $c = (bm^*m - b)^*$ we find $bm^*m - b = 0$, $\forall b \in \mathcal{B}$. The last equality can be written in the form

 $b(m^*m-1)=0, \forall b\in\mathcal{B}.$ Since \mathcal{B} in an essential ideal in $M(\mathcal{B})$, this implies $m^*m-1=0.$

Definition 2.8. Let \mathcal{A} and \mathcal{B} be C^* -algebras, and let V and W be Hilbert C^* -modules over \mathcal{A} and \mathcal{B} , respectively. A map $\Phi: V \to W$ is said to be a unitary operator if there exists an injective morphism of C^* -algebras $\varphi: \mathcal{A} \to \mathcal{B}$ such that Φ is a surjective φ -morphism.

Remark 2.9.

- (a) Each unitary operator of Hilbert C*-modules is necessarily (by Theorem 2.3) an isometry.
- (b) Since Φ is a surjection, Proposition 2.5 implies $\langle W, W \rangle = \varphi(\langle V, V \rangle) \simeq \langle V, V \rangle$. If W is additionally a full \mathcal{B} -module, then φ is also surjective, hence an isomorphism of C^* -algebras.
- (c) If V is a Hilbert C*-module over a C*-algebra A and if φ : A → B is an isomorphism of C*-algebras, then V can also be regarded a Hilbert B-module and the identity map is obviously a unitary operator between these two versions of V.
 - Conversely, if V and W are full unitary equivalent Hilbert C^* -modules over C^* -algebras \mathcal{A} and \mathcal{B} , respectively (in the sense that there exists a unitary operator $\Phi: V \to W$), then \mathcal{A} and \mathcal{B} are isomorphic C^* -algebras.
- (d) Suppose that V and W are full Hilbert C^* -modules over A and B, respectively. Let $\varphi: A \to B$ be an isomorphism of C^* -algebras. Then a surjective operator $\Phi: V \to W$ satisfying $\Phi(va)\Phi(v)\varphi(a)$, $\forall v \in V$, $\forall a \in A$ is a unitary operator of Hilbert C^* -modules if and only if Φ is an isometry.

To see this, we have to show that Φ , having the property $\|\Phi(v)\| = \|v\|$, $\forall v \in V$, also satisfies the condition from Definition 2.1. This can be done by repeating the nice argument from [4], Theorem 3.5.

Take $x \in V$ and $b \in \mathcal{B}$. Then there exists $a \in \mathcal{A}$ such that $\varphi(a) = b$ and

$$\begin{split} \|\langle \Phi(x), \Phi(x) \rangle^{1/2} b\|^2 &= \|b^* \langle \Phi(x), \Phi(x) \rangle b\| = \|\langle \Phi(x)b, \Phi(x)b \rangle \| \\ &= \|\langle \Phi(x)\varphi(a), \Phi(x)\varphi(a) \rangle \| = \|\langle \Phi(xa), \Phi(xa) \rangle \| \\ &= \|\Phi(xa)\|^2 = \|xa\|^2 = \|\langle xa, xa \rangle \| = \|\varphi(\langle xa, xa \rangle) \| \\ &= \|\varphi(\langle x, x \rangle)^{1/2} \varphi(a)\|^2 = \|\varphi(\langle x, x \rangle)^{1/2} b\|^2. \end{split}$$

By Lemma 3.4 from [4] this implies $\langle \Phi(x), \Phi(x) \rangle^{1/2} = \varphi(\langle x, x \rangle)^{1/2}$.

- (e) Unitary equivalence of full Hilbert C^* -modules is an equivalence relation.
- (f) Suppose that V and W are full Hilbert C*-modules over C*-algebras \mathcal{A} and \mathcal{B} , respectively such that $\varphi: \mathcal{A} \to \mathcal{B}$ is an isomorphism and that $\Phi: V \to W$ is a unitary φ -morphism. Then $\Phi^{-1}: W \to V$ is a unitary φ^{-1} -morphism. Then we also have

$$\langle w, \Phi(x) \rangle = \varphi(\langle \Phi^{-1}(w), x \rangle), \ \forall x \in V, \ w \in W.$$

Indeed, putting $w = \Phi(v)$, one obtains

$$\langle w, \Phi(x) \rangle = \langle \Phi(v), \Phi(x) \rangle = \varphi(\langle v, x \rangle) = \varphi(\Phi^{-1}(w), x \rangle).$$

Example 2.10. Consider an arbitrary C^* -algebra \mathcal{A} regarded as a Hilbert \mathcal{A} -module with $\langle a,b\rangle=a^*b$. It is well known that the map $\gamma:\mathcal{A}\to K(\mathcal{A}),\ \gamma(a)=T_a,\ T_a(x)=ax$ is an isomorphism of C^* -algebras. Its unique extension to the corresponding multiplier algebras ([9], Proposition 2.2.16) $\overline{\gamma}:M(\mathcal{A})\to B(\mathcal{A})$ is also an isomorphism of C^* -algebras and acts in the same way: $\overline{\gamma}(m)=T_m,\ T_m(x)=mx$.

Let V be a Hilbert A-module, let us denote $V_d = \mathbf{B}(A, V)$. It is well known that V_d is a Hilbert $\mathbf{B}(A)$ -module with the $\mathbf{B}(A)$ -valued inner product $\langle r_1, r_2 \rangle = r_1^* r_2$ such that the resulting norm coincides with the operator norm on V_d .

Further, each $v \in V$ induces the map $r_v \in V_d$ given by $r_v(a) = va$. It is also known ([7], Lemma 2.32) that $\{r_v : v \in V\} = \mathbf{K}(A, V) \subseteq V_d$.

(Observe that each $v \in V$ also induces the map $l_v : V \to \mathcal{A}$ defined by $l_v(x) = \langle v, x \rangle$. Notice that $l_v^* = r_v$ and $\{l_v : v \in V\} = \mathbf{K}(V, \mathcal{A}) \subseteq \mathbf{B}(V, \mathcal{A})$.)

Now one can easily verify the following assertions:

- (1) $\Gamma: V \to V_d$, $\Gamma(v) = r_v$ is a γ -morphism of Hilbert C^* -modules.
- (2) $Im\Gamma$ is the ideal submodule of V_d associated with the ideal K(A) of B(A).
- (3) $\Gamma: V \to Im\Gamma = \mathbf{K}(A, V)$ is a unitary γ -morphism of Hilbert C^* -modules.

Proposition 2.11. Let V and W be Hilbert C^* -modules over C^* -algebras \mathcal{A} and \mathcal{B} respectively, let $\varphi: \mathcal{A} \to \mathcal{B}$ be an injective morphism and let $\Phi: V \to W$ be a unitary φ -morphism. Then the map $\Phi^+: \mathbf{B}(V) \to \mathbf{B}(W), \Phi^+(T) = \Phi T \Phi^{-1}$ is an isomorphism of C^* -algebras. Moreover, $\Phi^+(\theta_{x,y}) = \theta_{\Phi(x),\Phi(y)}, \forall x,y \in V$ and $\Phi^+(\mathbf{K}(V)) = \mathbf{K}(W)$.

Proof. First observe that $\Phi^+(T) = \Phi T \Phi^{-1}$ is an adjointable operator, in fact we claim $(\Phi T \Phi^{-1})^* = \Phi T^* \Phi^{-1}$. Indeed,

$$\langle w_1, \Phi T \Phi^{-1} w_2 \rangle = (Remark \, 2.9(f)) = \varphi(\langle \Phi^{-1} w_1, T \Phi^{-1} w_2 \rangle)$$

= $\varphi(\langle T^* \Phi^{-1} w_1, \Phi^{-1} w_2 \rangle) = (Remark \, 2.9(f))$
= $\langle \Phi T^* \Phi^{-1} w_1, w_2 \rangle$.

Now one easily verifies that Φ^+ is an isomorphism of C^* -algebras. Further,

$$\Phi^{+}(\theta_{x,y})(w) = \Phi\theta_{x,y}\Phi^{-1}(w) = (\text{puting }\Phi(v) = w) = \Phi(\theta_{x,y}(v))$$
$$= \Phi(x\langle y, v\rangle) = \Phi(x)\varphi(\langle y, v\rangle) = \Phi(x)\langle\Phi(y), \Phi(v)\rangle$$
$$= \theta_{\Phi(x),\Phi(y)}(w).$$

The last statement is an immediate consequence.

Remark 2.12.

(a) Since $\mathbf{B}(V)$ and $\mathbf{B}(W)$ are the multiplier C^* -algebras of $\mathbf{K}(V)$ and $\mathbf{K}(W)$, we know that Φ^+ , satisfying $\Phi^+(\theta_{x,y}) = \theta_{\Phi(x),\Phi(y)}$, $\forall x,y \in V$, is uniquely determined.

- (b) If one applies Proposition 2.11 to the case $V = \mathcal{A}$, $W = \mathcal{B}$, $\Phi = \varphi$, one obtains the uniquely determined extension of φ ensured by the small extension theorem ([9], Proposition 2.2.16): $\varphi^+ : \mathbf{B}(\mathcal{A}) \to \mathbf{B}(\mathcal{B})$, $\varphi^+(T)\varphi T\varphi^{-1}$.
- (c) Proposition 2.11 applied to $V \simeq \Gamma(V) = \mathbf{K}(A, V)$ coincides with (a special case of) Proposition 7.1 in [4].

Corollary 2.13. Let V and W be Hilbert C^* -modules over C^* -algebras \mathcal{A} and \mathcal{B} , let $\varphi: \mathcal{A} \to \mathcal{B}$ be a surjective morphism of C^* -algebras and let $\Phi: V \to W$ be a surjective φ -morphism. There exists a morphism of C^* -algebras $\Phi^+: \mathbf{B}(V) \to \mathbf{B}(W)$ satisfying $\Phi^+(\theta_{x,y}) = \theta_{\Phi(x),\Phi(y)}$ and $\Phi^+(\mathbf{K}(V)) = \mathbf{K}(W)$.

Proof. Considering the quotient $V/\operatorname{Ker}\Phi$ we first apply *Proposition 1.17* and *Corollary 1.18*. The proof is completed by a direct application of *Lemma 2.4* and the preceding proposition.

Remark 2.14. Let V and W be full (right) Hilbert C^* -modules over A, resp. \mathcal{B} , let $\varphi: A \to \mathcal{B}$ be a morphism of C^* -algebras and let $\Phi: V \to W$ be a surjective φ -morphism of Hilbert C^* -modules. We note that Φ is also a Φ^+ -morphism of left Hilbert C^* -modules V and W (when V and W are regarded as the left Hilbert C^* -modules over K(V) and K(W), respectively).

To show this, let us denote by $[\cdot,\cdot]$ the K(V)-inner product on V; i.e. $[x,y]=\theta_{x,y}$; the same notation will be used in W. Now the condition from Definition 2.1 is an immediate consequence of the preceding corollary: $[\Phi(x), \Phi(y)] = \theta_{\Phi(x), \Phi(y)} = \Phi^+(\theta_{x,y}) = \Phi^+([x,y])$.

Now we are able to describe morphisms of Hilbert C^* -modules in terms of the corresponding linking algebras.

Recall that, given a Hilbert A-module V, the linking algebra $\mathcal{L}(V)$ may be written as the matrix algebra of the form

$$\mathcal{L}(V) = \begin{bmatrix} \boldsymbol{K}(\mathcal{A}) & \boldsymbol{K}(V, \mathcal{A}) \\ \boldsymbol{K}(\mathcal{A}, V) & \boldsymbol{K}(V) \end{bmatrix}.$$

(cf. [7], Lemma 2.32 and Corollary 3.21). Observe that $\mathcal{L}(V)$ is in fact the C^* -algebra of all "compact" operators acting on $\mathcal{A} \oplus V$. Keeping the notation from $Example\ 2.10$ we may write

$$\mathcal{L}(V) = \left[\begin{array}{cc} \boldsymbol{K}(\mathcal{A}) & \boldsymbol{K}(V,\mathcal{A}) \\ \boldsymbol{K}(\mathcal{A},V) & \boldsymbol{K}(V) \end{array} \right] = \left\{ \left[\begin{array}{cc} T_a & l_y \\ r_x & T \end{array} \right] : a \in \mathcal{A}, x,y \in V, T \in \boldsymbol{K}(V) \right\}.$$

Accordingly, we shall also identify the C^* -algebras of "compact" operators with the corresponding corners in the linking algebra: $\mathbf{K}(\mathcal{A}) = \mathbf{K}(\mathcal{A} \oplus 0) \subseteq \mathbf{K}(\mathcal{A} \oplus V) = \mathcal{L}(V)$ and $\mathbf{K}(V) = \mathbf{K}(0 \oplus V) \subseteq \mathbf{K}(\mathcal{A} \oplus V) = \mathcal{L}(V)$.

Theorem 2.15. Let V and W be full Hilbert C^* -modules over \mathcal{A} , resp. \mathcal{B} , let $\varphi: \mathcal{A} \to \mathcal{B}$ be a morphism of C^* -algebras and let $\Phi: V \to W$ be a surjective φ -morphism of Hilbert C^* -modules. Then the map $\rho_{\varphi,\Phi}: \mathcal{L}(V) \to \mathcal{L}(W)$ defined by

$$\rho_{\varphi,\Phi}\left(\begin{bmatrix}T_a \ l_y\\ r_x \ T\end{bmatrix}\right) = \begin{bmatrix}T_{\varphi(a)} \ l_{\Phi(y)}\\ r_{\Phi(x)} \ \Phi^+(T)\end{bmatrix}$$

is a morphism of C^* -algebras. Conversely, let $\rho: \mathcal{L}(V) \to \mathcal{L}(W)$ be a morphism of C^* -algebras such that $\rho(\mathbf{K}(\mathcal{A})) \subseteq \mathbf{K}(\mathcal{B})$ and $\rho(\mathbf{K}(V)) \subseteq \mathbf{K}(W)$. Then there exist a morphism of C^* -algebras $\varphi: \mathcal{A} \to \mathcal{B}$ and a φ -morphism $\Phi: V \to W$ such that $\rho = \rho_{\varphi,\Phi}$.

Proof. Clearly, $\rho_{\varphi,\Phi}$ is a linear map. Further,

$$\begin{split} \rho_{\varphi,\Phi}\left(\begin{bmatrix}T_{a} \ l_{v} \\ r_{w} \ T\end{bmatrix}\begin{bmatrix}T_{b} \ l_{x} \\ r_{y} \ S\end{bmatrix}\right) &= \rho_{\varphi,\Phi}\left(\begin{bmatrix}T_{ab} + T_{\langle v,y\rangle} \ l_{xa^{*}} + l_{S^{*}v} \\ r_{wb} + r_{Ty} \ \theta_{w,x} + TS\end{bmatrix}\right) \\ &= \begin{bmatrix}T_{\varphi(ab+\langle v,y\rangle)} \ l_{\Phi(xa^{*}+S^{*}v)} \\ r_{\Phi(wb+Ty)} \ \Phi^{+}(\theta_{w,x} + TS)\end{bmatrix} \\ &= \begin{pmatrix} \text{applying } Remark \ 2.14 \text{ to} \\ \text{off-diagonal elements} \end{pmatrix} \\ &= \begin{bmatrix}T_{\varphi(a)\varphi(b)} + T_{\langle \Phi(v),\Phi(y)\rangle} \ l_{\Phi(x)\varphi(a^{*})} + l_{\Phi^{+}(S^{*})\Phi(v)} \\ r_{\Phi(w)\varphi(b)} + r_{\Phi^{+}(T)\Phi(y)} \ \theta_{\Phi(w),\Phi(x)} + \Phi^{+}(TS)\end{bmatrix} \\ &= \begin{bmatrix}T_{\varphi(a)} \ l_{\Phi(v)} \\ r_{\Phi(w)} \ \Phi^{+}(T)\end{bmatrix}\begin{bmatrix}T_{\varphi(b)} \ l_{\Phi(x)} \\ r_{\Phi(y)} \ \Phi^{+}(S)\end{bmatrix} \\ &= \rho_{\varphi,\Phi}\left(\begin{bmatrix}T_{a} \ l_{v} \\ r_{w} \ T\end{bmatrix}\right) \rho_{\varphi,\Phi}\left(\begin{bmatrix}T_{b} \ l_{x} \\ r_{y} \ S\end{bmatrix}\right). \end{split}$$

To prove the converse, first observe that, by assumption, we may write

$$\rho\left(\left[\begin{matrix} T_a & 0 \\ 0 & T \end{matrix} \right]\right) = \left[\begin{matrix} T_{\varphi(a)} & 0 \\ 0 & \Psi(T) \end{matrix} \right].$$

It should be noted that the definition of φ actually uses the standard identification $a \leftrightarrow T_a, a \in \mathcal{A}, T_a \in \mathbf{K}(\mathcal{A})$ denoted by γ in Example 2.10. Obviously, both φ and Ψ are morphisms of C^* -algebras.

Take any
$$x \in V$$
 and write $\rho\left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}\right) = \begin{bmatrix} \rho_{11}(x) & \rho_{12}(x) \\ \rho_{21}(x) & \rho_{22}(x) \end{bmatrix}$. Then

$$\begin{split} &\rho\left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}\right)^*\rho\left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}\right) = \begin{bmatrix} \rho_{11}(x)^* & \rho_{21}(x)^* \\ \rho_{12}(x)^* & \rho_{22}(x)^* \end{bmatrix} \begin{bmatrix} \rho_{11}(x) & \rho_{12}(x) \\ \rho_{21}(x) & \rho_{22}(x) \end{bmatrix} \\ &= \begin{bmatrix} \rho_{11}(x)^*\rho_{11}(x) + \rho_{21}(x)^*\rho_{21}(x) & \rho_{11}(x)^*\rho_{12}(x) + \rho_{21}(x)^*\rho_{22}(x) \\ \rho_{12}(x)^*\rho_{11}(x) + \rho_{22}(x)^*\rho_{21}(x) & \rho_{12}(x)^*\rho_{12}(x) + \rho_{22}(x)^*\rho_{22}(x) \end{bmatrix}. \end{split}$$

Observing $\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}^* = \begin{bmatrix} 0 & l_x \\ 0 & 0 \end{bmatrix}$ and comparing the above result with

$$\rho\left(\begin{bmatrix}0 & l_x \\ 0 & 0\end{bmatrix}\begin{bmatrix}0 & 0 \\ r_x & 0\end{bmatrix}\right) = \rho\left(\begin{bmatrix}T_{\langle x,x\rangle} & 0 \\ 0 & 0\end{bmatrix}\right) = \begin{bmatrix}T_{\varphi(\langle x,x\rangle)} & 0 \\ 0 & 0\end{bmatrix}$$

we find $\rho_{12}(x) = \rho_{22}(x) = 0$. Similarly, calculating $\rho\left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}\right) \rho\left(\begin{bmatrix} 0 & 0 \\ r_x & 0 \end{bmatrix}\right)^*$, one additionally gets $\rho_{11} = 0$. After all, we conclude that ρ may be written in the form $\rho\left(\begin{bmatrix} T_a & l_y \\ r_x & T \end{bmatrix}\right) = \begin{bmatrix} T_{\varphi(a)} & l_{\Phi_2(y)} \\ r_{\Phi_1(x)} & \Psi(T) \end{bmatrix}$. Obviously, the induced maps Φ_1 and Φ_2 are linear.

Let us show
$$\Phi_1 = \Phi_2$$
. Indeed, $\rho\left(\begin{bmatrix}0&0\\r_x&0\end{bmatrix}\right)^* = \rho\left(\begin{bmatrix}0&0\\r_x&0\end{bmatrix}^*\right)$ implies $\begin{bmatrix}0&l_{\Phi_1(x)}\\0&0\end{bmatrix} = \begin{bmatrix}0&l_{\Phi_2(x)}\\0&0\end{bmatrix}$, thus $\Phi_1(x) = \Phi_2(x)$ which enables us to write $\Phi_1 = \Phi_2 = \Phi$. Finally,

$$\rho\left(\left[\begin{array}{cc}0&l_y\\r_x&0\end{array}\right]\left[\begin{array}{cc}0&l_x\\r_y&0\end{array}\right]\right)=\rho\left(\left[\begin{array}{cc}T_{\langle y,y\rangle}&0\\0&\theta_{x,x}\end{array}\right]\right)=\left[\begin{array}{cc}T_{\varphi(\langle y,y\rangle)}&0\\0&\Psi(\theta_{x,x})\end{array}\right].$$

On the other hand, knowing that ρ is multiplicative, one obtains

$$\begin{split} &\rho\left(\left[\begin{array}{c} 0 \ l_y \\ r_x \ 0 \end{array}\right] \left[\begin{array}{c} 0 \ l_x \\ r_y \ 0 \end{array}\right]\right) = \rho\left(\left[\begin{array}{c} 0 \ l_y \\ r_x \ 0 \end{array}\right]\right) \rho(\left[\begin{array}{c} 0 \ l_x \\ r_y \ 0 \end{array}\right]\right) \\ &= \left[\begin{array}{c} 0 \ l_{\Phi(y)} \\ r_{\Phi(x)} \ 0 \end{array}\right] \left[\begin{array}{c} 0 \ l_{\Phi(x)} \\ r_{\Phi(y)} \ 0 \end{array}\right] = \left[\begin{array}{c} T_{\langle \Phi(y), \Phi(y) \rangle} \ 0 \\ 0 \ \theta_{\Phi(x), \Phi(x)} \end{array}\right]. \end{split}$$

This is enough (together with Corollary 2.13) to conclude $\rho = \rho_{\varphi,\Phi}$.

Notice that the assumptions $\rho(K(A)) \subseteq K(B)$ and $\rho(K(V)) \subseteq K(W)$ cannot be dropped from the hypothesis of the second assertion in *Theorem 2.15*.

Let us also note an alternative description of $\rho_{\varphi,\Phi}$. First, define

$$\varphi \oplus \Phi : \mathcal{A} \oplus V \to \mathcal{B} \oplus W, \quad (\varphi \oplus \Phi)(a,v) = (\varphi(a),\Phi(v)).$$

One easily verifies that $\varphi \oplus \Phi$ is a φ -morphism of Hilbert C^* -modules. After applying Corollary 2.13 it turns out that $(\varphi \oplus \Phi)^+ = \rho_{\varphi,\Phi}$.

At the end let us mention a similar characterization of ideal submodules in terms of linking algebras: there is a natural bijective correspondence between the set of all ideal submodules of a Hilbert C^* -module V and the set of all ideals of the corresponding linking algebra $\mathcal{L}(V)$. Moreover, the ideal submodule associated with an essential ideal corresponds to an essential ideal in $\mathcal{L}(V)$. The proof is an easy calculation similar to the preceding one, hence omitted.

Note added in proof: In Corollary 2.13 as well as in the subsequent Remark 2.14 and Theorem 2.15 the assumption that Φ is surjective is redundant. In fact, the map $\Phi^+: \mathbf{B}(V) \to \mathbf{B}(W)$ satisfying $\Phi^+(\theta_{x,y}) = \theta_{\Phi(x),\Phi(y)}$ is always well defined. This can be seen using the identification $\mathbf{K}(V) = V \otimes_{hA} V^*$ (cf. D. BLECHER, A new approach to Hilbert C*-modules, Math. Ann. 307(1997), 253-290). We thank to the anonymous referee for this observation.

References

- [1] L. G. Brown, J. A. Mingo, N.-T. Shen, Quasi-multipliers and embeddings of Hilbert C*-bimodules, Can. J. Math. 46(6)(1994), 1150-1174.
- [2] K. K. Jensen, K. Thomsen, Elements of KK-theory, Birkhäuser, 1991.
- [3] I. KAPLANSKY, Modules over operator algebras, Amer. J. Math. 75(1953), 839–853.

- [4] C. Lance, *Hilbert C*-modules: a toolkit for operator algebraists*, London Math. Soc. Lecture Notes Series, vol. **210**, Cambridge University Press, Cambridge, 1994.
- [5] W. Paschke, Inner product modules over B^* -algebras, Trans. Amer. Math. Soc. **182**(1973), 443–468.
- [6] G. K. Pedersen, Factorization in C^* -algebras, Exposition Math. **16**(1998), 145–156.
- [7] I. RAEBURN, D. P. WILLIAMS, Morita equivalence and continuous-trace C^* -algebras, Mathematical Surveys and Monographs **60**, AMS, Philadelphia, 1998.
- [8] M. A. RIEFFEL, *Induced representations of C*-algebras*, Advances in Math. **13**(1974), 176–257.
- [9] N. E. WEGGE-OLSEN, K-theory and C^* -algebras, Oxford University Press, Oxford, 1993.
- [10] H. H. ZETTL, Ideals in Hilbert modules and invariants under strong Morita equivalence of C*-algebras, Arch. Math. 39(1982), 69–77.