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On a class of module maps of Hilbert C*-modules

DAMIR BAKIC* AND Boris GuLiast

Abstract. The paper describes some basic properties of a class of
module maps of Hilbert C*-modules.

In Section 1 ideal submodules are considered and the canonical Hilbert
C*-module structure on the quotient of a Hilbert C*-module over an ideal
submodule is described. Given a Hilbert C*-module V', an ideal submod-
ule Vz, and the quotient V//Vz, canonical morphisms of the corresponding
C*-algebras of adjointable operators are discussed.

In the second part of the paper a class of module maps of Hilbert
C*-modules is introduced. Given Hilbert C*-modules V. and W and a
morphism ¢ : A — B of the underlying C*-algebras, a map ® : V — W
belongs to the class under consideration if it preserves inner products
modulo ¢: (®(z),P(y)) = p(x,y)) for all x,y € V. It is shown that
each morphism ® of this kind is necessarily a contraction such that the
kernel of ® is an ideal submodule of V. A related class of morphisms of
the corresponding linking algebras is also discussed.
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Introduction

A (right) Hilbert C*-module over a C*-algebra A is a right A-module V' equipped
with an A-valued inner product (-, -) which is A-linear in the second and conjugate
linear in the first variable such that V is a Banach space with the norm |jv|| =
| (v, v)||*/2. Hilbert C*-modules are introduced and initially investigated in [3], [5]
and [8].

The present paper is organized as an introduction to a study of extensions of
Hilbert C*-modules.

Section 1 contains a detailed discussion on ideal submodules. As their basic
properties are already known (see [10] and [7]), some of the results are stated with-
out proof. The starting point is Theorem 1.6 which states that the quotient of a
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Hilbert C*-module over an ideal submodule admits a natural Hilbert C*-module
structure. Considering a Hilbert C*-module V', an ideal submodule V; C V', and the
quotient V/V;, we describe canonical morphisms of the corresponding C*-algebras
of adjointable operators B(V'), B(V;) and B(V/V;). Also, some properties of ideal
submodules arising from essential ideals are obtained. In particular, we show in
Theorem 1.12 that the canonical morphism « : B(V) — B(V;) sending each oper-
ator T to its restriction T'|V; is an injection if and only if Z is an essential ideal in
the underlying C*-algebra A.

In Section 2 a class of module maps of Hilbert C*-modules over possibly different
C*-algebras is introduced. We consider morphisms of Hilbert C*-modules which
are in a sense supported by morphisms of the underlying C*-algebras. Their basic
properties are collected and a couple of examples is provided. In Theorem 2.15 we
establish a correspondence between the class of module maps under consideration
and a class of morphisms of the corresponding linking algebras.

The present material provides a necessary tool for the later study of extensions
of Hilbert C*-modules. A related discussion will appear in our subsequent paper.

Throughout the paper we denote the C*-algebras of all adjointable and ”com-
pact” operators on a Hilbert C*-module V' by B(V) and K (V), respectively. We
also use B(:,-) and K(-,-) to denote spaces of all adjointable, resp. ”compact”
operators acting between different Hilbert C*-modules.

We denote by (V,V) the closed linear span of all elements in the underlying
C*-algebra A of the form (x,y), x,y € V. Obviously, (V,V) is an ideal in A.
(Throughout the paper, an ideal in a C*-algebra always means a closed two-sided
ideal.) V is said to be a full A-module if (V,V) = A.

For this and other general facts concerned with Hilbert C*-modules we refer to
[4], [7] and [9].

1. Ideal submodules and quotients of Hilbert C*-modules

We begin with the definition of an ideal submodule. A related discussion can be
found in [10].

Definition 1.1. Let V' be a Hilbert C*-module over A, and T an ideal in A. The
associated ideal submodule V7 is defined by

Ve=[VI]" =[{vb:veV,beI}]™
(the closed linear span of the action of T on V).

Clearly, V; is a closed submodule of V. It can be also regarded as a Hilbert
C*-module over 7.

In general, there exist closed submodules which are not ideal submodules. For
instance, if a C*-algebra A is regarded as a Hilbert A-module (with the inner prod-
uct {(a,b) = a*b), then ideal submodules of A are precisely ideals in A, while closed
submodules of A are closed right ideals in A.

We proceed with a couple of basic properties of ideal submodules. Our first
proposition is already known ([10]).
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Proposition 1.2. Let V' be a Hilbert C*-module over A, and let T be an ideal in
A. ThenV; =VI ={vb:veV,beTI}.

Proof. The associated ideal submodule V; is by definition equal to V; =
[VII” =[{vb:v €V, be I} . Regarding V; as a Hilbert Z-module we may apply
the Hewitt-Cohen factorization theorem ([6], Theorem 4.1, see also [7], Proposition
2.31): for each x € V; there exist y € V7 and b € Z such that x = yb. This shows
VIC|VI| =V CV;ICVZ, ie V;=VI. O

Proposition 1.3. Let V be a Hilbert A-module, T an ideal in A, and V; the asso-
ciated ideal submodule. Then

Vi={zeV:i(z,x)el}={ax eV :{(x,v) eI, VveV}.
If V is full, then V7 is full as a Hilbert T-module.

Proof. (vb,vb) = b*(v,v)b € Z,Vb € Z,Vv € V. This shows z = vb € V; =
(x,z) € Z. A well known formula (][9], Lemma 15.2.9)

1!
T = limx((x,x) + E) (x,x), Ve eV

implies the converse. The second equality is now an immediate consequence.
Suppose that V' is full as a Hilbert C*-module over A. Then there is an approxi-
mate unit (ay) for A such that each ay is a finite sum of the form ay = Z:L:(i‘) (x, 2
([1], Remark 1.9). Take any positive b € Z, let € be given.
Since (ay) is an approximate unit for A, there exists A such that ||b'/2 —axb'/?||
is small enough so that ||b'/2(b*/? — a\b'/?)|| < e. It remains to observe that the

left-hand side of the above inequality can be rewritten in the form

n(A)
1o —"2axb" 2| = b= > (2}b"/2, 261 2)]|.

i=1

This shows that b can be approximated by inner products of elements from V7, i.e.
be (V, Vo). O

Now we introduce a natural Hilbert C*-module structure on the quotient of a
Hilbert C*-module over an ideal submodule.

Definition 1.4. Let V' be a Hilbert C*-module over A, T an ideal in A, and V;
the associated ideal submodule. Denote by 1 : A — A/T and q : 'V — V/V;
the quotient maps. A right action of A/T on the linear space V/Vy is defined by

q(v)m(a) = g(va).

The action of A/Z on the quotient V/V; given by ¢(v)n(a) = gq(va) is well
defined precisely because V; is an ideal submodule of V. Indeed, if 7(a) = 7(a’)
then ¢(v)w(a) = q(v)w(a’) is ensured by definition of an ideal submodule: vb €
Vi, VbeZI,VveV.

If X is an arbitrary closed submodule of V one can also consider the quotient
of linear spaces V/X. Further, denote by Z = (X, X) C A the closed linear span of
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the set of all (x,y), z,y € X. Since X is by assumption a closed submodule of V,
7 is an ideal in A.

Now an action of A/Z on V/X given by g(x)m(a) = g(xa) will be unambiguously
defined if and only if vb € X is satisfied for each b € Z and v € V; i.e. VI C X.
Since X is a closed submodule, this implies V; C X. Because the reverse inclusion
is always satisfied, we conclude: the action of A/Z on V/X is well defined if and
only if X is the ideal submodule V; associated with Z = (X, X).

Remark 1.5. The role of ideal submodules in the preceding discussion should be
compared with Proposition 3.25 in [7]. Recall that each right Hilbert A -module V
is also equipped with a natural left Hilbert K (V')-module structure. Moreover, there
is a standard Hilbert K(V) — A bimodule structure on V. Now one easily show the
following assertions (which are stated without proofs):

(1) Each ideal submodule V; of V is also an ideal submodule of the left Hilbert
K(V)-module V.

(2) Let X be a closed submodule of a right Hilbert C*-module V.. Then X s
an ideal submodule of V if and only if X is a closed subbimodule of the Hilbert
K(V)—A bimodule V.

The following theorem is known ([7], Proposition 3.25, [10], Lemma 3.1). We
state it for the sake of completeness.

Theorem 1.6. Let V' be a Hilbert A-module, T an ideal in A, and V; the associ-
ated ideal submodule. Then V/V; equipped with a right A /I -action from Defini-
tion 1.4 is a pre-Hilbert A/Z-module with the inner product given by (q(v),q(w)) =
7((v,w)). The resulting norm |q(v)|| = ||7((v,v))||*/? coincides with the quotient
norm d(v,Vz) defined on the quotient of Banach spaces V/Vy. In particular, V/V;
is complete, hence a Hilbert C*-module over A/T.

Remark 1.7. V/V; is a full A/Z-module if and only if V is full. This follows at
once from the evident equality (V/Vz,V/Vz) = n((V,V)).

Example 1.8. Let us briefly describe an application of Theorem1.6. Consider a
Hilbert C*-module V' over A and a surjective morphism of C*-algebras ¢ : A — B.
Define

Ny, ={z €V :p((z,z)) =0}

One easily shows that N, is a closed submodule of V. There is a standard con-
struction ([2], p. 19) which provides a pre-Hilbert B-module structure on V/N,,:
one defines q(v)p(a) = q(va) and (q(x),q(y)) = ¢((x,y)). However, it seems to be
overlooked that V//N,, is already complete with respect to the resulting norm.

To prove this, first observe that A/Kerp and B are isomorphic C*-algebras.
This enables us to regard V/N,, as a Hilbert A/Kerp-module. Now, N, = {x €
V : (z,z) € Kerp} = (by Proposition1.3) = Vi, i.e. N, is the ideal submodule
associated to the ideal Kerp. It remains to apply Theorem 1.6.

Theorem 1.6 also implies that a property of the Rieffel correspondence is that,
assuming that two C*-algebras are Morita equivalent, the corresponding ideals and
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quotients are Morita equivalent themselves (Proposition 3.25 in [7]). We shall pro-
ceed in a different direction. Our goal is to compare the C*-algebras of all ad-
jointable and ”compact” operators acting on a Hilbert C*-module V' with the cor-
responding algebras of operators on an ideal submodule V; and the quotient V/V7,
respectively.

To fix our notation, we recall the definition of the ideal of all ”compact” operators
on a Hilbert C*-module V. Given v,w € V, let 8, : V — V denote the operator
defined by 0, . (z) = v(w,z). Each 0, , is an adjointable operator on V' and the
linear span

{Ov,w :v,w € VY]

is a two-sided ideal in B(V). Its closure in the operator norm
K(WV)=[{0yw:v,weV}~ CB(V)

is an ideal in B(V) and elements of K (V') are called ”compact” operators.

Let V be a Hilbert A -module. Assume that 7 is an ideal in A, and let V; be
the associated ideal submodule. Observe that V; is invariant for each T € B(V);
namely T'(vb) = (Tw)b € V;, Vb € Z,Vv € V. Consequently, there is an operator
T|Vz on Vz induced by T such that (T'|V;)* = T*|V;. This gives a well defined map
a:B(V)— B(Vz), a(T) = T|V;. Clearly, « is a morphism of C*-algebras.

We shall prove that the map « is an injection if and only if 7 is an essential
ideal in A. (An ideal 7 in a C*-algebra A is said to be essential if its annihilator
T+t ={a € A:aZ = {0} } is trivial: Z+ = {0}.)

To do this, we need a few simple results on ideal submodules associated to
essential ideals. We start with a property of essential ideals which is certainly
known. Since we are unable to provide a reference, the proof is included.

Lemma 1.9. Let T be an ideal in a C*-algebra A. Then T is an essential ideal
in A if and only if there exists a faithful representation p : A — B(H) of A on a
Hilbert space H such that T acts non-degenerately on H.

Proof. Suppose Z C A C B(H) such that 7 acts non-degenerately on H. Let
(uy) be an approximate unit for Z. Then & = limyux&, V€ € H. Now a € I+
implies auy) = 0, VA, hence a = 0.

To prove the converse, suppose that Z is an essential ideal in A. Taking any
faithful representation of A we may write Z C A C B(H). Define Hy = [ZH]".
Clearly, Z acts non degenerately on Hy. Since 7 is an ideal in A, Hy reduces A.
We shall show that a — a|Hj is also a faithful representation of A. Let a|Hy = 0.
Since Hj is invariant for each b € Z, this implies ab|Hy = 0, Vb € Z. On the other
hand, ab € Z shows ab|Hg = 0, Vb € T (observe Hy- = Nye Kerd). This gives
ab =0, Vb € T and, since Z is essential, a = 0. O

Lemma 1.10. Let T be an ideal in a C*-algebra A. The following conditions are
mutually equivalent:

(a) T is an essential ideal in A.

(b) llall = supyez o<1 |abll, Va € A.

(¢) llall = supyez, o<1 lball, Va € A.

(d) llall = supye, b <1 1bad*||, Ya € AT
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Proof. (a) = (b): By Lemma 1.9 we may assume Z C A C B(H) such that
7 acts non-degenerately on H. Given a € A, we have to show ||a| < supye, p<1/lad|

(the opposite inequality is trivial). Let (u)) be an approximate unit for Z. Then
¢ =limyuy&, V€ € H. Take ||€|| < 1. Then

|a&]| = lim [Jaux§]| < limsup [Jaus||[|§]| < sup  [|ad].
A A bez,||b]|<1

(b) & (c) is obvious (by taking adjoints).
(¢) = (d): Let a be positive. Then

lall = [la"/*|* =by (c) = sup [[ba'?[|> = sup [[bab”|.
bez,||bl<1 bez,||bl<1

(d) = (a): Take any a € Z-. Then (d) applied to a*a gives a*a = 0, thus
7+ ={0}. m

Proposition 1.11. Let V be a Hilbert A-module, T an essential ideal in A, and
V; be the associated ideal submodule. Then

(1) [[vll = subper o<1 llvbll, Vo € V' and

(2) vl = supyevy yi<1lliv, 9}, Vo € V.

Conversely, if V is a full A-module in which (1) or (2) is satisfied with respect to
(the ideal submodule associated with) some ideal T in A, then T is an essential ideal

mn A.

Proof. Take any v € V. Using Lemma 1.10(d) we find

=llw,v)ll= sup [[b"(v,0)bll = sup [wb]|*.
bez,|jbl|<1 bez, ||| <1

To prove the second formula, take any v € V such that ||v]| = 1. Then

loll = Ioll* = [[{v, )|l = (by Lemma1.10(b)) = sup |[|(v,v)b]|

bez,|[bl|<1

= sup [(u,ob)| < sup (v, )| < o]
bez,||b||<1 yeVz,|lylI<1

To prove the converse, suppose that V is a full A-module and 7 is not essential so
that T+ # {0}. Take any ¢ € T, ¢ # 0. Then there exists v € V such that ve # 0.
Indeed, ve = 0, Vv € V would imply (v,vc) = 0, Vo € V or {(v,v)c =0, Vv € V.
Since V is full, it would follow ¢*c¢ = 0, thus ¢ = 0.

After all, it remains to observe that = ve # 0 with ¢ € Z+ contradicts to (1)
and (2), respectively. O

Theorem 1.12. Let V' be a Hilbert A-module, T an ideal in A, and V; the asso-
ciated ideal submodule. If T is an essential ideal in A , then the map o : B(V) —
B(V;), o(T) = T|V; is an injection. Conversely, if V is full and if « is injective,
then T is an essential ideal in A.
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Proof. Suppose a(T') = T'|V; = 0 for some T'. Observe that, since V7 is an ideal
submodule, vb € V7, Vb € Z,Vv € V. Since by assumption 7" vanishes on V7, this
implies T'(vb) = 0, Vb € Z,Vv € V. Now, taking arbitrary v € V', we find

|Tv|| = (by Proposition 1.11) = sup |[(Tv)b]|= sup |[|T(vd)]| = 0.
bex, b <1 bex, bl <1

To prove the converse, let V' be full and « injective. Assume that Z is not essential.
For c € I+, ¢ # 0, find v € V such that ve # 0 (as in the preceding proof). Then
91}0,1}6 7é 07 but O‘(Gvc,vc) == 0@c7’uc|vz = 0 - a contradiction. O

Remark 1.13. In general, a is not surjective, even if I is an essential ideal in A.
As an example, consider a nonunital C*-algebra A contained as an essential ideal
in a unital C*-algebra B. Assume further that B is not the mazrimal unitization of
A, i.e. that B is properly contained in the multiplier algebra M(A). Consider B as
a Hilbert B-module. It is well known that, since B is unital, K(B) = B(B) = B.
Further, A is an ideal submodule of B associated with the essential ideal A of B.
We also know K(A) = A and B(A) = M(A). One easily concludes that the
map o : B(B) = B — B(A) = M(A) from Theorem1.12 acts as the inclusion
B — M(A); thus, by assumption, « is not a surjection.

Consider again an arbitrary Hilbert A-module and an ideal Z in A. Using the
map « one can easily determine K (V;). Our next proposition, in which K (V;) is
recognized as an ideal in K(V'), is known; hence we state it without proof. For
the proof we refer to [7], Theorem 3.22. (Alternatively, it can be deduced from
Theorem 1.12 above after observing that for each ideal Z in A, we have V; ® V. =

Vigzt.)

Proposition 1.14. Let V' be a Hilbert A-module, T an ideal in A, and V; be the
assoctated ideal submodule. Then J = [{0,, : z,y € Vz}|~ C K (V) is an ideal in
K(V) and the restriction o = o|J : J — K (Vz) is an isomorphism of C*-algebras.

Remark 1.15. Using the same notation as above one easily concludes that V;
is also an ideal submodule of the left K(V)-module V (with the inner product
[z,y] = 0,,) associated with the ideal J = [{6,, : x,y € Vz}]- C K(V). As
in Proposition 1.3 one obtains Ve ={x €V : 0,, € J, Vv € V}.

Corollary 1.16. Let V be a full Hilbert A-module, T an ideal in A, t V; the asso-
ciated ideal submodule. Then:

(1) J =[{bzy:x,y € Vit =~ K(V;) is an essential ideal in K (V') if and only
if T is an essential ideal in A.

(ii) J = K(V) if and only if T = A.

Proof. Assume that 7 is an essential ideal in A and take T' € K (V') such that
T 1 J. By the preceding remark for each v in V' and = in V; the operator 0, ,
belongs to J, hence T0, , = 0r,, = 0. In particular, Tv(z,y) = 0,Vz,y € V;.
Since V is full, V; is a full Z-module and now the first assertion of Proposition 1.11
implies Tv = 0.
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The proof of the second assertion is similar, hence omitted. O
We end this section with the corresponding result on quotients. Let Z be an
ideal in A, and let V; be the associated ideal submodule. Since V; is invariant

A

for each T € B(V), there is a well defined induced operator T on V/V; given by
A

%(q(v)) = q(T'v). Moreover, j/\“ is adjointable because (I/\“)* =T*. This enables us to

define 5 : B(V) — B(V/Vz), B(T) ZZA“. Obviously, § is a morphism of C*-algebras.

The following proposition is proved by applying S to the ideal K (V) of all
”compact” operators on V. However, as the result is already known ([7], Proposition
3.25, see also [10]), we omit the proof.

Proposition 1.17. Let V be a Hilbert A-module, T an ideal in A, V; the associated
ideal submodule, and let J = [{0,, : z,y € V;}|~ € K (V) be as in Proposition1.14.
Then K(V)/J and K(V/V;) are isomorphic C*-algebras.

Corollary 1.18. Let V' be a Hilbert A-module, T an ideal in A, and Vi the as-

sociated ideal submodule. Then the map 3 : B(V) — B(V/V;), B8(T) ZJA’ is
the unique morphism of C*-algebras satisfying B(0z,y) = Ogx).q(y)> Y2,y € V and
B(K(V)) = K(V/V;). If V is countably generated, then 3 is surjective.

Proof. The equality 3(6:,y) = 04(2),q(y), ¥,y € V is verified by a direct calcula-
tion. Since [ is a morphism of C*-algebras, this ensures G(K (V) = K(V/Vz). Now
the small extension theorem applies (see [9], Propositions 2.2.16 and 2.3.7) because
B(V) and B(V/V;) are the multiplier algebras of S(K (V)), resp. K(V/V;). Thus
8 : B(V) — B(V/V;) is uniquely determined as the extension of 8’ = G| K (V) :
K (V) — K(V/V;) by strict continuity.

The last assertion follows from Tietze’s extension theorem. First, if V is count-
ably generated, then K (V) is a o-unital C*-algebra ( [4], Proposition 6.7]). Since
g+ K(V) — K(V/V;) is a surjection, Proposition 6.8 from [4] implies that § is
also a surjective map. O

2. Morphisms of Hilbert C*-modules

In this section we introduce a class of module maps of Hilbert C*-modules, not
necessarily over the same C*-algebra (cf. [2], p. 9, [4], p. 24 and also [7], p. 57). The
motivating example is provided by the quotient map ¢ : V' — V/V; taking values
in the quotient module of V over an ideal submodule V; satisfying (¢(z),q(y)) =

m((2,9))-

Definition 2.1. Let V' and W be Hilbert C*-modules over C*-algebras A and B,
respectively. Let ¢ : A — B be a morphism of C*-algebras. A map & : V — W
is said to be a p-morphism of Hilbert C*-modules if (®(z),®(y)) = o({z,y)) s
satisfied for all x,y in V.

Using polarization, one immediately concludes that ® is a -morphism if and
only if (®(x), ®(z)) = ¢({x, z)) is satisfied for each z in V.

It is also easy to show that each p-morphism is necessarily a linear operator and
a module map in the sense ®(va)®(v)p(a), Vv € V,Va € A .
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Further, let ¢ : A — B and ¢ : B — C be morphisms of C*-algebras and let
V,W, Z be Hilbert C*-modules over A, B,C, respectively. If & : V — W is a ¢-
morphism and ¥ : W — Z is a @-morphism, then obviously Y& : V — Z is a
1@-morphism of Hilbert C*-modules.

Example 2.2. Consider a Hilbert C*-module V' over a C*-algebra A. Let T be an
ideal in A, and let V7 be the associated ideal submodule. Then we have an exact

sequence of C*-algebras T LAS A/T and the corresponding sequence of Hilbert

C*-modules V; 4, V4 V/V;. (Herei and j denote inclusions while m and q denote
canonical quotient maps). Obviously, j is an i-morphism and q is a T-morphism in
the sense of the above definition.

Theorem 2.3. Let V and W be Hilbert C*-modules over C*-algebras A and B,
respectively. Let ¢ : A — B be a morphism of C*-algebras and let ® : V — W be
a p-morphism of Hilbert C*-modules. Then ® is a contraction satisfying Ker® =
Vierp- If @ is an injection, then ® is an isometry, hence also injective. If V is a
full A-module and if ® is injective, then o is also an injection.

Proof. (0(z),(y)) = ¢((,y) = [®@)[2 = (@), (@) = lp((@,a))]| <
|l{z,z)|| = ||z||?, V& € V. This proves that ® is a contraction. The same calculation
also shows: if ¢ is an injection, then the inequality above is replaced by the equality,
hence ® is also an isometry.

Obviously, Ker @ is a closed submodule of V' such that Vi.,, € Ker ®.

Further, z € Ker ® = (®(z), ®(z)) = 0 = ¢((z,z)) = 0; i.e. (z,2) € Kerp. By
Proposition 1.8 we conclude x € V.., which gives Ker ® C Vi.,,.

Finally, suppose that ® is an injection. Then Ker® = Vi., = {0}. Take
any a € Kery. Then the last equality means xza = 0, Vx € V. In particular,
(y,za) = (y,z)a = 0, Va,y € V. Since V is by hypothesis full, this implies a = 0.

O

Lemma 2.4. Let V and W be Hilbert C*-modules over C*-algebras A and B, re-
spectively. Let ¢ : A — B be a morphism of C*-algebras and let ® : V — W be a

A A
w-morphism of Hilbert C*-modules. Denote by ¥ and & the maps induced on the
quotients by ¢ and ®, respectively:

o A Kerp — B, @n(a) =pla), & V/Ker® - W, ogv)) = (v).

A
Then ® is a well defined @—morphism of Hilbert C*-modules V/Ker® and W.

Proof. First, by Theorem 2.3, Ker® = Vi..,. This ensures that V/Ker® =
V/Vierp 1s a Hilbert A/Ker p-module. Both maps are obviously well defined, so we

A A
only need to check that & is a ¢Y-morphism. Indeed:

A N

(©(q(v)). Ba(w)))(@(v), B(w)) = (v, w)) Hr((v,w))) =A(a(v), a(w))).
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Proposition 2.5. Let V and W be Hilbert C*-modules over C*-algebras A and B,
respectively. Let ¢ : A — B be a morphism of C*-algebras and let ® : V — W be
a p-morphism of Hilbert C*-modules. Then Im® is a closed subspace of W. It is
also a Hilbert C*-module over the C*-algebra Imyp C B such that (Im®, Im®) =
e((V, V). If V is a full A-module, then Im® is a full Imp-module. In particular,
if ® is surjective, and if W is a full B-module, then ¢ is also a surjection.

Proof. First suppose that ¢ is injective. Then by Theorem 2.3 ® is an isometry
which implies that Im @ is a closed subspace of W. Also, ®(v)¢(a) = ®(va) € Im ®
and (®(v), ®(w)) = ¢((v,w)) € Imep. This shows that Im ® is a Hilbert Im ¢-
module. The last equality also proves (Im ®, Im ®) = p((V,V)).

If V is full, this implies (Im ®,Im ®) = ¢(.A) which means that Im ® is a full
Im p-module. If ® is a surjection and if W is full, we additionally get B = (W, W) =
(Im @, Im @) = p((V,V)), hence  is also a surjection.

A A A
To prove the general case, take the maps ¢ and & from Lemma 2.4. Since @ is
an injection, we may apply the first part of the proof.

A N A
To do this, one has only to observe Im¢ = Im ¢, Im® = Im @ and (Im ®,Im ®) ¢

(V/ ViV Vi) AT((V. V) = (V. V).
(The equality (V/Vip, V/Vicap)T((V,V)) is noted in Remark 1.7.) O

Remark 2.6. Let us observe: if V is a full A-module and if ¢ and ® are surjective,
then W is also a full B-module.

On the other hand, we cannot conclude that ® is a surjection if ¢ is surjective,
even if V. and W are full. As an example we may take V.= AW = A& A,
v =1id,®(a) = (a,0).

Example 2.7. Let A and B be C*-algebras considered as Hilbert C*-modules over
A and B, respectively. Let ¢ : A — B be a morphism of C*-algebras and let
d : A — B be a surjective p-morphism of Hilbert C*-modules A and B. Then
there exists an isometry m in the multiplier C*-algebra of B, m € M(B), such that
®(a) = mp(a), Va € A.

To prove this, let us take any approximate unit (e;) for A. We shall show that
(®(ej)) is a net in B strictly convergent in M(B). First observe that A and B are
full, so ¢ is also surjective.

For each b € B there exists a € A such that p(a) = b. Now, ®(e;)b =
O(e;)p(a) = P(eja) converges since (e;) is an approzimate unit for A and ® is
continuous. On the other hand, since ® is by assumption a surjection, there ezists
¢ € A such that (®(c))* =b. This implies b®(e;) = (P(c))*P(e;) = (P(c), P(e;)) =
o((c,e;)) = ¢(c*e;), hence b®(e;) converges too.

Let m € M(B) be the strict limit: m = (st.)lim;®(e;); i.e. mb = lim;P(e;)b,
bm = lim;b®(e;), Vb € B. Using continuity of ® we get ®(a) = (lim;e;a)lim;P(e;a)
= lim;®(e;)p(a) = mep(a),Va € A. It remains to show that m is an isome-
try. First, (®(x), ®(y)) = (mp(x), mp(z)) = p(x)* m*me(y). On the other hand,
(®(2),2(y)) = e({x,y)) = p(z*y) = p(x)*@(y). Since ¢ is a surjection, this gives
bm*mc = be, Vb, ¢ € B i.e. (bm*m —b)c =0, Vb,c € B. Taking ¢ = (bm*m — b)*
we find bm*m — b = 0,Vb € B. The last equality can be written in the form
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b(m*m — 1) = 0,Vb € B. Since B in an essential ideal in M(B), this implies
m*m—1=0.

Definition 2.8. Let A and B be C*-algebras, and let V. and W be Hilbert C*-
modules over A and B, respectively. A map ® : V. — W is said to be a unitary
operator if there exists an injective morphism of C*-algebras ¢ : A — B such that
® is a surjective p-morphism.

Remark 2.9.

(a)

(b)

(¢)

(d)

(¢)
(f)

Each unitary operator of Hilbert C*-modules is necessarily (by Theorem 2.3)
an isometry.

Since ® is a surjection, Proposition 2.5 implies (W, W) = o((V,V)) = (V, V).
If W is additionally o full B-module, then ¢ is also surjective, hence an iso-
morphism of C*-algebras.

If V is a Hilbert C*-module over a C*-algebra A and if ¢ : A — B is an
isomorphism of C*-algebras, then V can also be regarded a Hilbert B-module

and the identity map is obviously a unitary operator between these two versions
of V.

Conversely, if V. and W are full unitary equivalent Hilbert C*-modules over
C*-algebras A and B, respectively (in the sense that there exists a unitary
operator ® : V. — W), then A and B are isomorphic C*-algebras.

Suppose that V. and W are full Hilbert C*-modules over A and B, respectively.
Let ¢ : A — B be an isomorphism of C*-algebras. Then a surjective operator
OV — W satisfying ®(va)®(v)p(a), Vv € V, Va € A is a unitary operator
of Hilbert C*-modules if and only if ® is an isometry.

To see this, we have to show that ®, having the property || ®(v)| = ||v||, Vv €
V', also satisfies the condition from Definition 2.1. This can be done by repeat-
ing the nice argument from [4], Theorem 3.5.

Take x € V and b € B. Then there exists a € A such that p(a) =b and

(@), @)/ ?b)* = [[b"(@(2), ®(x))b]l = |[(S(x)b, ()b)]
= [{@(@)p(a), 2(z)p(a))]| = [[(D(za), ®(za))|

= [|@(za)[* = [lzal* = [[(za, za)[| = |o((za, za))|
= le((z, 2) o(@)]|* = lle((x, 2))"/?b]*.
By Lemma 3.4 from [{] this implies (®(z), ®(x))*/? = p({x,z))"/2.
Unitary equivalence of full Hilbert C*-modules is an equivalence relation.

Suppose that V. and W are full Hilbert C*-modules over C*-algebras A and
B, respectively such that ¢ : A — B is an isomorphism and that ® : V — W
is a unitary p-morphism. Then ®~1 : W — V is a unitary @~ '-morphism.
Then we also have

(w, ®(x)) = ({2 (w), ), Vo € V, w € W.
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Indeed, putting w = ®(v), one obtains
(w, ®(2)) = (®(v), ®(2)) = p({v,2)) = P( 7 (w), z)).

Example 2.10. Consider an arbitrary C*-algebra A regarded as a Hilbert A-module
with {a,b) = a*b. It is well known that the map v: A — K(A), v(a) =T,, To(x) =
ax is an isomorphism of C*-algebras. Its unique extension to the corresponding mul-
tiplier algebras ([9], Proposition 2.2.16) 7 : M(A) — B(A) is also an isomorphism
of C*-algebras and acts in the same way: F(m) = Ty, Trn(r) = ma.

Let V' be a Hilbert A-module, let us denote Vg = B(A, V). It is well known that
Va is a Hilbert B(A)-module with the B(A)-valued inner product (ri,rs) = riry
such that the resulting norm coincides with the operator norm on V.

Further, each v € V induces the map r, € Vy given by r,(a) = va. It is also
known ([7], Lemma 2.82) that {r, :v e V} = K(A,V) C Vy.

(Observe that each v € V also induces the map 1, : V — A defined by l,(x) =
(v,x). Notice that I =r, and {l,:v eV} =K((V,A) C B(V, A).)

Now one can easily verify the following assertions:

(1) T':V — Vg, T'(v) =1y is a y-morphism of Hilbert C*-modules.
(2) ImT is the ideal submodule of Vg associated with the ideal K(A) of B(A).
(3) T:V — ImI' = K(A,V) is a unitary y-morphism of Hilbert C*-modules.

Proposition 2.11. Let V' and W be Hilbert C*-modules over C*-algebras A and
B respectively, let ¢ : A — B be an injective morphism and let & : V. — W be
a unitary @-morphism. Then the map ®* : B(V) — B(W), ®T(T) = ®T®~ ! is
an isomorphism of C*-algebras. Moreover, ®T(0,,) = 0o (2),0(y) YT,y € V and
ST (K(V)) = K(W).

Proof. First observe that ®+(T) = ®T'®~! is an adjointable operator, in fact
we claim (®T®1)* = &T*d~L. Indeed,

(w1, ®T® twy) = (Remark2.9(f)) = p({® twy, TO twy))
= o({(T*® 'wy, @ 'wy)) = (Remark 2.9(f))
= (OT* My, ws).

Now one easily verifies that ®* is an isomorphism of C*-algebras. Further,
F(0,,)(w) = @b,,, @ (w) = (puting ®(v) =w) = @(6yy(v))
= ®(z(y, v)) = ®(x)e((y, v)) = ®(z)(®(y), B(v))
= Op(2),a(y) (W)-
The last statement is an immediate consequence. O
Remark 2.12.

(a) Since B(V) and B(W) are the multiplier C*-algebras of K(V) and K(W),
we know that ®F, satisfying ®*(0,.,) = Ov(z)e), YT,y € V, is uniquely
determined.
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(b) If one applies Proposition2.11 to the case V.= A, W = B, ® = ¢, one
obtains the uniquely determined extension of ¢ ensured by the small extension
theorem ([9], Proposition 2.2.16): ¢+ : B(A) — B(B), o™ (T)pTe .

(c) Proposition2.11 applied to V ~ T'(V) = K(A,V) coincides with (a special
case of ) Proposition 7.1 in [4].

Corollary 2.13. Let V and W be Hilbert C*-modules over C*-algebras A and B,
let ¢ : A — B be a surjective morphism of C*-algebras and let ® : V. — W be
a surjective @-morphism. There exists a morphism of C*-algebras ®* : B(V) —
B(W) satisfying T (02,y) = 0o (2),0(,) and @ (K(V)) = K(W).

Proof. Considering the quotient V/Ker ® we first apply Proposition 1.17 and
Corollary 1.18. The proof is completed by a direct application of Lemma 2.4 and
the preceding proposition. O

Remark 2.14. Let V and W be full (right) Hilbert C*-modules over A, resp. B,
let o : A — B be a morphism of C*-algebras and let ® : V. — W be a surjective
p-morphism of Hilbert C*-modules. We note that ® is also a ®*-morphism of
left Hilbert C*-modules V and W (when V and W are regarded as the left Hilbert
C*-modules over K(V) and K(W), respectively).

To show this, let us denote by [-,-] the K (V)-inner product on V; i.e. [x,y] =
0z.y; the same notation will be used in W. Now the condition from Definition 2.1
is an immediate consequence of the preceding corollary: [®(x), ®(y)] = Op(a),a(y) =

¥ (02,y) = 27 ([, 9])-

Now we are able to describe morphisms of Hilbert C*-modules in terms of the
corresponding linking algebras.

Recall that, given a Hilbert A-module V, the linking algebra £(V) may be
written as the matrix algebra of the form

K(A) K(V,A)
£v) = [K(AJ/) K(V) }

(cf. [7], Lemma 2.32 and Corollary 3.21). Observe that £(V) is in fact the C*-
algebra of all ”compact” operators acting on A & V. Keeping the notation from
Ezample 2.10 we may write

K(A) K(V,A)] :{[Ta L,

L) = K(A V) K(V) re T

} :aEA,x,er,TeK(V)}.

Accordingly, we shall also identify the C*-algebras of ” compact” operators with the
corresponding corners in the linking algebra: K(A) = K(A®0) C K(A®V) =
LV)and K(V)=K(0eV)CKAaV)=L(V).

Theorem 2.15. Let V and W be full Hilbert C*-modules over A, resp. B, let
v : A — B be a morphism of C*-algebras and let ® : V. — W be a surjective
w-morphism of Hilbert C*-modules. Then the map py o : L(V) — L(W) defined by

oo b To 1y _ To@) lag)
@ ry T ro) @T(T)
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is a morphism of C*-algebras. Conversely, let p: L(V) — L(W) be a morphism of
C*-algebras such that p(K(A)) C K(B) and p(K(V)) C K(W). Then there exist
a morphism of C*-algebras ¢ : A — B and a p-morphism ® : V. — W such that

P =Py

Proof. Clearly, p, s is a linear map. Further,

Ty 1y Ty Iy _ Top + T(v,y) lgar + lswy
Ped \\ro T |ry S]) TP\ | rup +rry Ouwe+TS
Toabt (o)) l(zar+570) }

To@wb+Ty) PF (0w +TS)

[ applying Remark 2.14 to
o off-diagonal elements
Toaypv) T Tiaw), o) lo@e@) + l<1>+(5*)<1>(v)}
Ta(w)pd) + To+(T)ay)  a(w), @(w) +7(TS)

_ [Twm La(v) } [ () l@(z) ]
T@(w) (I)+(T) T@(y
p

) (5

To prove the converse, first observe that, by assumption, we may write

(6 7)) =% ot

It should be noted that the definition of ¢ actually uses the standard identification
a— T, a€ AT, € K(A) denoted by v in Ezxample 2.10. Obviously, both ¢ and
U are morphisms of C*-algebras.

Take any x € V' and write p <[ 0 O}) = [pn(x) 212(30)] Then

72 0 p21(x) paz(z)
00\ 00 p11(z)* par(z)* | | p11(z) pr2(z)
r <[7”m OD p <[7”m 0} B [,012(96)* ,022($)*] [le(x) 022(95)]
- [ﬁll(w)*P 1(2) + p21(2)" p21(2) p11(z)*pr2(x) +le($)*022($)]
p12(z)* p11(z) + p22(x)* p21(x) p12(z)* p12(x) + po2(x)* paz(z)

] and comparing the above result with

00 — ) Tiaa) 01\ _ | Te((a,a)) O
re 0 0 0 0 0

we find p12(x) = paz(x) = 0. Similarly, calculating p ([TO 8}) p ([TO 8}) , one
additionally gets p11 = 0. After all, we conclude that p may be written in the form

Taly |\ Z | Tote) las@) ots : ‘ ~
0 ({7‘@« T]) = [Tq>1(z) w(T) | Obviously, the induced maps ®; and ®5 are linear.
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Let us show ®; = ®3. Indeed, p (LO 8]) =p ([TO 8} ) implies [8 lq)lo(m)] =

[8 lq)"b(z) } thus @4 (z) = ®2(z) which enables us to write ®; = &5 = .

Finally,

p 00| |0 — ) Tiyyy O _ | Tottyyyy O
2 0] |ry O 0 6Opz 0 U(byz)|"

On the other hand, knowing that p is multiplicative, one obtains

04,1T0LTY _ ([014,] JO0L
(5D -o((2 (25
:[ 0 l@(y):|[ 0 l@(z)} _ [T@(y),@(y» 0 }
Td(x) 0 T3 (y) 0 0 9<I>(m),<1>(z)

This is enough (together with Corollary 2.13) to conclude p = p,, . O
Notice that the assumptions p(K(A)) C K(B) and p(K(V)) € K(W) cannot
be dropped from the hypothesis of the second assertion in Theorem 2.15.
Let us also note an alternative description of p, ¢. First, define

p@dP: AV —-BaW, (p&P)(a,v)=(p(a),®(v)).

One easily verifies that @ ® is a ¢p-morphism of Hilbert C*-modules. After applying
Corollary 2.13 it turns out that (¢ & )" = p, .

At the end let us mention a similar characterization of ideal submodules in
terms of linking algebras: there is a natural bijective correspondence between the
set of all ideal submodules of a Hilbert C*-module V' and the set of all ideals of
the corresponding linking algebra £(V'). Moreover, the ideal submodule associated
with an essential ideal corresponds to an essential ideal in £(V'). The proof is an
easy calculation similar to the preceding one, hence omitted.

Note added in proof: In Corollary 2.13 as well as in the subsequent Remark 2.1/
and Theorem 2.15 the assumption that @ is surjective is redundant. In fact, the
map ®* : B(V) — B(W) satisfying ®*(0,,,,) = 0a(s),0(,) is always well defined.
This can be seen using the identification K(V) =V ®p4 V* (c¢f. D. BLECHER, A
new approach to Hilbert C*-modules, Math. Ann. 307(1997), 253-290). We thank
to the anonymous referee for this observation.

References

[1] L. G.BrowN, J.A.MINGO, N.-T.SHEN, Quasi-multipliers and embeddings
of Hilbert C*-bimodules, Can. J. Math. 46(6)(1994), 1150-1174.

[2] K. K. JENSEN, K. THOMSEN, Elements of KK-theory, Birkhduser, 1991.

[3] I. KAPLANSKY, Modules over operator algebras, Amer. J. Math. 75(1953), 839—
853.



192 D. BAKIC AND B. GULJAS

[4] C.LANCE, Hilbert C*-modules: a toolkit for operator algebraists, London Math.
Soc. Lecture Notes Series, vol. 210, Cambridge University Press, Cambridge,
1994.

[6] W.PASCHKE, Inner product modules over B*-algebras, Trans. Amer. Math.
Soc. 182(1973), 443-468.

[6] G.K.PEDERSEN, Factorization in C*-algebras, Exposition Math. 16(1998),
145-156.

[7] I. RAEBURN, D.P.WILLIAMS, Morita equivalence and continuous-trace C*-
algebras, Mathematical Surveys and Monographs 60, AMS, Philadelphia, 1998.

[8] M. A. RIEFFEL, Induced representations of C*-algebras, Advances in Math.
13(1974), 176-257.

[9] N.E. WEGGE-OLSEN, K-theory and C*-algebras, Oxford University Press, Ox-
ford, 1993.

(10] H. H. ZETTL, Ideals in Hilbert modules and invariants under strong Morita
equivalence of C*-algebras, Arch. Math. 39(1982), 69-77.



