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On a class of module maps of Hilbert C∗-modules
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Abstract. The paper describes some basic properties of a class of
module maps of Hilbert C∗-modules.

In Section 1 ideal submodules are considered and the canonical Hilbert
C∗-module structure on the quotient of a Hilbert C∗-module over an ideal
submodule is described. Given a Hilbert C∗-module V , an ideal submod-
ule VI, and the quotient V/VI, canonical morphisms of the corresponding
C∗-algebras of adjointable operators are discussed.

In the second part of the paper a class of module maps of Hilbert
C∗-modules is introduced. Given Hilbert C∗-modules V and W and a
morphism ϕ : A → B of the underlying C∗-algebras, a map Φ : V → W
belongs to the class under consideration if it preserves inner products
modulo ϕ: 〈Φ(x), Φ(y)〉 = ϕ(〈x, y〉) for all x, y ∈ V . It is shown that
each morphism Φ of this kind is necessarily a contraction such that the
kernel of Φ is an ideal submodule of V . A related class of morphisms of
the corresponding linking algebras is also discussed.
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Introduction

A (right) Hilbert C∗-module over a C∗-algebra A is a right A-module V equipped
with an A-valued inner product 〈·, ·〉 which is A-linear in the second and conjugate
linear in the first variable such that V is a Banach space with the norm ‖v‖ =
‖〈v, v〉‖1/2. Hilbert C∗-modules are introduced and initially investigated in [3], [5]
and [8].

The present paper is organized as an introduction to a study of extensions of
Hilbert C∗-modules.

Section 1 contains a detailed discussion on ideal submodules. As their basic
properties are already known (see [10] and [7]), some of the results are stated with-
out proof. The starting point is Theorem 1.6 which states that the quotient of a
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Hilbert C∗-module over an ideal submodule admits a natural Hilbert C∗-module
structure. Considering a Hilbert C∗-module V , an ideal submodule VI ⊆ V , and the
quotient V/VI , we describe canonical morphisms of the corresponding C∗-algebras
of adjointable operators B(V ), B(VI) and B(V/VI). Also, some properties of ideal
submodules arising from essential ideals are obtained. In particular, we show in
Theorem 1.12 that the canonical morphism α : B(V ) → B(VI) sending each oper-
ator T to its restriction T |VI is an injection if and only if I is an essential ideal in
the underlying C∗-algebra A.

In Section 2 a class of module maps of Hilbert C∗-modules over possibly different
C∗-algebras is introduced. We consider morphisms of Hilbert C∗-modules which
are in a sense supported by morphisms of the underlying C∗-algebras. Their basic
properties are collected and a couple of examples is provided. In Theorem 2.15 we
establish a correspondence between the class of module maps under consideration
and a class of morphisms of the corresponding linking algebras.

The present material provides a necessary tool for the later study of extensions
of Hilbert C∗-modules. A related discussion will appear in our subsequent paper.

Throughout the paper we denote the C∗-algebras of all adjointable and ”com-
pact” operators on a Hilbert C∗-module V by B(V ) and K(V ), respectively. We
also use B(·, ·) and K(·, ·) to denote spaces of all adjointable, resp. ”compact”
operators acting between different Hilbert C∗-modules.

We denote by 〈V, V 〉 the closed linear span of all elements in the underlying
C∗-algebra A of the form 〈x, y〉, x, y ∈ V . Obviously, 〈V, V 〉 is an ideal in A.
(Throughout the paper, an ideal in a C∗-algebra always means a closed two-sided
ideal.) V is said to be a full A-module if 〈V, V 〉 = A.

For this and other general facts concerned with Hilbert C∗-modules we refer to
[4], [7] and [9].

1. Ideal submodules and quotients of Hilbert C∗-modules

We begin with the definition of an ideal submodule. A related discussion can be
found in [10].

Definition 1.1. Let V be a Hilbert C∗-module over A, and I an ideal in A. The
associated ideal submodule VI is defined by

VI = [V I]− = [{vb : v ∈ V, b ∈ I}]−

(the closed linear span of the action of I on V ).

Clearly, VI is a closed submodule of V . It can be also regarded as a Hilbert
C∗-module over I.

In general, there exist closed submodules which are not ideal submodules. For
instance, if a C∗-algebra A is regarded as a Hilbert A-module (with the inner prod-
uct 〈a, b〉 = a∗b), then ideal submodules of A are precisely ideals in A, while closed
submodules of A are closed right ideals in A.

We proceed with a couple of basic properties of ideal submodules. Our first
proposition is already known ([10]).
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Proposition 1.2. Let V be a Hilbert C∗-module over A, and let I be an ideal in
A. Then VI = V I = {vb : v ∈ V, b ∈ I}.

Proof. The associated ideal submodule VI is by definition equal to VI =
[V I]− = [{vb : v ∈ V, b ∈ I}]−. Regarding VI as a Hilbert I-module we may apply
the Hewitt-Cohen factorization theorem ([6], Theorem 4.1, see also [7], Proposition
2.31): for each x ∈ VI there exist y ∈ VI and b ∈ I such that x = yb. This shows
V I ⊆ [V I]− = VI ⊆ VII ⊆ V I, i.e. VI = V I. ✷

Proposition 1.3. Let V be a Hilbert A-module, I an ideal in A, and VI the asso-
ciated ideal submodule. Then

VI = {x ∈ V : 〈x, x〉 ∈ I} = {x ∈ V : 〈x, v〉 ∈ I, ∀v ∈ V }.

If V is full, then VI is full as a Hilbert I-module.

Proof. 〈vb, vb〉 = b∗〈v, v〉b ∈ I, ∀b ∈ I, ∀v ∈ V . This shows x = vb ∈ VI ⇒
〈x, x〉 ∈ I. A well known formula ([9], Lemma 15.2.9)

x = lim
n

x

(
〈x, x〉 +

1
n

)−1

〈x, x〉, ∀x ∈ V

implies the converse. The second equality is now an immediate consequence.
Suppose that V is full as a Hilbert C∗-module over A. Then there is an approxi-

mate unit (aλ) for A such that each aλ is a finite sum of the form aλ =
∑n(λ)

i=1 〈xλ
i , xλ

i 〉
([1], Remark 1.9). Take any positive b ∈ I, let ε be given.

Since (aλ) is an approximate unit for A, there exists λ such that ‖b1/2−aλb1/2‖
is small enough so that ‖b1/2(b1/2 − aλb1/2)‖ < ε. It remains to observe that the
left-hand side of the above inequality can be rewritten in the form

‖b − b1/2aλb1/2‖ = ‖b −
n(λ)∑
i=1

〈xλ
i b1/2, xλ

i b1/2〉‖.

This shows that b can be approximated by inner products of elements from VI , i.e.
b ∈ 〈VI , VI〉. ✷

Now we introduce a natural Hilbert C∗-module structure on the quotient of a
Hilbert C∗-module over an ideal submodule.

Definition 1.4. Let V be a Hilbert C∗-module over A, I an ideal in A, and VI
the associated ideal submodule. Denote by π : A → A/I and q : V → V/VI
the quotient maps. A right action of A/I on the linear space V/VI is defined by
q(v)π(a) = q(va).

The action of A/I on the quotient V/VI given by q(v)π(a) = q(va) is well
defined precisely because VI is an ideal submodule of V . Indeed, if π(a) = π(a′)
then q(v)π(a) = q(v)π(a′) is ensured by definition of an ideal submodule: vb ∈
VI , ∀b ∈ I, ∀v ∈ V .

If X is an arbitrary closed submodule of V one can also consider the quotient
of linear spaces V/X . Further, denote by I = 〈X, X〉 ⊆ A the closed linear span of
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the set of all 〈x, y〉, x, y ∈ X . Since X is by assumption a closed submodule of V ,
I is an ideal in A.

Now an action of A/I on V/X given by q(x)π(a) = q(xa) will be unambiguously
defined if and only if vb ∈ X is satisfied for each b ∈ I and v ∈ V ; i.e. V I ⊆ X .
Since X is a closed submodule, this implies VI ⊆ X . Because the reverse inclusion
is always satisfied, we conclude: the action of A/I on V/X is well defined if and
only if X is the ideal submodule VI associated with I = 〈X, X〉.
Remark 1.5. The role of ideal submodules in the preceding discussion should be
compared with Proposition 3.25 in [7]. Recall that each right Hilbert A -module V
is also equipped with a natural left Hilbert K(V )-module structure. Moreover, there
is a standard Hilbert K(V )−A bimodule structure on V . Now one easily show the
following assertions (which are stated without proofs):

(1) Each ideal submodule VI of V is also an ideal submodule of the left Hilbert
K(V )-module V .

(2) Let X be a closed submodule of a right Hilbert C∗-module V . Then X is
an ideal submodule of V if and only if X is a closed subbimodule of the Hilbert
K(V ) −A bimodule V .

The following theorem is known ([7], Proposition 3.25, [10], Lemma 3.1). We
state it for the sake of completeness.

Theorem 1.6. Let V be a Hilbert A-module, I an ideal in A, and VI the associ-
ated ideal submodule. Then V/VI equipped with a right A /I -action from Defini-
tion 1.4 is a pre-Hilbert A/I-module with the inner product given by 〈q(v), q(w)〉 =
π(〈v, w〉). The resulting norm ‖q(v)‖ = ‖π(〈v, v〉)‖1/2 coincides with the quotient
norm d(v, VI) defined on the quotient of Banach spaces V/VI. In particular, V/VI
is complete, hence a Hilbert C∗-module over A/I.

Remark 1.7. V/VI is a full A/I-module if and only if V is full. This follows at
once from the evident equality 〈V/VI , V/VI〉 = π(〈V, V 〉).
Example 1.8. Let us briefly describe an application of Theorem 1.6. Consider a
Hilbert C∗-module V over A and a surjective morphism of C∗-algebras ϕ : A → B.
Define

Nϕ = {x ∈ V : ϕ(〈x, x〉) = 0}.

One easily shows that Nϕ is a closed submodule of V . There is a standard con-
struction ([2], p. 19) which provides a pre-Hilbert B-module structure on V/Nϕ:
one defines q(v)ϕ(a) = q(va) and 〈q(x), q(y)〉 = ϕ(〈x, y〉). However, it seems to be
overlooked that V/Nϕ is already complete with respect to the resulting norm.

To prove this, first observe that A/Kerϕ and B are isomorphic C∗-algebras.
This enables us to regard V/Nϕ as a Hilbert A/Kerϕ-module. Now, Nϕ = {x ∈
V : 〈x, x〉 ∈ Kerϕ} = (by Proposition 1.3) = VKerϕ; i.e. Nϕ is the ideal submodule
associated to the ideal Kerϕ. It remains to apply Theorem 1.6.

Theorem 1.6 also implies that a property of the Rieffel correspondence is that,
assuming that two C∗-algebras are Morita equivalent, the corresponding ideals and
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quotients are Morita equivalent themselves (Proposition 3.25 in [7]). We shall pro-
ceed in a different direction. Our goal is to compare the C∗-algebras of all ad-
jointable and ”compact” operators acting on a Hilbert C∗-module V with the cor-
responding algebras of operators on an ideal submodule VI and the quotient V/VI ,
respectively.

To fix our notation, we recall the definition of the ideal of all ”compact” operators
on a Hilbert C∗-module V . Given v, w ∈ V , let θv,w : V → V denote the operator
defined by θv,w(x) = v〈w, x〉. Each θv,w is an adjointable operator on V and the
linear span

[{θv,w : v, w ∈ V }]

is a two-sided ideal in B(V ). Its closure in the operator norm

K(V ) = [{θv,w : v, w ∈ V }]− ⊆ B(V )

is an ideal in B(V ) and elements of K(V ) are called ”compact” operators.
Let V be a Hilbert A -module. Assume that I is an ideal in A, and let VI be

the associated ideal submodule. Observe that VI is invariant for each T ∈ B(V );
namely T (vb) = (T v)b ∈ VI , ∀b ∈ I, ∀v ∈ V . Consequently, there is an operator
T |VI on VI induced by T such that (T |VI)∗ = T ∗|VI. This gives a well defined map
α : B(V ) → B(VI), α(T ) = T |VI. Clearly, α is a morphism of C∗-algebras.

We shall prove that the map α is an injection if and only if I is an essential
ideal in A. (An ideal I in a C∗-algebra A is said to be essential if its annihilator
I⊥ = {a ∈ A : aI = {0} } is trivial: I⊥ = {0}.)

To do this, we need a few simple results on ideal submodules associated to
essential ideals. We start with a property of essential ideals which is certainly
known. Since we are unable to provide a reference, the proof is included.

Lemma 1.9. Let I be an ideal in a C∗-algebra A. Then I is an essential ideal
in A if and only if there exists a faithful representation ρ : A → B(H) of A on a
Hilbert space H such that I acts non-degenerately on H.

Proof. Suppose I ⊂ A ⊆ B(H) such that I acts non-degenerately on H . Let
(uλ) be an approximate unit for I. Then ξ = limλuλξ, ∀ξ ∈ H . Now a ∈ I⊥

implies auλ = 0, ∀λ, hence a = 0.
To prove the converse, suppose that I is an essential ideal in A. Taking any

faithful representation of A we may write I ⊂ A ⊆ B(H). Define H0 = [I H ]−.
Clearly, I acts non degenerately on H0. Since I is an ideal in A, H0 reduces A.
We shall show that a �→ a|H0 is also a faithful representation of A. Let a|H0 = 0.
Since H0 is invariant for each b ∈ I, this implies ab|H0 = 0, ∀b ∈ I. On the other
hand, ab ∈ I shows ab|H⊥

0 = 0, ∀b ∈ I (observe H⊥
0 = ∩b∈IKer b). This gives

ab = 0, ∀b ∈ I and, since I is essential, a = 0. ✷

Lemma 1.10. Let I be an ideal in a C∗-algebra A. The following conditions are
mutually equivalent:
(a) I is an essential ideal in A.
(b) ‖a‖ = supb∈I,‖b‖≤1‖ab‖, ∀a ∈ A.
(c) ‖a‖ = supb∈I,‖b‖≤1‖ba‖, ∀a ∈ A.
(d) ‖a‖ = supb∈I,‖b‖≤1‖bab∗‖, ∀a ∈ A+.
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Proof. (a) ⇒ (b): By Lemma1.9 we may assume I ⊂ A ⊆ B(H) such that
I acts non-degenerately on H . Given a ∈ A, we have to show ‖a‖ ≤ supb∈I,‖b‖≤1‖ab‖
(the opposite inequality is trivial). Let (uλ) be an approximate unit for I. Then
ξ = limλuλξ, ∀ξ ∈ H . Take ‖ξ‖ ≤ 1. Then

‖aξ‖ = lim
λ

‖auλξ‖ ≤ lim sup
λ

‖auλ‖‖ξ‖ ≤ sup
b∈I,‖b‖≤1

‖ab‖.

(b) ⇔ (c) is obvious (by taking adjoints).
(c) ⇒ (d): Let a be positive. Then

‖a‖ = ‖a1/2‖2 = by (c) = sup
b∈I,‖b‖≤1

‖ba1/2‖2 = sup
b∈I,‖b‖≤1

‖bab∗‖.

(d) ⇒ (a): Take any a ∈ I⊥. Then (d) applied to a∗a gives a∗a = 0, thus
I⊥ = {0}. ✷

Proposition 1.11. Let V be a Hilbert A-module, I an essential ideal in A, and
VI be the associated ideal submodule. Then
(1) ‖v‖ = supb∈I,‖b‖≤1‖vb‖, ∀v ∈ V and
(2) ‖v‖ = supy∈VI ,‖y‖≤1‖〈v, y〉‖, ∀v ∈ V .
Conversely, if V is a full A-module in which (1) or (2) is satisfied with respect to
(the ideal submodule associated with) some ideal I in A, then I is an essential ideal
in A.

Proof. Take any v ∈ V . Using Lemma1.10(d) we find

‖v‖2 = ‖〈v, v〉‖ = sup
b∈I,‖b‖≤1

‖b∗〈v, v〉b‖ = sup
b∈I,‖b‖≤1

‖vb‖2.

To prove the second formula, take any v ∈ V such that ‖v‖ = 1. Then

‖v‖ = ‖v‖2 = ‖〈v, v〉‖ = (by Lemma1.10(b)) = sup
b∈I,‖b‖≤1

‖〈v, v〉b‖

= sup
b∈I,‖b‖≤1

‖〈v, vb〉‖ ≤ sup
y∈VI ,‖y‖≤1

‖〈v, y〉‖ ≤ ‖v‖.

To prove the converse, suppose that V is a full A-module and I is not essential so
that I⊥ �= {0}. Take any c ∈ I⊥, c �= 0. Then there exists v ∈ V such that vc �= 0.
Indeed, vc = 0, ∀v ∈ V would imply 〈v, vc〉 = 0, ∀v ∈ V or 〈v, v〉c = 0, ∀v ∈ V .
Since V is full, it would follow c∗c = 0, thus c = 0.

After all, it remains to observe that x = vc �= 0 with c ∈ I⊥ contradicts to (1)
and (2), respectively. ✷

Theorem 1.12. Let V be a Hilbert A-module, I an ideal in A, and VI the asso-
ciated ideal submodule. If I is an essential ideal in A , then the map α : B(V ) →
B(VI), α(T ) = T |VI is an injection. Conversely, if V is full and if α is injective,
then I is an essential ideal in A.



On a class of module maps of Hilbert C∗
-modules 183

Proof. Suppose α(T ) = T |VI = 0 for some T . Observe that, since VI is an ideal
submodule, vb ∈ VI, ∀b ∈ I, ∀v ∈ V . Since by assumption T vanishes on VI , this
implies T (vb) = 0, ∀b ∈ I, ∀v ∈ V . Now, taking arbitrary v ∈ V , we find

‖T v‖ = (by Proposition 1.11) = sup
b∈I,‖b‖≤1

‖(T v)b‖ = sup
b∈I,‖b‖≤1

‖T (vb)‖ = 0.

To prove the converse, let V be full and α injective. Assume that I is not essential.
For c ∈ I⊥, c �= 0, find v ∈ V such that vc �= 0 (as in the preceding proof). Then
θvc,vc �= 0, but α(θvc,vc) = θvc,vc|VI = 0 - a contradiction. ✷

Remark 1.13. In general, α is not surjective, even if I is an essential ideal in A.
As an example, consider a nonunital C∗-algebra A contained as an essential ideal
in a unital C∗-algebra B. Assume further that B is not the maximal unitization of
A, i.e. that B is properly contained in the multiplier algebra M(A). Consider B as
a Hilbert B-module. It is well known that, since B is unital, K(B) = B(B) = B.
Further, A is an ideal submodule of B associated with the essential ideal A of B.
We also know K(A) = A and B(A) = M(A). One easily concludes that the
map α : B(B) = B → B(A) = M(A) from Theorem 1.12 acts as the inclusion
B ↪→ M(A); thus, by assumption, α is not a surjection.

Consider again an arbitrary Hilbert A-module and an ideal I in A. Using the
map α one can easily determine K(VI). Our next proposition, in which K(VI) is
recognized as an ideal in K(V ), is known; hence we state it without proof. For
the proof we refer to [7], Theorem 3.22. (Alternatively, it can be deduced from
Theorem 1.12 above after observing that for each ideal I in A, we have VI ⊕VI⊥ =
VI⊕I⊥ .)

Proposition 1.14. Let V be a Hilbert A-module, I an ideal in A, and VI be the
associated ideal submodule. Then J = [{θx,y : x, y ∈ VI}]− ⊆ K(V ) is an ideal in
K(V ) and the restriction α′ = α|J : J → K(VI) is an isomorphism of C∗-algebras.

Remark 1.15. Using the same notation as above one easily concludes that VI
is also an ideal submodule of the left K(V )-module V (with the inner product
[x, y] = θx,y) associated with the ideal J = [{θx,y : x, y ∈ VI}]− ⊆ K(V ). As
in Proposition 1.3 one obtains VI = {x ∈ V : θx,v ∈ J , ∀v ∈ V }.
Corollary 1.16. Let V be a full Hilbert A-module, I an ideal in A, t VI the asso-
ciated ideal submodule. Then:

(i) J = [{θx,y : x, y ∈ VI}]− � K(VI) is an essential ideal in K(V ) if and only
if I is an essential ideal in A.

(ii) J = K(V ) if and only if I = A.

Proof. Assume that I is an essential ideal in A and take T ∈ K(V ) such that
T ⊥ J . By the preceding remark for each v in V and x in VI the operator θv,x

belongs to J , hence T θv,x = θTv,x = 0. In particular, T v〈x, y〉 = 0, ∀x, y ∈ VI .
Since V is full, VI is a full I-module and now the first assertion of Proposition 1.11
implies T v = 0.
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The proof of the second assertion is similar, hence omitted. ✷

We end this section with the corresponding result on quotients. Let I be an
ideal in A, and let VI be the associated ideal submodule. Since VI is invariant

for each T ∈ B(V ), there is a well defined induced operator
∧
T on V/VI given by

∧
T(q(v)) = q(T v). Moreover,

∧
T is adjointable because (

∧
T )∗ =

∧
T ∗. This enables us to

define β : B(V ) → B(V/VI), β(T ) =
∧
T . Obviously, β is a morphism of C∗-algebras.

The following proposition is proved by applying β to the ideal K(V ) of all
”compact” operators on V . However, as the result is already known ([7], Proposition
3.25, see also [10]), we omit the proof.

Proposition 1.17. Let V be a Hilbert A-module, I an ideal in A, VI the associated
ideal submodule, and let J = [{θx,y : x, y ∈ VI}]− ⊆ K(V ) be as in Proposition 1.14.
Then K(V )/J and K(V/VI) are isomorphic C∗-algebras.

Corollary 1.18. Let V be a Hilbert A-module, I an ideal in A, and VI the as-

sociated ideal submodule. Then the map β : B(V ) → B(V/VI), β(T ) =
∧
T is

the unique morphism of C∗-algebras satisfying β(θx,y) = θq(x),q(y), ∀x, y ∈ V and
β(K(V )) = K(V/VI). If V is countably generated, then β is surjective.

Proof. The equality β(θx,y) = θq(x),q(y), ∀x, y ∈ V is verified by a direct calcula-
tion. Since β is a morphism of C∗-algebras, this ensures β(K(V )) = K(V/VI). Now
the small extension theorem applies (see [9], Propositions 2.2.16 and 2.3.7) because
B(V ) and B(V/VI) are the multiplier algebras of β(K(V )), resp. K(V/VI). Thus
β : B(V ) → B(V/VI) is uniquely determined as the extension of β′ = β|K(V ) :
K(V ) → K(V/VI) by strict continuity.

The last assertion follows from Tietze’s extension theorem. First, if V is count-
ably generated, then K(V ) is a σ-unital C∗-algebra ( [4], Proposition 6.7]). Since
β′ : K(V ) → K(V/VI) is a surjection, Proposition 6.8 from [4] implies that β is
also a surjective map. ✷

2. Morphisms of Hilbert C∗-modules

In this section we introduce a class of module maps of Hilbert C∗-modules, not
necessarily over the same C∗-algebra (cf. [2], p. 9, [4], p. 24 and also [7], p. 57). The
motivating example is provided by the quotient map q : V → V/VI taking values
in the quotient module of V over an ideal submodule VI satisfying 〈q(x), q(y)〉 =
π(〈x, y〉).
Definition 2.1. Let V and W be Hilbert C∗-modules over C∗-algebras A and B,
respectively. Let ϕ : A → B be a morphism of C∗-algebras. A map Φ : V → W
is said to be a ϕ-morphism of Hilbert C∗-modules if 〈Φ(x), Φ(y)〉 = ϕ(〈x, y〉) is
satisfied for all x, y in V .

Using polarization, one immediately concludes that Φ is a ϕ-morphism if and
only if 〈Φ(x), Φ(x)〉 = ϕ(〈x, x〉) is satisfied for each x in V .

It is also easy to show that each ϕ-morphism is necessarily a linear operator and
a module map in the sense Φ(va)Φ(v)ϕ(a), ∀v ∈ V, ∀a ∈ A .
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Further, let ϕ : A → B and ψ : B → C be morphisms of C∗-algebras and let
V, W, Z be Hilbert C∗-modules over A,B, C, respectively. If Φ : V → W is a ϕ-
morphism and Ψ : W → Z is a ψ-morphism, then obviously ΨΦ : V → Z is a
ψϕ-morphism of Hilbert C∗-modules.

Example 2.2. Consider a Hilbert C∗-module V over a C∗-algebra A. Let I be an
ideal in A, and let VI be the associated ideal submodule. Then we have an exact
sequence of C∗-algebras I i→ A π→ A/I and the corresponding sequence of Hilbert
C∗-modules VI

j→ V
q→ V/VI. (Here i and j denote inclusions while π and q denote

canonical quotient maps). Obviously, j is an i-morphism and q is a π-morphism in
the sense of the above definition.

Theorem 2.3. Let V and W be Hilbert C∗-modules over C∗-algebras A and B,
respectively. Let ϕ : A → B be a morphism of C∗-algebras and let Φ : V → W be
a ϕ-morphism of Hilbert C∗-modules. Then Φ is a contraction satisfying KerΦ =
VKerϕ. If ϕ is an injection, then Φ is an isometry, hence also injective. If V is a
full A-module and if Φ is injective, then ϕ is also an injection.

Proof. 〈Φ(x), Φ(y)〉 = ϕ(〈x, y〉) ⇒ ‖Φ(x)‖2 = ‖〈Φ(x), Φ(x)〉‖ = ‖ϕ(〈x, x〉)‖ ≤
‖〈x, x〉‖ = ‖x‖2, ∀x ∈ V . This proves that Φ is a contraction. The same calculation
also shows: if ϕ is an injection, then the inequality above is replaced by the equality,
hence Φ is also an isometry.

Obviously, Ker Φ is a closed submodule of V such that VKerϕ ⊆ Ker Φ.
Further, x ∈ Ker Φ ⇒ 〈Φ(x), Φ(x)〉 = 0 ⇒ ϕ(〈x, x〉) = 0; i.e. 〈x, x〉 ∈ Ker ϕ. By

Proposition 1.3 we conclude x ∈ VKerϕ which gives Ker Φ ⊆ VKerϕ.
Finally, suppose that Φ is an injection. Then Ker Φ = VKerϕ = {0}. Take

any a ∈ Ker ϕ. Then the last equality means xa = 0, ∀x ∈ V . In particular,
〈y, xa〉 = 〈y, x〉a = 0, ∀x, y ∈ V . Since V is by hypothesis full, this implies a = 0.

✷

Lemma 2.4. Let V and W be Hilbert C∗-modules over C∗-algebras A and B, re-
spectively. Let ϕ : A → B be a morphism of C∗-algebras and let Φ : V → W be a

ϕ-morphism of Hilbert C∗-modules. Denote by
∧
ϕ and

∧
Φ the maps induced on the

quotients by ϕ and Φ, respectively:

∧
ϕ: A/Ker ϕ → B,

∧
ϕ(π(a)) = ϕ(a),

∧
Φ: V/Ker Φ → W,

∧
Φ(q(v)) = Φ(v).

Then
∧
Φ is a well defined

∧
ϕ-morphism of Hilbert C∗-modules V/Ker Φ and W .

Proof. First, by Theorem 2.3, Ker Φ = VKerϕ. This ensures that V/Ker Φ =
V/VKerϕ is a Hilbert A/Ker ϕ-module. Both maps are obviously well defined, so we

only need to check that
∧
Φ is a

∧
ϕ-morphism. Indeed:

〈∧Φ(q(v)),
∧
Φ(q(w))〉〈Φ(v), Φ(w)〉 = ϕ(〈v, w〉) ∧

ϕ(π(〈v, w〉)) =
∧
ϕ(〈q(v), q(w)〉).

✷
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Proposition 2.5. Let V and W be Hilbert C∗-modules over C∗-algebras A and B,
respectively. Let ϕ : A → B be a morphism of C∗-algebras and let Φ : V → W be
a ϕ-morphism of Hilbert C∗-modules. Then Im Φ is a closed subspace of W . It is
also a Hilbert C∗-module over the C∗-algebra Imϕ ⊆ B such that 〈Im Φ, Im Φ〉 =
ϕ(〈V, V 〉). If V is a full A-module, then Im Φ is a full Im ϕ-module. In particular,
if Φ is surjective, and if W is a full B-module, then ϕ is also a surjection.

Proof. First suppose that ϕ is injective. Then by Theorem 2.3 Φ is an isometry
which implies that Im Φ is a closed subspace of W . Also, Φ(v)ϕ(a) = Φ(va) ∈ Im Φ
and 〈Φ(v), Φ(w)〉 = ϕ(〈v, w〉) ∈ Im ϕ. This shows that Im Φ is a Hilbert Im ϕ-
module. The last equality also proves 〈Im Φ, Im Φ〉 = ϕ(〈V, V 〉).

If V is full, this implies 〈Im Φ, Im Φ〉 = ϕ(A) which means that Im Φ is a full
Im ϕ-module. If Φ is a surjection and if W is full, we additionally get B = 〈W, W 〉 =
〈Im Φ, Im Φ〉 = ϕ(〈V, V 〉), hence ϕ is also a surjection.

To prove the general case, take the maps
∧
ϕ and

∧
Φ from Lemma2.4. Since

∧
ϕ is

an injection, we may apply the first part of the proof.

To do this, one has only to observe Im ϕ = Im
∧
ϕ, Im Φ = Im

∧
Φ and 〈Im Φ, Im Φ〉 ∧

ϕ

(〈V/VKerϕ, V/VKerϕ〉)
∧
ϕ(π(〈V, V 〉)) = ϕ(〈V, V 〉).

(The equality 〈V/VKerϕ, V/VKerϕ〉π(〈V, V 〉) is noted in Remark 1.7.) ✷

Remark 2.6. Let us observe: if V is a full A-module and if ϕ and Φ are surjective,
then W is also a full B-module.

On the other hand, we cannot conclude that Φ is a surjection if ϕ is surjective,
even if V and W are full. As an example we may take V = A, W = A ⊕ A,
ϕ = id, Φ(a) = (a, 0).

Example 2.7. Let A and B be C∗-algebras considered as Hilbert C∗-modules over
A and B, respectively. Let ϕ : A → B be a morphism of C∗-algebras and let
Φ : A → B be a surjective ϕ-morphism of Hilbert C∗-modules A and B. Then
there exists an isometry m in the multiplier C∗-algebra of B, m ∈ M(B), such that
Φ(a) = mϕ(a), ∀a ∈ A.

To prove this, let us take any approximate unit (ej) for A. We shall show that
(Φ(ej)) is a net in B strictly convergent in M(B). First observe that A and B are
full, so ϕ is also surjective.

For each b ∈ B there exists a ∈ A such that ϕ(a) = b. Now, Φ(ej)b =
Φ(ej)ϕ(a) = Φ(eja) converges since (ej) is an approximate unit for A and Φ is
continuous. On the other hand, since Φ is by assumption a surjection, there exists
c ∈ A such that (Φ(c))∗ = b. This implies bΦ(ej) = (Φ(c))∗Φ(ej) = 〈Φ(c), Φ(ej)〉 =
ϕ(〈c, ej〉) = ϕ(c∗ej), hence bΦ(ej) converges too.

Let m ∈ M(B) be the strict limit: m = (st.)limjΦ(ej); i.e. mb = limjΦ(ej)b,
bm = limjbΦ(ej), ∀b ∈ B. Using continuity of Φ we get Φ(a) = Φ(limjeja)limjΦ(eja)
= limjΦ(ej)ϕ(a) = mϕ(a), ∀a ∈ A. It remains to show that m is an isome-
try. First, 〈Φ(x), Φ(y)〉 = 〈mϕ(x), mϕ(x)〉 = ϕ(x)∗m∗mϕ(y). On the other hand,
〈Φ(x), Φ(y)〉 = ϕ(〈x, y〉) = ϕ(x∗y) = ϕ(x)∗ϕ(y). Since ϕ is a surjection, this gives
bm∗mc = bc, ∀b, c ∈ B i.e. (bm∗m − b)c = 0, ∀b, c ∈ B. Taking c = (bm∗m − b)∗

we find bm∗m − b = 0, ∀b ∈ B. The last equality can be written in the form
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b(m∗m − 1) = 0, ∀b ∈ B. Since B in an essential ideal in M(B), this implies
m∗m − 1 = 0.

Definition 2.8. Let A and B be C∗-algebras, and let V and W be Hilbert C∗-
modules over A and B, respectively. A map Φ : V → W is said to be a unitary
operator if there exists an injective morphism of C∗-algebras ϕ : A → B such that
Φ is a surjective ϕ-morphism.

Remark 2.9.

(a) Each unitary operator of Hilbert C∗-modules is necessarily (by Theorem 2.3)
an isometry.

(b) Since Φ is a surjection, Proposition 2.5 implies 〈W, W 〉 = ϕ(〈V, V 〉) � 〈V, V 〉.
If W is additionally a full B-module, then ϕ is also surjective, hence an iso-
morphism of C∗-algebras.

(c) If V is a Hilbert C∗-module over a C∗-algebra A and if ϕ : A → B is an
isomorphism of C∗-algebras, then V can also be regarded a Hilbert B-module
and the identity map is obviously a unitary operator between these two versions
of V .

Conversely, if V and W are full unitary equivalent Hilbert C∗-modules over
C∗-algebras A and B, respectively (in the sense that there exists a unitary
operator Φ : V → W ), then A and B are isomorphic C∗-algebras.

(d) Suppose that V and W are full Hilbert C∗-modules over A and B, respectively.
Let ϕ : A → B be an isomorphism of C∗-algebras. Then a surjective operator
Φ : V → W satisfying Φ(va)Φ(v)ϕ(a), ∀v ∈ V, ∀a ∈ A is a unitary operator
of Hilbert C∗-modules if and only if Φ is an isometry.

To see this, we have to show that Φ, having the property ‖Φ(v)‖ = ‖v‖, ∀v ∈
V , also satisfies the condition from Definition 2.1. This can be done by repeat-
ing the nice argument from [4], Theorem 3.5.

Take x ∈ V and b ∈ B. Then there exists a ∈ A such that ϕ(a) = b and

‖〈Φ(x), Φ(x)〉1/2b‖2 = ‖b∗〈Φ(x), Φ(x)〉b‖ = ‖〈Φ(x)b, Φ(x)b〉‖
= ‖〈Φ(x)ϕ(a), Φ(x)ϕ(a)〉‖ = ‖〈Φ(xa), Φ(xa)〉‖
= ‖Φ(xa)‖2 = ‖xa‖2 = ‖〈xa, xa〉‖ = ‖ϕ(〈xa, xa〉)‖
= ‖ϕ(〈x, x〉)1/2ϕ(a)‖2 = ‖ϕ(〈x, x〉)1/2b‖2.

By Lemma 3.4 from [4] this implies 〈Φ(x), Φ(x)〉1/2 = ϕ(〈x, x〉)1/2.

(e) Unitary equivalence of full Hilbert C∗-modules is an equivalence relation.

(f) Suppose that V and W are full Hilbert C∗-modules over C∗-algebras A and
B, respectively such that ϕ : A → B is an isomorphism and that Φ : V → W
is a unitary ϕ-morphism. Then Φ−1 : W → V is a unitary ϕ−1-morphism.
Then we also have

〈w, Φ(x)〉 = ϕ(〈Φ−1(w), x〉), ∀x ∈ V, w ∈ W.
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Indeed, putting w = Φ(v), one obtains

〈w, Φ(x)〉 = 〈Φ(v), Φ(x)〉 = ϕ(〈v, x〉) = ϕ(Φ−1(w), x〉).

Example 2.10. Consider an arbitrary C∗-algebra A regarded as a Hilbert A-module
with 〈a, b〉 = a∗b. It is well known that the map γ : A → K(A), γ(a) = Ta, Ta(x) =
ax is an isomorphism of C∗-algebras. Its unique extension to the corresponding mul-
tiplier algebras ([9], Proposition 2.2.16) γ : M(A) → B(A) is also an isomorphism
of C∗-algebras and acts in the same way: γ(m) = Tm, Tm(x) = mx.

Let V be a Hilbert A-module, let us denote Vd = B(A, V ). It is well known that
Vd is a Hilbert B(A)-module with the B(A)-valued inner product 〈r1, r2〉 = r∗1r2

such that the resulting norm coincides with the operator norm on Vd.
Further, each v ∈ V induces the map rv ∈ Vd given by rv(a) = va. It is also

known ([7], Lemma 2.32) that {rv : v ∈ V } = K(A, V ) ⊆ Vd.
(Observe that each v ∈ V also induces the map lv : V → A defined by lv(x) =

〈v, x〉. Notice that l∗v = rv and {lv : v ∈ V } = K(V,A) ⊆ B(V,A).)
Now one can easily verify the following assertions:

(1) Γ : V → Vd, Γ(v) = rv is a γ-morphism of Hilbert C∗-modules.

(2) Im Γ is the ideal submodule of Vd associated with the ideal K(A) of B(A).

(3) Γ : V → ImΓ = K(A, V ) is a unitary γ-morphism of Hilbert C∗-modules.

Proposition 2.11. Let V and W be Hilbert C∗-modules over C∗-algebras A and
B respectively, let ϕ : A → B be an injective morphism and let Φ : V → W be
a unitary ϕ-morphism. Then the map Φ+ : B(V ) → B(W ), Φ+(T ) = ΦT Φ−1 is
an isomorphism of C∗-algebras. Moreover, Φ+(θx,y) = θΦ(x),Φ(y), ∀x, y ∈ V and
Φ+(K(V )) = K(W ).

Proof. First observe that Φ+(T ) = ΦT Φ−1 is an adjointable operator, in fact
we claim (ΦT Φ−1)∗ = ΦT ∗Φ−1. Indeed,

〈w1, ΦT Φ−1w2〉 = (Remark 2.9(f)) = ϕ(〈Φ−1w1, T Φ−1w2〉)
= ϕ(〈T ∗Φ−1w1, Φ−1w2〉) = (Remark 2.9(f))
= 〈ΦT ∗Φ−1w1, w2〉.

Now one easily verifies that Φ+ is an isomorphism of C∗-algebras. Further,

Φ+(θx,y)(w) = Φθx,yΦ−1(w) = (puting Φ(v) = w) = Φ(θx,y(v))
= Φ(x〈y, v〉) = Φ(x)ϕ(〈y, v〉) = Φ(x)〈Φ(y), Φ(v)〉
= θΦ(x),Φ(y)(w).

The last statement is an immediate consequence. ✷

Remark 2.12.

(a) Since B(V ) and B(W ) are the multiplier C∗-algebras of K(V ) and K(W ),
we know that Φ+, satisfying Φ+(θx,y) = θΦ(x),Φ(y), ∀x, y ∈ V , is uniquely
determined.



On a class of module maps of Hilbert C∗
-modules 189

(b) If one applies Proposition 2.11 to the case V = A, W = B, Φ = ϕ, one
obtains the uniquely determined extension of ϕ ensured by the small extension
theorem ([9], Proposition 2.2.16): ϕ+ : B(A) → B(B), ϕ+(T )ϕT ϕ−1.

(c) Proposition 2.11 applied to V � Γ(V ) = K(A, V ) coincides with (a special
case of) Proposition 7.1 in [4].

Corollary 2.13. Let V and W be Hilbert C∗-modules over C∗-algebras A and B,
let ϕ : A → B be a surjective morphism of C∗-algebras and let Φ : V → W be
a surjective ϕ-morphism. There exists a morphism of C∗-algebras Φ+ : B(V ) →
B(W ) satisfying Φ+(θx,y) = θΦ(x),Φ(y) and Φ+(K(V )) = K(W ).

Proof. Considering the quotient V/Ker Φ we first apply Proposition 1.17 and
Corollary 1.18. The proof is completed by a direct application of Lemma 2.4 and
the preceding proposition. ✷

Remark 2.14. Let V and W be full (right) Hilbert C∗-modules over A, resp. B,
let ϕ : A → B be a morphism of C∗-algebras and let Φ : V → W be a surjective
ϕ-morphism of Hilbert C∗-modules. We note that Φ is also a Φ+-morphism of
left Hilbert C∗-modules V and W (when V and W are regarded as the left Hilbert
C∗-modules over K(V ) and K(W ), respectively).

To show this, let us denote by [·, ·] the K(V )-inner product on V ; i.e. [x, y] =
θx,y; the same notation will be used in W . Now the condition from Definition 2.1
is an immediate consequence of the preceding corollary: [Φ(x), Φ(y)] = θΦ(x),Φ(y) =
Φ+(θx,y) = Φ+([x, y]).

Now we are able to describe morphisms of Hilbert C∗-modules in terms of the
corresponding linking algebras.

Recall that, given a Hilbert A-module V , the linking algebra L(V ) may be
written as the matrix algebra of the form

L(V ) =
[

K(A) K(V,A)
K(A, V ) K(V )

]
.

(cf. [7], Lemma 2.32 and Corollary 3.21). Observe that L(V ) is in fact the C∗-
algebra of all ”compact” operators acting on A ⊕ V . Keeping the notation from
Example 2.10 we may write

L(V ) =
[

K(A) K(V,A)
K(A, V ) K(V )

]
=

{[
Ta ly
rx T

]
: a ∈ A, x, y ∈ V, T ∈ K(V )

}
.

Accordingly, we shall also identify the C∗-algebras of ”compact” operators with the
corresponding corners in the linking algebra: K(A) = K(A ⊕ 0) ⊆ K(A ⊕ V ) =
L(V ) and K(V ) = K(0 ⊕ V ) ⊆ K(A⊕ V ) = L(V ).

Theorem 2.15. Let V and W be full Hilbert C∗-modules over A, resp. B, let
ϕ : A → B be a morphism of C∗-algebras and let Φ : V → W be a surjective
ϕ-morphism of Hilbert C∗-modules. Then the map ρϕ,Φ : L(V ) → L(W ) defined by

ρϕ,Φ

([
Ta ly
rx T

])
=

[
Tϕ(a) lΦ(y)

rΦ(x) Φ+(T )

]
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is a morphism of C∗-algebras. Conversely, let ρ : L(V ) → L(W ) be a morphism of
C∗-algebras such that ρ(K(A)) ⊆ K(B) and ρ(K(V )) ⊆ K(W ). Then there exist
a morphism of C∗-algebras ϕ : A → B and a ϕ-morphism Φ : V → W such that
ρ = ρϕ,Φ.

Proof. Clearly, ρϕ,Φ is a linear map. Further,

ρϕ,Φ

([
Ta lv
rw T

] [
Tb lx
ry S

])
= ρϕ,Φ

([
Tab + T〈v,y〉 lxa∗ + lS∗v

rwb + rTy θw,x + T S

])

=
[

Tϕ(ab+〈v,y〉) lΦ(xa∗+S∗v)

rΦ(wb+Ty) Φ+(θw,x + T S)

]

=
(

applying Remark 2.14 to
off-diagonal elements

)

=
[

Tϕ(a)ϕ(b) + T〈Φ(v),Φ(y)〉 lΦ(x)ϕ(a∗) + lΦ+(S∗)Φ(v)

rΦ(w)ϕ(b) + rΦ+(T )Φ(y) θΦ(w),Φ(x) + Φ+(T S)

]

=
[

Tϕ(a) lΦ(v)

rΦ(w) Φ+(T )

] [
Tϕ(b) lΦ(x)

rΦ(y) Φ+(S)

]

= ρϕ,Φ

([
Ta lv
rw T

])
ρϕ,Φ

([
Tb lx
ry S

])
.

To prove the converse, first observe that, by assumption, we may write

ρ

([
Ta 0
0 T

])
=

[
Tϕ(a) 0

0 Ψ(T )

]
.

It should be noted that the definition of ϕ actually uses the standard identification
a ↔ Ta, a ∈ A, Ta ∈ K(A) denoted by γ in Example 2.10. Obviously, both ϕ and
Ψ are morphisms of C∗-algebras.

Take any x ∈ V and write ρ

([
0 0
rx 0

])
=

[
ρ11(x) ρ12(x)
ρ21(x) ρ22(x)

]
. Then

ρ

([
0 0
rx 0

])∗
ρ

([
0 0
rx 0

])
=

[
ρ11(x)∗ ρ21(x)∗

ρ12(x)∗ ρ22(x)∗

] [
ρ11(x) ρ12(x)
ρ21(x) ρ22(x)

]

=
[

ρ11(x)∗ρ11(x) + ρ21(x)∗ρ21(x) ρ11(x)∗ρ12(x) + ρ21(x)∗ρ22(x)
ρ12(x)∗ρ11(x) + ρ22(x)∗ρ21(x) ρ12(x)∗ρ12(x) + ρ22(x)∗ρ22(x)

]
.

Observing
[

0 0
rx 0

]∗
=

[
0 lx
0 0

]
and comparing the above result with

ρ

([
0 lx
0 0

] [
0 0
rx 0

])
= ρ

([
T〈x,x〉 0

0 0

])
=

[
Tϕ(〈x,x〉) 0

0 0

]

we find ρ12(x) = ρ22(x) = 0. Similarly, calculating ρ

([
0 0
rx 0

])
ρ

([
0 0
rx 0

])∗
, one

additionally gets ρ11 = 0. After all, we conclude that ρ may be written in the form

ρ

([
Ta ly
rx T

])
=

[
Tϕ(a) lΦ2(y)

rΦ1(x) Ψ(T )

]
. Obviously, the induced maps Φ1 and Φ2 are linear.
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Let us show Φ1 = Φ2. Indeed, ρ

([
0 0
rx 0

])∗
= ρ

([
0 0
rx 0

]∗)
implies

[
0 lΦ1(x)

0 0

]
=[

0 lΦ2(x)

0 0

]
, thus Φ1(x) = Φ2(x) which enables us to write Φ1 = Φ2 = Φ.

Finally,

ρ

([
0 ly
rx 0

] [
0 lx
ry 0

])
= ρ

([
T〈y,y〉 0

0 θx,x

])
=

[
Tϕ(〈y,y〉) 0

0 Ψ(θx,x)

]
.

On the other hand, knowing that ρ is multiplicative, one obtains

ρ

([
0 ly
rx 0

] [
0 lx
ry 0

])
= ρ

([
0 ly
rx 0

]
)ρ(

[
0 lx
ry 0

])

=
[

0 lΦ(y)

rΦ(x) 0

] [
0 lΦ(x)

rΦ(y) 0

]
=

[
T〈Φ(y),Φ(y)〉 0

0 θΦ(x),Φ(x)

]
.

This is enough (together with Corollary 2.13) to conclude ρ = ρϕ,Φ. ✷

Notice that the assumptions ρ(K(A)) ⊆ K(B) and ρ(K(V )) ⊆ K(W ) cannot
be dropped from the hypothesis of the second assertion in Theorem 2.15.

Let us also note an alternative description of ρϕ,Φ. First, define

ϕ ⊕ Φ : A⊕ V → B ⊕ W, (ϕ ⊕ Φ)(a, v) = (ϕ(a), Φ(v)).

One easily verifies that ϕ⊕Φ is a ϕ-morphism of Hilbert C∗-modules. After applying
Corollary 2.13 it turns out that (ϕ ⊕ Φ)+ = ρϕ,Φ.

At the end let us mention a similar characterization of ideal submodules in
terms of linking algebras: there is a natural bijective correspondence between the
set of all ideal submodules of a Hilbert C∗-module V and the set of all ideals of
the corresponding linking algebra L(V ). Moreover, the ideal submodule associated
with an essential ideal corresponds to an essential ideal in L(V ). The proof is an
easy calculation similar to the preceding one, hence omitted.

Note added in proof: In Corollary 2.13 as well as in the subsequent Remark 2.14
and Theorem 2.15 the assumption that Φ is surjective is redundant. In fact, the
map Φ+ : B(V ) → B(W ) satisfying Φ+(θx,y) = θΦ(x),Φ(y) is always well defined.
This can be seen using the identification K(V ) = V ⊗hA V ∗ (cf. D.Blecher, A
new approach to Hilbert C∗-modules, Math. Ann. 307(1997), 253-290). We thank
to the anonymous referee for this observation.
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