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On some subspaces of an FK-space

I. DAGADUR*

Abstract. In this paper we study the subspaces C1.5, C1W, C1F
and C1B for a locally conver FK-space X containing ¢, the space of
finite sequences.
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1. Introduction and notation

Let w denote the space of all complex-valued sequences. An FK-space is a locally
convex vector subspace of w which is also a Fréchet space (complete linear met-
ric) with continuous coordinates. A BK-space is a normed FK-space. The basic
properties of FK-spaces may be found in [7], [8] and [10]. We now define the Cesdro
summability matrix which is used throughout this paper: The Cesdro mean is given
by the matrix Cy whose nkth entry is

L ifo<k<n
Crln, k] :{ 00tk > .

The sequence spaces

1 n
gp =< x€w:lim— x; =0
0 nn§1j )
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k
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and

1 n k
s = wa:lim—E E x; exists
n n
k=1 j=1

are BK-spaces with the norm

and

1 n k
I ) 3
n

k=1j=1

respectively ([1], [2] and [9]).
Throughout the paper 67, (j = 1,2,...), the sequence (0,0, ...,0, 1,0, ...) with the
one in the j-th position; ¢ the linear span of the §7 ’s. The topological dual of X

is denoted by X’. A sequence z in a locally convex sequence space X is said to
n

have the property AK (respectively oK) if (") — z (respectively % St — )
k=1

in X where 2" = (1, x,...,2,,0,...) = 3. 2,0%. Tt is known that if an FK-space
k=1
¢ C X is said to have oB if {% > x(k)} is a bounded set in X for each z € X .
k=1

Also, an FK- space X is said to have FoK ( functional oK) if X C C1F™ ie.,
X =C1F ([1], [2] and [4]).

We recall (see [3] and [4] ) that the f,o—and ob— duals of a subset X of w are
defined to be

XI={r (")} fex’y,

1 n k
o _ T . b a
X7 = TEW: 117rlnn %;a%yﬂ exists for all y € X
:J:

{rew:zycosforallye X},

Xab

k
1 n
T € w :sup —g g z;| <ooforally e X
n [N ;
k=1 j=1

= {zew:zycobforalyec X},

respectively, where .y = (Tnyn).
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2. Some subspaces of X

Following [4] we recall some important subspaces of a locally convex FK-space X
containing ¢.

Definitionl. Let X be an FK-spaceD ¢. Then

W:.=W(X)= {ac € X : 2™ — z(weakly) in X}

W= CiWX) = {x € X : 15 a® — x(weakly) in X
k=1

—dreX:f(x)=lm} > ixjf(aj) for allfeX’}
={z e X :xhas SoK m’}l}ﬂ,*l
1S := C15(X) :{xeX:%ix(’“)—mx

_{reX:ahas oK in X

CiFt:= CFT(X) = {x Ew: (% > x(k)> is weakly Cauchy in X}
k=1
={zew: (z,f (") €osforal fe X'},
C1BT .= CB*Y(X) = {x Ew: (% > x(k)> is bounded in X}
=1
={xcw: (z,f (6™) € obfor all f € X'},
also
C\F = CiFtnX and C1B:=C;BtNX.

We note that subspaces W and C1W are closely related to conullity and Ceséro
conullity of the FK—space X ( see [5] and [6] ).
We now study some inclusions which are analogous to those given in [8; Chapter 10] .

Theorem 2. Let X be an FK-spaceD ¢. Then
pCCSCCWCCIFCCiBC X andp C C1S C CLW C 6.

Proof. The only non-trivial part is C;WW C ¢.Let f € X’ and f = Oon ¢. The
definition of C1W shows that f = Oon C;W .Hence, the Hahn-Banach theorem
gives the result. O

Theorem 3. The subspaces E = C1S, C1W, C1F, C1F*, CiB,and C1B* of X FK-
space are monotone i.e., if X CY then E(X) C E(Y).

Proof. The inclusion map i : X — Y is continuous by Corollary 4.2.4 of [§],
SO % S 2®) — z in X implies the same in Y. This proves the assertion for CyS.

k=1
For C1W it follows from the fact that i is weakly continuous by (4.0.11) of [8]. Now
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z € C1F*,C1 BT if and only if (2, f (6™)) € os,0b respectively for all f € X’ hence
for all ¢ € Y’ since g|X € X' by Corollary 4.2.4 of [8]. The result follows for
C1F*, CiBTand so for C; F, C1B. O

Since ¢ is an AK —space, we immediately get the following
Theorem 4. Let X be an FK-spaceD og. Then o9 C C1.S C C1W.
Theorem 5. Let X be an FK-spaceD ¢. Then CiBt = X7

Proof. By Definition 1, z € C; BT if and only if z.u € ob for each u € X7. This is
precisely the assertion. O

Theorem 6. Let X be an FK-spaceD ¢. Then C1B™ is the same for all FK-spaces
Y between ¢ and X;i.e.,d CY C X implies C1BT(Y) = C1BT(X). Here the
closure of ¢is calculated in X.

Proof. By Theorem 3 we have C; Bt (¢) C C1B*(Y) C C1B*(X). By Theorem 5
and by (7.2.4) of [8] the first and the last are equal. O

Theorem 7. Let X be an FK-space such that C1B O ¢. Then ¢ has oK

andC’lS = 01W = (]5
Proof. Suppose first that X has o0B. Define f, : X — X by

Then {f,} is pointwise bounded, hence equicontinuous by (7.0.2) of [8] . Since f,, —
0 on ¢ then also f,, — 0 on ¢ by (7.0.3) of [8]. This is the desired conclusion. O

Theorem 8. Let X be an FK-spaceD ¢. Then CLF+ = X1,

Proof. This may be proved as in Theorem 5, with os instead of ob . O

Theorem 9. Let X be an FK-spaceD ¢. Then C1F7 is the same for all FK-spaces
Y between ¢ and X;i.e., d CY C X implies C1FT(Y) = C1F+(X).(The closure
of ¢is calculated in X ).

The proof is similar to that of Theorem 6.

Lemma 10. Let X be an FK-space in which ¢has oK . Then C1 F+ = ($)7°.

Proof. Observe that ClF+_: X717by Theorem 8. Since X7 = (¢)/ by Theorem
7.2.4 of [8] ,we have X/7 = ('¢)/?. Hence, by Theorem 1.9 of [4] the result follows.O

Theorem 11. Let X be an FK-spaceD ¢. Then X has FoK if and only if ¢ has
oK and X C (¢)7°.

Proof. Necessity. X has oBsince C;F C C1Bso ¢has 0 K by Theorem 7. The
remainder of the proof follows from Lemma 10. Sufficiency is given by Lemma 10.0

Theorem 12. Let X be an FK-spaceD ¢. The following are equivalent:
(1) X has FoK,
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(15) X C C1577,
(tit) X C CLWe,
(w) X Cc ChFo°,
(v) X7 =C15°,
(vi) X7 =C1F°.

Proof. Observe that (i¢) implies (i7¢) and (i4¢) implies (iv) and that they are trivial
since

1S Cc CLW C CLF.

If (iv) is true, then X/ C C1F7 = X797 C X7 so (i) is true by Theorem 1.9 of
[4]. If (¢) holds, then Theorem 11 implies that ¢ = C1.S and that (¢7) holds. The
equivalence of (v), (vi) with the others is clear. O

Theorem 13. Let X be an FK-spaceD ¢. The following are equivalent:

(1) X has SoK,

(#i) X has oK,

(iii) X7 = X' .
Proof. Clearly (i¢) implies (7). Conversely if X has SoK it must have AD for
CLW C 5 by Theorem 2. It also has o B since C1W C C1B. Thus X has 0K by
Theorem 7, this proves that (i) and (i¢) are equivalent. Assume that (iii) holds. Let
f € X', then there exists u € X7 such that

f(z) —hm ZZu]x]

Ic 1j=1
for € X. Since f (67) = uy, it follows that each z € C1W which shows that (i)
implies (7). That (i) implies (éi%) is known (see [2], page 97). O

Theorem 14. Let X be an FK-spaceD ¢. The following are equivalent:
(1) C1W is closed in X,
i1) qS cCyB
i

(vi) C1S is closed in X.

Proof. (ii) implies (v): By Theorem 7, ¢has oK , i.e. ¢ C C1S. The opposite
inclusion is Theorem 2. Note that (v) implies (iv), (iv) implies (4i7) and (i4¢) implies
(77) because

ChiS Cc ChW C 5, cCiW cCiF cCyB

(4) implies (4v) and (vi) implies (v) since ¢ C C1.S C C1W C . Finally (iv) implies
(7) and (v) implies (vi). O
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