On some subspaces of an FK-space

$\dot{I}.~Da\breve{g}adur^*$

Abstract. In this paper we study the subspaces C_1S , C_1W , C_1F and C_1B for a locally convex FK-space X containing ϕ , the space of finite sequences.

Key words: *FK-space, AK-space, \sigma K-space, \sigma B-space, C_1- summability method*

AMS subject classifications: Primary 46A45; Secondary 47B37, 40H05.

Received February 23, 2002

Accepted March 27, 2002

1. Introduction and notation

Let w denote the space of all complex-valued sequences. An FK-space is a locally convex vector subspace of w which is also a Fréchet space (complete linear metric) with continuous coordinates. A BK-space is a normed FK-space. The basic properties of FK-spaces may be found in [7], [8] and [10]. We now define the Cesáro summability matrix which is used throughout this paper: The Cesáro mean is given by the matrix C_1 whose *nkth* entry is

$$C_1[n,k] = \begin{cases} \frac{1}{n+1}, \text{ if } 0 \le k \le n\\ 0, \text{ if } k > n. \end{cases}$$

The sequence spaces

$$\sigma_0 = \left\{ x \in w : \lim_n \frac{1}{n} \sum_{j=1}^n x_j = 0 \right\},$$

$$\sigma b = \left\{ x \in w : \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_j \right| < \infty \right\}$$

*Gaziosmanpaşa University, Faculty of Arts and Science, Department of Mathematics, 60100, Tokat, Turkey, e-mail: ilhandagadur@yahoo.com and

$$\sigma s = \left\{ x \in w : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_j \text{ exists} \right\}$$

are BK-spaces with the norm

$$\|x\|_{\sigma_0} = \sup_n \frac{1}{n} \left| \sum_{k=1}^n x_k \right|$$

and

$$\|x\|_{\sigma s} = \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_j \right|$$

respectively ([1], [2] and [9]).

Throughout the paper δ^j , (j = 1, 2, ...), the sequence (0, 0, ..., 0, 1, 0, ...) with the one in the *j*-th position; ϕ the linear span of the δ^j 's. The topological dual of X is denoted by X'. A sequence x in a locally convex sequence space X is said to have the property AK (respectively σK) if $x^{(n)} \to x$ (respectively $\frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x$) in X where $x^{(n)} = (x_1, x_2, ..., x_n, 0, ...) = \sum_{k=1}^{n} x_k \delta^k$. It is known that if an FK-space

 $\phi \subset X \text{ is said to have } \sigma B \text{ if } \left\{ \frac{1}{n} \sum_{k=1}^{n} x^{(k)} \right\} \text{ is a bounded set in } X \text{ for each } x \in X.$ Also, an FK- space X is said to have $F\sigma K$ (functional σK) if $X \subset C_1 F^+$ i.e., $X = C_1 F$ ([1], [2] and [4]).

We recall (see [3] and [4]) that the $f,\sigma-$ and $\sigma b-$ duals of a subset X of w are defined to be

$$X^{f} = \left\{ \left\{ f\left(\delta^{k}\right) \right\} : f \in X' \right\}$$

$$X^{\sigma} = \left\{ x \in w : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} y_{j} \text{ exists for all } y \in X \right\}$$
$$= \left\{ x \in w : x.y \in \sigma s \text{ for all } y \in X \right\},$$

$$X^{\sigma b} = \left\{ x \in w : \sup_{n} \left| \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} x_{j} \right| < \infty \text{ for all } y \in X \right\}$$
$$= \left\{ x \in w : x.y \in \sigma b \text{ for all } y \in X \right\},$$

respectively, where $x \cdot y = (x_n y_n)$.

16

2. Some subspaces of X

Following [4] we recall some important subspaces of a locally convex FK-space X containing ϕ .

Definition1. Let X be an FK-space $\supset \phi$. Then

$$\begin{split} W &:= W(X) = \left\{ x \in X : x^{(k)} \to x(\textit{weakly}) \textit{ in } X \right\} \\ C_1W &:= C_1W(X) = \left\{ x \in X : \frac{1}{n} \sum_{k=1}^n x^{(k)} \to x(\textit{weakly}) \textit{ in } X \right\} \\ &= \left\{ x \in X : f(x) = \lim_n \frac{1}{n} \sum_{k=1}^n \sum_{j=1}^k x_j f\left(\delta^j\right) \textit{ for all } f \in X' \right\} \\ &= \left\{ x \in X : x \textit{ has } S\sigma K \textit{ in } X \right\}, \\ C_1S &:= C_1S(X) = \left\{ x \in X : \frac{1}{n} \sum_{k=1}^n x^{(k)} \to x \right\} \\ &= \left\{ x \in X : x \textit{ has } \sigma K \textit{ in } X \right\} \\ &= \left\{ x \in X : x \textit{ has } \sigma K \textit{ in } X \right\} \\ &= \left\{ x \in X : x \textit{ has } \sigma K \textit{ in } X \right\} \\ &= \left\{ x \in X : x \textit{ lim } \frac{1}{n} \sum_{k=1}^n \sum_{j=1}^k x_j \delta^j \right\}, \\ C_1F^+ &:= C_1F^+(X) = \left\{ x \in w : \left(\frac{1}{n} \sum_{k=1}^n x^{(k)}\right) \textit{ is weakly Cauchy } \textit{ in } X \right\} \\ &= \left\{ x \in w : (x_n f(\delta^n)) \in \sigma \textit{ s for all } f \in X' \right\}, \\ C_1B^+ &:= C_1B^+(X) = \left\{ x \in w : \left(\frac{1}{n} \sum_{k=1}^n x^{(k)}\right) \textit{ is bounded } \textit{ in } X \right\} \\ &= \left\{ x \in w : (x_n f(\delta^n)) \in \sigma \textit{ b for all } f \in X' \right\}, \\ also \\ C_1F &:= C_1F^+ \cap X \quad and \quad C_1B := C_1B^+ \cap X. \end{split}$$

We note that subspaces W and C_1W are closely related to conullity and Cesáro conullity of the FK-space X (see [5] and [6]).

We now study some inclusions which are analogous to those given in [8; Chapter 10].

Theorem 2. Let X be an FK-space $\supset \phi$. Then

$$\phi \subset C_1 S \subset C_1 W \subset C_1 F \subset C_1 B \subset X \text{ and } \phi \subset C_1 S \subset C_1 W \subset \overline{\phi}.$$

Proof. The only non-trivial part is $C_1W \subset \overline{\phi}$. Let $f \in X'$ and f = 0 on ϕ . The definition of C_1W shows that f = 0 on C_1W . Hence, the Hahn-Banach theorem gives the result.

Theorem 3. The subspaces $E = C_1S$, C_1W , C_1F , C_1F^+ , C_1B , and C_1B^+ of X FK-space are monotone *i.e.*, if $X \subset Y$ then $E(X) \subset E(Y)$.

Proof. The inclusion map $i: X \to Y$ is continuous by Corollary 4.2.4 of [8], so $\frac{1}{n} \sum_{k=1}^{n} x^{(k)} \to x$ in X implies the same in Y. This proves the assertion for C_1S . For C_1W it follows from the fact that *i* is weakly continuous by (4.0.11) of [8]. Now

İ. Dağadur

 $z \in C_1F^+, C_1B^+$ if and only if $(z_n f(\delta^n)) \in \sigma s, \sigma b$ respectively for all $f \in X'$, hence for all $g \in Y'$ since $g \mid X \in X'$ by Corollary 4.2.4 of [8]. The result follows for C_1F^+, C_1B^+ and so for C_1F, C_1B .

Since σ_0 is an AK-space, we immediately get the following

Theorem 4. Let X be an FK-space $\supset \sigma_0$. Then $\sigma_0 \subset C_1 S \subset C_1 W$.

Theorem 5. Let X be an FK-space $\supset \phi$. Then $C_1B^+ = X^{f\sigma b}$.

Proof. By *Definition 1*, $z \in C_1B^+$ if and only if $z \cdot u \in \sigma b$ for each $u \in X^f$. This is precisely the assertion.

Theorem 6. Let X be an FK-space $\supset \phi$. Then C_1B^+ is the same for all FK-spaces Y between $\overline{\phi}$ and X; i.e., $\overline{\phi} \subset Y \subset X$ implies $C_1B^+(Y) = C_1B^+(X)$. Here the closure of ϕ is calculated in X.

Proof. By Theorem 3 we have $C_1B^+(\overline{\phi}) \subset C_1B^+(Y) \subset C_1B^+(X)$. By Theorem 5 and by (7.2.4) of [8] the first and the last are equal.

Theorem 7. Let X be an FK-space such that $C_1B \supset \overline{\phi}$. Then $\overline{\phi}$ has σK and $C_1S = C_1W = \overline{\phi}$.

Proof. Suppose first that X has σB . Define $f_n : X \to X$ by

$$f_n(x) = x - \frac{1}{n} \sum_{k=1}^n x^{(k)}.$$

Then $\{f_n\}$ is pointwise bounded, hence equicontinuous by (7.0.2) of [8]. Since $f_n \to 0$ on ϕ then also $f_n \to 0$ on $\overline{\phi}$ by (7.0.3) of [8]. This is the desired conclusion. \Box

Theorem 8. Let X be an FK-space $\supset \phi$. Then $C_1F^+ = X^{f\sigma}$.

Proof. This may be proved as in *Theorem 5*, with σs instead of σb .

Theorem 9. Let X be an FK-space $\supset \phi$. Then C_1F^+ is the same for all FK-spaces Y between $\overline{\phi}$ and X; i.e., $\overline{\phi} \subset Y \subset X$ implies $C_1F^+(Y) = C_1F^+(X)$. (The closure of ϕ is calculated in X).

The proof is similar to that of *Theorem 6*.

Lemma 10. Let X be an FK-space in which $\overline{\phi}$ has σK . Then $C_1 F^+ = (\overline{\phi})^{\sigma \sigma}$.

Proof. Observe that $C_1F^+ = X^{f\sigma}$ by *Theorem 8*. Since $X^f = (\overline{\phi})^f$ by Theorem 7.2.4 of [8], we have $X^{f\sigma} = (\overline{\phi})^{f\sigma}$. Hence, by Theorem 1.9 of [4] the result follows.

Theorem 11. Let X be an FK-space $\supset \phi$. Then X has $F\sigma K$ if and only if $\overline{\phi}$ has σK and $X \subset (\overline{\phi})^{\sigma\sigma}$.

Proof. Necessity. X has σB since $C_1F \subset C_1B$ so $\overline{\phi}$ has σK by Theorem 7. The remainder of the proof follows from Lemma 10. Sufficiency is given by Lemma 10. \Box

Theorem 12. Let X be an FK-space $\supset \phi$. The following are equivalent: (i) X has $F\sigma K$, $\begin{array}{l} (ii) \ X \subset C_1 S^{\sigma\sigma}, \\ (iii) \ X \subset C_1 W^{\sigma\sigma}, \\ (iv) \ X \subset C_1 F^{\sigma\sigma}, \\ (v) \ X^{\sigma} = C_1 S^{\sigma}, \\ (vi) \ X^{\sigma} = C_1 F^{\sigma}. \end{array}$

Proof. Observe that (ii) implies (iii) and (iii) implies (iv) and that they are trivial since

$$C_1 S \subset C_1 W \subset C_1 F.$$

If (iv) is true, then $X^f \subset C_1 F^{\sigma} = X^{f\sigma\sigma} \subset X^{\sigma}$ so (i) is true by Theorem 1.9 of [4]. If (i) holds, then *Theorem 11* implies that $\overline{\phi} = C_1 S$ and that (ii) holds. The equivalence of (v), (vi) with the others is clear. \Box

Theorem 13. Let X be an FK-space $\supset \phi$. The following are equivalent:

(i) X has $S\sigma K$,

(*ii*) X has σK ,

(*iii*) $X^{\sigma} = X'$.

Proof. Clearly (ii) implies (i). Conversely if X has $S\sigma K$ it must have AD for $C_1W \subset \overline{\phi}$ by *Theorem 2*. It also has σB since $C_1W \subset C_1B$. Thus X has σK by *Theorem 7*, this proves that (i) and (ii) are equivalent. Assume that (iii) holds. Let $f \in X'$, then there exists $u \in X^{\sigma}$ such that

$$f(x) = \lim_{n} \frac{1}{n} \sum_{k=1}^{n} \sum_{j=1}^{k} u_j x_j$$

for $x \in X$. Since $f(\delta^j) = u_j$, it follows that each $x \in C_1 W$ which shows that *(iii)* implies *(i)*. That *(ii)* implies *(iii)* is known (see [2], page 97). \Box

Theorem 14. Let X be an FK-space $\supset \phi$. The following are equivalent:

 $\begin{array}{ll} (i) & C_1W \ is \ closed \ in \ X, \\ (ii) & \overline{\phi} \subset C_1B, \\ (iii) & \overline{\phi} \subset C_1F, \\ (iv) & \overline{\phi} = C_1W, \\ (v) & \overline{\phi} = C_1S, \\ (vi) & C_1S \ is \ closed \ in \ X. \end{array}$

Proof. (*ii*) implies (*v*): By Theorem 7, $\overline{\phi}$ has σK , *i.e.* $\overline{\phi} \subset C_1 S$. The opposite inclusion is Theorem 2. Note that (*v*) implies (*iv*), (*iv*) implies (*iii*) and (*iii*) implies (*ii*) because

$$C_1S \subset C_1W \subset \overline{\phi}, \ C_1W \subset C_1F \subset C_1B;$$

(i) implies (iv) and (vi) implies (v) since $\phi \subset C_1 S \subset C_1 W \subset \overline{\phi}$. Finally (iv) implies (i) and (v) implies (vi).

İ. Dağadur

References

- M. BUNTINAS, Convergent and bounded Cesáro sections in FK-spaces, Math. Z. 121(1971), 191–200.
- [2] G. GOES, S. GOES, Sequences of bounded variation and sequences of Fourier coefficients, I, Math. Z. 118(1970), 93–102.
- [3] G. GOES, Sequences of bounded variation and sequences of Fourier coefficients, II, J. Math. Anal. Appl. 39(1972), 477–494.
- G. GOES, Summan von FK-Räumen funktionale Abschnittskonvergenz und Umkehrsatz, Tôhoku. Math. Journ. 26(1974), 487–504.
- [5] H. G. INCE, Cesáro conull FK-spaces, Demonstratio Math. 33(2000), 109–121.
- [6] C. ORHAN, Conull absolute summability domains, Indian J. Pure & Applied Math. 24(1993), 539–542.
- [7] A. WILANSKY, Functional Analysis, Blaisdell Press, 1964.
- [8] A. WILANSKY, Summability Through Functional Analysis, North Holland, 1984.
- [9] K. ZELLER, Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53(1951), 463–487.
- [10] K. ZELLER, Theorie der Limitierungsverfahren, Berlin-Heidelberg- New York, 1958.