Some relations concerning k-chordal and k-tangential polygons

Mirko Radić*

Abstract

In papers [6] and [7] the k-chordal and the k-tangential polygons are defined and some of their properties are proved. In this paper we shall consider some of their other properties. Theorems 1-4 are proved.

Key words: geometrical inequalities, k-chordal polygon, k-tangential polygon

AMS subject classifications: 51E12, 52A40
Received October 8, 2001
Accepted April 4, 2002

1. Preliminaries

A polygon with vertices $A_{1} \ldots A_{n}$ (in this order) will be denoted by $A_{1} \ldots A_{n}$ and the lengths of the sides of $A_{1} \ldots A_{n}$ will be denoted by a_{1}, \ldots, a_{n}, where $a_{i}=$ $\left|A_{i} A_{i+1}\right|, i=1,2, \ldots, n$. For the interior angle at the vertex A_{i} we write α_{i} or $\angle A_{i}$, i.e. $\angle A_{i}=\angle A_{n-1+i} A_{i} A_{i+1}, \quad i=1, \ldots, n$. Of course, indices are calculated modulo n .

For convenience we list some definitions given in [6] and [7].
Definition 1. Let $\underline{A}=A_{1} \ldots A_{n}$ be a chordal polygon and let C be its circumcircle. By $S_{A_{i}}$ and $\widehat{S}_{A_{i}}$ we denote the semicircles of C such that

$$
S_{A_{i}} \cup \widehat{S}_{A_{i}}=C, \quad A_{i} \in S_{A_{i}} \cap \widehat{S}_{A_{i}}
$$

The polygon \underline{A} is said to be of the first kind if the following is fulfilled:

1. all vertices $A_{1} \ldots A_{n}$ do not lie on the same semicircle,
2. for every three consecutive vertices A_{i}, A_{i+1}, A_{i+2} it holds

$$
A_{i} \in S_{A_{i+1}} \Rightarrow A_{i+2} \in \widehat{S}_{A_{i+1}}
$$

3. any two consecutive vertices A_{i}, A_{i+1} do not lie on the same diameter.

Definition 2. Let $\underline{A}=A_{1} \ldots A_{n}$ be a chordal polygon and let k be a positive integer. The polygon \underline{A} is said to be a k-chordal polygon if it is of the first kind and if there holds

$$
\begin{equation*}
\sum_{i=1}^{n} \angle A_{i} C A_{i+1}=2 k \pi \tag{1}
\end{equation*}
$$

[^0]where C is the centre of the circumcircle of the polygon \underline{A}.
Using (1) it is easy to see that the angles of a k-chordal polygon $A_{1} \ldots A_{n}$ satisfy the relation:
\[

$$
\begin{equation*}
\sum_{i=1}^{n} \angle A_{i}=(n-2 k) \pi \tag{2}
\end{equation*}
$$

\]

Definition 3. Let $\underline{A}=A_{1} \ldots A_{n}$ be a tangential polygon and let k be a positive integer so that $k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$, that is, $k \leq \frac{n-1}{2}$ if n is odd, and $k \leq \frac{n-2}{2}$ if n is even. The polygon \underline{A} will be called a k-tangential polygon if any two of its consecutive sides have only one common point, and if there holds

$$
\begin{equation*}
\beta_{1}+\cdots+\beta_{n}=(n-2 k) \frac{\pi}{2} \tag{3}
\end{equation*}
$$

where $2 \beta_{i}=\angle A_{i}, \quad i=1, \ldots, n$.
Consequently, a tangential polygon \underline{A} is k-tangential if

$$
\begin{equation*}
\varphi_{1}+\cdots+\varphi_{n}=2 k \pi \tag{4}
\end{equation*}
$$

where $\varphi_{i}=\angle A_{i} C A_{i+1}$ and C is the centre of the circle inscribed into the polygon A.

The integer k in relations (1)-(4) can be at most $\frac{n-1}{2}$ if n is odd and $\frac{n-2}{2}$ if n is even.

Remark 1. In the following considerations we shall denote the angles $\beta_{1}, \ldots, \beta_{n}$ such that

$$
\begin{gathered}
\beta_{i}=\angle C A_{i} A_{i+1}, \quad \text { if it is a question of a chordal polygon, } \\
\beta_{i}=\frac{1}{2} \angle A_{i}, \quad \text { if it is a question of a tangential polygon. }
\end{gathered}
$$

2. Some inequalities concerning the radius of k-chordal and k-tangential polygons

At first we prove some results concerning a k-chordal polygon.
Theorem 1. Let a_{1}, \ldots, a_{n} be the lengths of the sides of a k-chordal polygon $\underline{A}=A_{1} \ldots A_{n}$ and let $a_{1}=\min \left\{a_{1} \ldots a_{n}\right\}$. If there exist angles $\gamma_{1}, \ldots, \gamma_{n}$ such that

$$
\begin{gather*}
\gamma_{1}+\cdots+\gamma_{n}=(n-2 k) \frac{\pi}{2}, \quad 0<\gamma_{i}<\frac{\pi}{2}, \quad 1=1, \ldots, n \tag{5}\\
a_{1} \sin \gamma_{1}=a_{2} \sin \gamma_{2}=\ldots=a_{n} \sin \gamma_{n} \tag{6}
\end{gather*}
$$

Then

$$
\begin{equation*}
2 r>\frac{\sum_{i=1}^{n} a_{i}^{2}}{\sum_{i=1}^{n} a_{i}-\frac{1}{2}\left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right) a_{1}^{2} \sin ^{2}(n-2 k) \frac{\pi}{2 n}} \tag{7}
\end{equation*}
$$

where r is the radius of the circumcircle of the polygon \underline{A}.
Proof. Since $\beta_{i}=\angle C A_{i} A_{i+1}, \quad i=1, \ldots, n$, we have the following relations

$$
\begin{gather*}
\beta_{1}+\cdots+\beta_{n}=(n-2 k) \frac{\pi}{2}, \quad 0<\beta_{i}<\frac{\pi}{2}, \quad i=1, \ldots, n \tag{8}\\
2 r \cos \beta_{i}=a_{i}, \quad i=1, \ldots, n \tag{9}
\end{gather*}
$$

from which it follows

$$
\begin{gather*}
2 r a_{i} \cos \beta_{i}=a_{i}^{2}, \quad i=1, \ldots, n \\
2 r=\frac{\sum_{i=1}^{n} a_{i}^{2}}{\sum_{i=1}^{n} a_{i} \cos \beta_{i}} \tag{10}
\end{gather*}
$$

In addition to the angles $\beta_{1}, \ldots, \beta_{n}$ there are infinitely many angles $\gamma_{1}, \ldots, \gamma_{n}$ such that

$$
\gamma_{1}+\cdots+\gamma_{n}=(n-2 k) \frac{\pi}{2}, \quad 0<\gamma_{i}<\frac{\pi}{2}, \quad i=1, \ldots, n
$$

We shall prove that $\sum_{i=1}^{n} a_{i} \cos \gamma_{i}=$ maximum if the angles $\gamma_{1}, \ldots, \gamma_{n}$ satisfy

$$
a_{1} \sin \gamma_{1}=a_{2} \sin \gamma_{2}=\ldots=a_{n} \sin \gamma_{n} .
$$

First we shall prove the following lemma.
Lemma 1. If a_{1} and a_{2} are positive numbers and

$$
\gamma_{1}+\gamma_{2}=s, \quad 0<s<\pi, \quad 0<\gamma_{i}<\frac{\pi}{2}, \quad i=1,2
$$

then the function $f\left(\gamma_{1}, \gamma_{2}\right)=a_{1} \cos \gamma_{1}+a_{2} \cos \gamma_{2}$ assumes maximum if $a_{1} \sin \gamma_{1}=$ $a_{2} \sin \gamma_{2}$.

Proof. Let $g\left(\gamma_{1}\right)=a_{1} \cos \gamma_{1}+a_{2} \cos \left(s-\gamma_{1}\right)$, then

$$
\begin{gathered}
g^{\prime}\left(\gamma_{1}\right)=-a_{1} \sin \gamma_{1}+a_{2} \sin \left(s-\gamma_{1}\right) \\
g^{\prime \prime}\left(\gamma_{1}\right)=-a_{1} \cos \gamma_{1}-a_{2} \cos \left(s-\gamma_{1}\right)<0
\end{gathered}
$$

$$
a_{1} \sin \gamma_{1}+a_{2} \sin \left(s-\gamma_{1}\right)=0 \quad \Rightarrow \quad a_{1} \sin \gamma_{1}=a_{2} \sin \left(s-\gamma_{2}\right)
$$

From the above lemma it is clear that the sum $\sum_{i=1}^{n} a_{i} \cos \gamma_{i}$ assumes maximum if for each sum

$$
a_{i} \cos \gamma_{i}+a_{j} \cos \gamma_{j}, \quad i, j \in\{1, \ldots, n\}
$$

there holds $a_{i} \sin \gamma_{i}=a_{j} \sin \gamma_{j}$, since we can put $\gamma_{i}+\gamma_{j}=s$.
Now, we are going to prove that the inequality (7) is valid if (6) is fulfiled. Based on the assumption that equations (6) exist, we can write

$$
a_{i} \sin \gamma_{i}=\lambda, \quad i=1, \ldots, n
$$

from which it follows

$$
\begin{gathered}
\cos \gamma_{i}=\sqrt{1-\left(\frac{\lambda}{a_{i}}\right)^{2}}<1-\frac{1}{2}\left(\frac{\lambda}{a_{i}}\right)^{2}, \quad i=1, \ldots, n \\
\sum_{i=1}^{n} a_{i}\left[1-\frac{1}{2}\left(\frac{\lambda}{a_{i}}\right)^{2}\right]>\sum_{i=1}^{n} a_{i} \cos \gamma_{i} \geq \sum_{i=1}^{n} a_{i} \cos \beta_{i}
\end{gathered}
$$

so that instead of (10) we can write

$$
\begin{equation*}
2 r>\frac{\sum_{i=1}^{n} a_{i}^{2}}{\sum_{i=1}^{n} a_{i}-\frac{1}{2}\left(\sum_{i=1}^{n} \frac{1}{a_{i}}\right) \lambda^{2}} \tag{11}
\end{equation*}
$$

Since $\gamma_{i}=\arcsin \frac{\lambda}{a_{i}}, \quad i=1, \ldots, n$ we have the equation

$$
\begin{equation*}
\sum_{i=1}^{n} \arcsin \frac{\lambda}{a_{i}}=(n-2 k) \frac{\pi}{2} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{\lambda}{a_{1}}+\cdots+\frac{\lambda}{a_{n}}\right)+\frac{1}{6}\left[\left(\frac{\lambda}{a_{1}}\right)^{3}+\cdots+\left(\frac{\lambda}{a_{n}}\right)^{3}\right]+\cdots=(n-2 k) \frac{\pi}{2} \tag{13}
\end{equation*}
$$

Since by assumption $a_{1}=\min \left\{a_{1}, \ldots, a_{n}\right\}$, from (13) it follows that

$$
\left(\frac{\lambda}{a_{1}}+\cdots+\frac{\lambda}{a_{1}}\right)+\frac{1}{6}\left[\left(\frac{\lambda}{a_{1}}\right)^{3}+\cdots+\left(\frac{\lambda}{a_{1}}\right)^{3}\right]+\cdots \geq(n-2 k) \frac{\pi}{2}
$$

or

$$
\arcsin \frac{\lambda}{a_{1}} \geq(n-2 k) \frac{\pi}{2 n}
$$

Hence

$$
\begin{equation*}
\lambda \geq a_{1} \sin (n-2 k) \frac{\pi}{2 n} \tag{14}
\end{equation*}
$$

Now using (11) and (14) we readily get (7). So, Theorem 1 is proved.
Before stating some of its corollaries here is an example. If $A_{1} \ldots A_{5}$ is a l-chordal pentagon as shown in Figure 1, then there are angles $\gamma_{1}, \ldots, \gamma_{5}$ such that

$$
\gamma_{1}+\cdots+\gamma_{5}=(5-2) \frac{\pi}{2}, \quad \quad a_{1} \sin \gamma_{1}=\ldots=a_{5} \sin \gamma_{5}
$$

if instead of the drawn circles these can be drawn greater such that the above equalities are valid. (For these drawn ones it is $\gamma_{1}+\cdots+\gamma_{5}<\frac{3 \pi}{2}$. Let us remark that in the case when a side is small enough, then there are no angles $\gamma_{1}, \ldots, \gamma_{5}$ such that $\gamma_{1}+\ldots+\gamma_{5}=\frac{3 \pi}{2}$.)

Figure 1.
Now we state some of the corollaries of Theorem 1.
Corollary 1. There are angles $\gamma_{1}, \ldots, \gamma_{n}$ such that (5) and (6) hold if and only if

$$
\begin{equation*}
\frac{a_{1}}{H\left(a_{1}, \ldots, a_{n}\right)}+\frac{1}{6} \frac{a_{1}^{3}}{H\left(a_{1}^{3}, \ldots, a_{n}^{3}\right)}+\cdots \geq(n-2 k) \frac{\pi}{2 n} \tag{15}
\end{equation*}
$$

where $H\left(a_{1}^{i}, \ldots, a_{n}^{i}\right)$ is the harmonic mean of $a_{1}^{i}, \ldots, a_{n}^{i}$.
Proof. It is clear from (13) since λ may be at most a_{1}.
Corollary 2. A sufficient condition for the existence of the angles $\gamma_{1}, \ldots, \gamma_{n}$ such that (5) and (6) hold is the inequality

$$
\begin{equation*}
a_{1} \geq H\left(a_{1}, \ldots, a_{n}\right) \sin (n-2 k) \frac{\pi}{2 n} \tag{16}
\end{equation*}
$$

Proof. If (16) holds, then obviously (15) holds, too. Namely, if

$$
\frac{a_{1}}{H\left(a_{1}, \ldots, a_{n}\right)}+\frac{1}{6}\left[\frac{a_{1}}{H\left(a_{1}, \ldots, a_{n}\right)}\right]^{3}+\cdots \geq(n-2 k) \frac{\pi}{2 n}
$$

then certainly (15) is valid because of the property of the arithmetics mean.
Corollary 3. If there exists a k-chordal polygon whose sides have the lengths $\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n}}$ and $\frac{2 k}{n} \geq \sin (n-2 k) \frac{\pi}{2 n}$, then there exist angles $\gamma_{1}, \ldots, \gamma_{n}$ such that (5) and (6) hold.

Proof. We shall use Corollary 2 in [6]. If a_{1}, \ldots, a_{n} are the lengths of the sides of the k-chordal polygon \underline{A}, then

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}>2 k a_{j}, \quad j=1, \ldots, n \tag{17}
\end{equation*}
$$

If $\frac{1}{a_{1}}, \ldots, \frac{1}{a_{n}}$ are also the lengths of the sides of a k-chordal polygon, then

$$
\frac{1}{a_{1}}+\cdots+\frac{1}{a_{n}}>\frac{2 k}{a_{1}}
$$

or

$$
\begin{equation*}
a_{1}>\frac{2 k}{n} H\left(a_{1}, \ldots, a_{n}\right) . \tag{18}
\end{equation*}
$$

Accordingly, if $\frac{2 k}{n} \geq \sin (n-2 k) \frac{\pi}{2 n}$ then (16) is valid.
Corollary 4. If n is odd and k is maximal, i.e. $k=\frac{n-1}{2}$, then there exist the angles $\gamma_{1}, \ldots, \gamma_{n}$ such that (5) and (6) hold.

Proof. If $k=\frac{n-1}{2}$, then equation (5) can be written as

$$
\gamma_{1}+\ldots+\gamma_{n}=\frac{\pi}{2}
$$

and obviously there is λ such that $\sum_{i=1}^{n} \arcsin \frac{\lambda}{a_{i}}=\frac{\pi}{2}$.
Corollary 5. If $n=3$ and a, b, c are the lengths of the sides of an acute triangle, then

$$
\begin{equation*}
2 r>\frac{a^{2}+b^{2}+c^{2}}{a+b+c-\frac{3}{8} \frac{a^{2}}{H(a, b, c)}} \tag{19}
\end{equation*}
$$

where $a=\min \{a, b, c\}$. In connection with this, the following remarks may be interesting.

Remark 2. Since

$$
\sqrt{1-\left(\frac{\lambda}{a}\right)^{2}}<1-\frac{1}{2}\left(\frac{\lambda}{a}\right)^{2}
$$

inequality (19) follows from the inequality

$$
\begin{equation*}
2 r \geq \frac{a^{2}+b^{2}+c^{2}}{\sqrt{a^{2}-\lambda^{2}}+\sqrt{b^{2}-\lambda^{2}}+\sqrt{c^{2}-\lambda^{2}}} \tag{20}
\end{equation*}
$$

where $\lambda=a \sin \frac{\pi}{6}$. Here the equality appears for $a=b=c$. Analogously holds for inequality (7).

Remark 3. In the case when $n=3$, Corollary 4 can be also proved as follows:

$$
\begin{aligned}
\gamma_{1}+\gamma_{2}+\gamma_{3} & =\frac{\pi}{2}, \\
\cos \left(\gamma_{1}+\gamma_{2}\right) & =\sin \gamma_{3}, \\
\cos \gamma_{1} \cos \gamma_{2} & =\sin \gamma_{1} \sin \gamma_{2}+\sin \gamma_{3}, \\
\sqrt{1-\left(\frac{\lambda}{a}\right)^{2}} \sqrt{1-\left(\frac{\lambda}{b}\right)^{2}} & =\frac{\lambda}{a} \frac{\lambda}{b}+\frac{\lambda}{c}, \\
2 a b c \lambda^{3}+\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \lambda^{2}-a^{2} b^{2} c^{2} & =0 .
\end{aligned}
$$

The above equation in λ has one positive root and it lies between 0 and a since $f(0)<0, f(a)>0$, where $f(\lambda)=2 a b c \lambda^{3}+\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right) \lambda^{2}-a^{2} b^{2} c^{2}$. For example, if $a_{1}=a=7, \quad a_{2}=b=8, \quad a_{3}=c=10$ (Figure 2), then $\lambda=4.063986$ and $\gamma_{1}=35.49060749, \quad \gamma_{2}=30.53058949, \quad \gamma_{3}=23.97880303$.

Figure 2.
Analogously holds in the case when $n>3$. But in this case it may be very difficult to solve the equation obtained in λ. So, if $A_{1} \ldots A_{5}$ is a 2-chordal pentagon, then we have

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}+\gamma_{5}=\frac{\pi}{2}
$$

$$
\begin{gathered}
\cos \left(\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}\right)=\sin \gamma_{5}, \\
\cos \left(\gamma_{1}+\gamma_{2}\right) \cos \left(\gamma_{3}+\gamma_{4}\right)-\sin \left(\gamma_{1}+\gamma_{2}\right) \sin \left(\gamma_{3}+\gamma_{4}\right)=\sin \gamma_{5}
\end{gathered}
$$

and so on. But it may be interesting that using the expressions

$$
\sin \gamma_{i}=\frac{\lambda}{a_{i}}, \quad \cos \gamma_{i}=\sqrt{1-\left(\frac{\lambda}{a_{i}}\right)^{2}}, \quad i=1, \ldots, 5
$$

we obtain the equation which has a unique positive solution λ.
Corollary 6. Let (for simplicity) in equation (13) in the case when $n=4$ there be written a, b, c, d instead of $a_{1}, a_{2}, a_{3}, a_{4}$, and let $a=\min \{a, b, c, d\}$. Then there are angles $\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}$ such that (5) and (6) hold in the case when $n=4$ if and only if

$$
\frac{a^{2}}{2} \leq \frac{u}{v} \leq a^{2}
$$

where

$$
\begin{gathered}
u=-\frac{1}{a^{4}}-\frac{1}{b^{4}}-\frac{1}{c^{4}}-\frac{1}{d^{4}}+\frac{2}{a^{2} b^{2}}+\frac{2}{a^{2} c^{2}}+\frac{2}{a^{2} d^{2}}+\frac{2}{b^{2} c^{2}}+\frac{2}{b^{2} d^{2}}+\frac{2}{c^{2} d^{2}}+\frac{8}{a b c d} \\
v=\frac{4}{a^{2} b^{2} c^{2}}+\frac{4}{b^{2} c^{2} d^{2}}+\frac{4}{c^{2} d^{2} a^{2}}+\frac{4}{d^{2} a^{2} b^{2}}+\frac{4}{a^{3} b c d}+\frac{4}{a b^{3} c d}+\frac{4}{a b c^{3} d}+\frac{4}{a b c d^{3}} .
\end{gathered}
$$

Proof. From $\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}=\pi, \quad a \sin \gamma_{i}=\lambda, \quad i=1,2,3,4$, using the equality

$$
\cos \left(\gamma_{1}+\gamma_{2}\right)=-\cos \left(\gamma_{3}+\gamma_{4}\right)
$$

it can be found that

$$
\begin{aligned}
& 4\left(1-\frac{\lambda^{2}}{a^{2}}\right)\left(1-\frac{\lambda^{2}}{b^{2}}\right)\left(1-\frac{\lambda^{2}}{c^{2}}\right)\left(1-\frac{\lambda^{2}}{d^{2}}\right) \\
= & {\left[\left(1-\frac{\lambda^{2}}{a^{2}}\right)\left(1-\frac{\lambda^{2}}{b^{2}}\right)+\left(1-\frac{\lambda^{2}}{c^{2}}\right)\left(1-\frac{\lambda^{2}}{d^{2}}\right)+\frac{\lambda^{4}}{a^{2} b^{2}}+\frac{\lambda^{4}}{c^{2} d^{2}}+\frac{2 \lambda^{4}}{a b c d}\right]^{2} }
\end{aligned}
$$

from which it follows that

$$
u \lambda^{4}-v \lambda^{6}=0
$$

Consequently, $\lambda=\sqrt{\frac{u}{v}}$. Let as remark that by (14), $\lambda \geq \frac{a \sqrt{2}}{2}$.
In connection with this, let us remark that $\sqrt{u}=4$ area of the chordal quadrangle whose sides have the lengths $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}, \frac{1}{d}$.

Corollary 7. The value λ given by (13) satisfies the following condition

$$
\begin{equation*}
\lambda \leq H\left(a_{1}, \ldots, a_{n}\right) \sin (n-2 k) \frac{\pi}{2 n} \tag{21}
\end{equation*}
$$

Proof. Using (13) by the appropriate property of the aritmetic mean we get the inequality

$$
n \frac{\frac{\lambda}{a_{1}}+\ldots+\frac{\lambda}{a_{n}}}{n}+\frac{1}{6} n\left(\frac{\frac{\lambda}{a_{1}}+\ldots+\frac{\lambda}{a_{n}}}{n}\right)^{3}+\ldots \leq(n-2 k) \frac{\pi}{2}
$$

or

$$
\arcsin \frac{\frac{\lambda}{a_{1}}+\ldots+\frac{\lambda}{a_{n}}}{n} \leq(n-2 k) \frac{\pi}{2 n}
$$

from which it follows that (21) is valid.
Thus, the solution in λ of equation (13) cannot exceed the right-hand side of (21).

If λ is the solution of equation (13), then from (10), that is, from

$$
2 r \geq \frac{\sum_{i=1}^{n} a_{i}^{2}}{\sum_{i=1}^{n} a_{i} \cos \gamma_{i}} \quad \text { or } \quad 2 r \geq \frac{\sum_{i=1}^{n} a_{i}^{2}}{\sum_{i=1}^{n} \sqrt{a_{i}^{2}-a_{i}^{2} \sin ^{2} \gamma_{i}}}
$$

we have

$$
\begin{gather*}
2 r \geq \frac{\sum_{i=1}^{n} a_{i}^{2}}{\sum_{i=1}^{n} \sqrt{a_{i}^{2}-\lambda^{2}}} \tag{22}\\
2 r>\frac{\sum_{i=1}^{n} a_{i}^{2}}{\sum_{i=1}^{n} a_{i}\left[\sqrt{1-\frac{1}{2}\left(\frac{\lambda}{a_{i}}\right)^{2}}\right]} \tag{23}
\end{gather*}
$$

The equality can appear in (22), but not in (23).
Let us consider the case when

$$
\begin{equation*}
\lambda=H\left(a_{1}, \ldots, a_{n}\right) \sin (n-2 k) \frac{\pi}{2 n} \tag{24}
\end{equation*}
$$

Of course, we have such case when a k-chordal polygon is equilateral. Namely, then (22) can be written as

$$
\begin{equation*}
2 r=\frac{a}{\cos (n-2 k) \frac{\pi}{2 n}} \tag{25}
\end{equation*}
$$

and this is true since by this the diameter of a k-chordal equilateral polygon whose sides have the length a is given.
The following theorem is concerned with the radius of a k-tangential polygon.
Theorem 2. Let $\underline{A}=A_{1} \ldots A_{n}$ be a given k-tangential polygon and let t_{1}, \ldots, t_{n} be the lengths of its tangents. Then

$$
\begin{equation*}
\left(\frac{1}{t_{1}}+\cdots+\frac{1}{t_{n}}\right) \cos \left[(n-2 k) \frac{\pi}{2 n}\right]>2 k\left(1-\frac{2 k}{n}\right) \frac{1}{r}, \tag{26}
\end{equation*}
$$

where r is the radius of the circle inscribed into \underline{A}.
Proof. Let $\beta_{1}, \ldots, \beta_{n}$ be the angles such that

$$
\beta_{i}=\angle C A_{i} A_{i+1}, \quad i=1, \ldots, n
$$

Then by Theorem 1 from paper [6]

$$
\sum_{i=1}^{n} \cos \beta_{i}>2 k \cos \beta_{j}, \quad j=1, \ldots, n .
$$

From this (since $r=t_{j} \operatorname{tg} \beta_{j}$) it follows that

$$
\begin{equation*}
r \sum_{i=1}^{n} \cos \beta_{i}>2 k t_{j} \sin \beta_{j}, \quad j=1, \ldots, n \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{r}{2 k}\left(\frac{1}{t_{1}}+\cdots+\frac{1}{t_{n}}\right) \sum_{i=1}^{n} \cos \beta_{i}>\sum_{j=1}^{n} \sin \beta_{j} \tag{28}
\end{equation*}
$$

Since $\sin (\pi x)>2 x$ if $0<x<\frac{1}{2} \quad$ and $\quad \sin \alpha>\frac{2}{\pi} \alpha \quad$ if $0<\alpha<\frac{\pi}{2}$ (see proof of Theorem 1. in [6]), we have

$$
\begin{equation*}
\sum_{j=1}^{n} \sin \beta_{j}>\frac{2}{\pi}\left(\beta_{1}+\cdots+\beta_{n}\right)=n-2 k \tag{29}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\sum_{i=1}^{n} \cos \beta_{i} \leq n \cos (n-2 k) \frac{\pi}{2 n} \tag{30}
\end{equation*}
$$

since the sum $\sum_{i=1}^{n} \cos \beta_{i}$ is maximal when $\beta_{1}=\cdots=\beta_{n}$. From (28), (29) and (30) we get (26).

Theorem 3. Let $\underline{A}=A_{1} \ldots A_{n}$ be a k-chordal polygon and let $a_{1} \ldots a_{n}$ be the lengths of its sides. If n is even and the lengths b_{1}, \ldots, b_{n} are such that

$$
a_{i}^{2}+b_{i}^{2}=4 r^{2}, \quad i=1, \ldots, n
$$

where r is the radius of the circle circumscribed to \underline{A}, then there is an $\left(\frac{n}{2}-k\right)$ chordal polygon with the property that b_{1}, \ldots, b_{n} are lengths of its sides and that the radius of its circumscribed circle is the same as the radius of the circumcircle of \underline{A}.

Proof. If \underline{A} is a k-chordal polygon, then

$$
\sum_{i=1}^{n} \beta_{i}=(n-2 k) \frac{\pi}{2}, \quad \beta_{i}=\angle C A_{i} A_{i+1}, \quad i=1, \ldots, n
$$

where C is the centre of the circle circumscribed to \underline{A}.
Let $\underline{B}=B_{1} \ldots B_{n}$ be a polygon such that

$$
\begin{gathered}
B_{i}=A_{i}, \quad i=1,3, \ldots, n-1 \\
B_{i}=A_{i}^{\prime}, \quad i=2,4, \ldots, n
\end{gathered}
$$

where C is the midpoint of $A_{i} A_{i}^{\prime}, \quad i=2,4, \ldots, n$. Then the polygon \underline{B} is an $\left(\frac{n}{2}-k\right)$-chordal polygon since
$\sum_{i=1}^{n} \angle C B_{i} B_{i+1}=\sum_{i=1}^{n}\left(\frac{\pi}{2}-\beta_{i}\right)=n \frac{\pi}{2}-\sum_{i=1}^{n} \beta_{i}=n \frac{\pi}{2}-(n-2 k) \frac{\pi}{2}=\left[n-2\left(\frac{n}{2}-k\right)\right] \frac{\pi}{2}$.
Here is an example. See Figure 3. If $n=6$ and $A_{1} \ldots A_{6}$ is a l-chordal hexagon, then $B_{1} \ldots B_{6}$ is a 2 -chordal hexagon.

Figure 3.

In the following theorem we shall use the symbol S_{j}^{n} introduced in [7] with the following meaning: If t_{1}, \ldots, t_{n} are given lengths, then S_{j}^{n} is the sum of all $\binom{n}{j}$ products of the form $t_{i_{1}} \ldots t_{i_{j}}$ where i_{1}, \ldots, i_{j} are different indices of the set $\{1, \ldots, n\}$, that is

$$
S_{j}^{n}=\sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} t_{i_{1}} \ldots t_{i_{j}}
$$

Also we shall use Theorem 2 proved in [7]:
Let $n \geq 3$ be any given odd number. Then

$$
\begin{gathered}
S_{1}^{n} r^{n-1}-S_{3}^{n} r^{n-3}+S_{5}^{n} r^{n-5}-\cdots+(-1)^{s} S_{n}^{n}=0 \\
S_{1}^{n+1} r^{n-1}-S_{3}^{n+1} r^{n-3}+S_{5}^{n+1} r^{n-5}-\cdots+(-1)^{s} S_{n}^{n+1}=0
\end{gathered}
$$

where $s=(1+3+5+\cdots+n)+1$.
Theorem 4. Let $n \geq 4$ be an even number. If \underline{A} is a k-tangential polygon whose tangents have the lengths t_{1}, \ldots, t_{n}, and if \underline{B} is the $\left(\frac{n}{2}-k\right)$-tangential polygon whose tangents have the lengths $\frac{1}{t_{1}}, \ldots, \frac{1}{t_{n}}$, then $r \rho=1$, where r is the radius of the circle inscribed into \underline{A} and ρ is the radius of the circle inscribed into \underline{B}.

Proof. Let R_{i}^{n} be obtained from S_{i}^{n} putting $\frac{1}{t_{i}}$ instead of t_{i} and let $s=[1+$ $3+5+\cdots+(n-1)]+1$. Then

$$
\begin{equation*}
R_{1}^{n} \rho^{n-2}-R_{3}^{n} \rho^{n-4}+\cdots+(-1)^{s} R_{n-1}^{n}=0 \tag{31}
\end{equation*}
$$

and if the equation

$$
\begin{equation*}
S_{1}^{n} r^{n-2}-S_{3}^{n} r^{n-4}+\cdots+(-1)^{s} S_{n-1}^{n}=0 \tag{32}
\end{equation*}
$$

is divided by $t_{1} \ldots t_{n}$, we obtain

$$
\begin{equation*}
R_{n-1}^{n} r^{n-2}-R_{n-3}^{n} r^{n-4}+\cdots+(-1)^{s} R_{1}^{n}=0 \tag{33}
\end{equation*}
$$

For example, if $n=4$, we have the equation

$$
\left(t_{1}+t_{2}+t_{3}+t_{4}\right) r^{2}-\left(t_{1} t_{2} t_{3}+t_{2} t_{3} t_{4}+t_{3} t_{4} t_{1}+t_{4} t_{1} t_{2}\right)=0
$$

from which, dividing by $t_{1} t_{2} t_{3} t_{4}$, we get

$$
R_{3}^{4} r^{2}-R_{1}^{4}=0 \quad \text { or } \quad R_{1}^{4}\left(\frac{1}{r}\right)^{2}-R_{3}^{4}=0
$$

where

$$
\begin{gathered}
R_{3}^{4}=\frac{1}{t_{1} t_{2} t_{3}}+\frac{1}{t_{2} t_{3} t_{4}}+\frac{1}{t_{3} t_{4} t_{1}}+\frac{1}{t_{4} t_{1} t_{2}} \\
R_{1}^{4}=\frac{1}{t_{1}}+\frac{1}{t_{2}}+\frac{1}{t_{3}}+\frac{1}{t_{4}} .
\end{gathered}
$$

From (31) and (33) it is clear that for each r there is ρ such that $r \rho=1$. Thus we have to prove that

$$
\begin{equation*}
r_{k} \rho_{\frac{n}{k}-k}=1, \tag{34}
\end{equation*}
$$

where r_{k} is the radius of the k -tangential n -gon whose tangents have the lengths t_{1}, \ldots, t_{n} and $\rho_{\frac{n}{k}-k}$ is the radius of the $\left(\frac{n}{2}-k\right)$-tangential n-gon whose tangents have the lengths $\frac{1}{t_{1}}, \ldots, \frac{1}{t_{n}}$.
The proof is as follows. Let $\beta_{1}, \ldots, \beta_{n}$ and $\gamma_{1}, \ldots, \gamma_{n}$ be corresponding angles, that is,

$$
\begin{gathered}
\beta_{1}+\cdots+\beta_{n}=(n-2 k) \frac{\pi}{2} \\
\gamma_{1}+\cdots+\gamma_{n}=\left[n-\left(\frac{n}{2}-k\right)\right] \frac{\pi}{2} \\
t_{i}=r_{k} \operatorname{ctg} \beta_{i}, \quad \frac{1}{t_{i}}=\rho_{\frac{n}{2}-k} \operatorname{ctg} \gamma_{i}, \quad i=1, \ldots, n .
\end{gathered}
$$

From $1=\left(r_{k} c t g \beta_{i}\right)\left(\rho_{\frac{n}{2}-k} \operatorname{ctg} \gamma_{i}\right)$ we see that $r_{k} \rho_{\frac{n}{2}-k}=1$ iff $\gamma_{i}=\frac{\pi}{2}-\beta_{i}$. Hence we have

$$
\sum_{i=1}^{n}\left(\frac{\pi}{2}-\beta_{i}\right)=n \frac{\pi}{2}-\sum_{i=1}^{n} \beta_{i}=n \frac{\pi}{2}-(n-2 k) \frac{\pi}{2}=\left[n-2\left(\frac{n}{2}-k\right)\right] \frac{\pi}{2}
$$

And Theorem 4 is proved.
Here are some examples. If $n=4$, then $r_{1} \rho_{1}=1$. If $n=6$, then $r_{1} \rho_{2}=r_{2} \rho_{1}=1$. If $n=8$, then $r_{1} \rho_{3}=r_{2} \rho_{2}=r_{3} \rho_{1}=1$.
Especially, if $t_{1}=\ldots=t_{n}=1$, then

$$
\begin{gathered}
r_{k}=\operatorname{tg}\left((n-2 k) \frac{\pi}{2 n}\right), \quad k=1, \ldots, \frac{n-2}{2}, \\
\rho_{\frac{n}{2}-k}=\operatorname{tg}\left[\left(n-2\left(\frac{n}{2}-k\right)\right) \frac{\pi}{2 n}\right]=\operatorname{tg} \frac{k \pi}{n}, \\
r_{k} \rho_{\frac{n}{2}-k}=1
\end{gathered}
$$

since $\operatorname{tg}(n-2 k) \frac{\pi}{2 n}=\operatorname{tg}\left(\frac{\pi}{2}-\frac{k \pi}{n}\right)=\operatorname{ctg} \frac{k \pi}{n}$.
So, if $n=6$ and $k=1$, the situation is shown in Figure 4, where $r_{1}=\sqrt{3}, \quad \rho_{2}=\frac{1}{\sqrt{3}}$.

Figure 4.

References

[1] S. Gozdz, A convex polygon as a discrete plane curve, Balkan Journal of Geometry and Its Applications 4(1999), 29-48.
[2] D. S. Mitrinović, J. E. Pečarić, V. Volenec, Recent Advances in Geometric Inequalities, Kluwer Acad. Publ., Dordrecht/ Boston/ London, 1989.
[3] B. H. Neumann, Some remarks on polygons, J. London Math. Soc. 16(1941), 230-245.
[4] P. Pech, Relations between inequalities for polygons, Rad HAZU, [472]13(1997), 69-75.
[5] P. Pech, Inequality between sides and diagonals of a space n-gon and its integral analog, Čas. pro. pčst. mat. 115(1990), 343-350.
[6] M. Radić, Some inequalities and properties aoncerning chordal polygons, Mathematical Inequalities and Applications 2(1998), 141-150.
[7] M. Radić, Some relations and properties concerning tangential polygons, Mathematical Comunications 4(1999), 197-206.

[^0]: *Department of Mathematics, University of Rijeka, Omladinska 14, HR-51 000 Rijeka, Croatia

