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Hexabenzocoronene torus (HBCT) is a hypothetical torus-shaped network derived by properly

connecting the nine pairs of peripheral carbon atoms of the hexabenzocoronene skeleton. The

�-electronic structure of this hypothetical conjugated carbon network has an exceedingly high

symmetry (supersymmetry) and is closely related to that of the graphite network. By using the

group-theoretic technique developed by the authors it is shown that this 42 � 42 secular deter-

minant of HBCT can be factorized into the product of 21 quadratic equations. A number of in-

teresting mathematical properties of the supersymmetry of HBCT are introduced.
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INTRODUCTION

The discovery of fullerenes1 and nanotubes2 triggered

vigorous study of the mathematical and electronic struc-

ture of torus networks under various names, e.g., toro-

noid, torene. etc.3–10 Most of the research groups were

concerned with the 3-dimensional torus-shaped carbon

networks of genus 1. On the other hand, our group dis-

covered that if one constructs several series of hypothet-

ical benzenoid torus networks (see Figure 1) by properly

joining all the distant pairs of peripheral carbon atoms of

several types of 2-dimensional polycyclic aromatic hydro-

carbons, i.e., coronene (a), pyrene (b), and hexabenzo-

coronene (c), their �-electronic structures rapidly con-

verge to that of the infinitely large graphite network.11

Namely, relatively small torus networks of these se-

ries with a few hundred carbon atoms were shown to be

used for model systems of the �-electronic structure of

graphite, whereas more than a hundred thousand carbon

atoms are necessary for their parent hydrocarbon mole-

cules to gain the graphite property.12 Although the tori

discussed in this paper seem to be rather different in a

chemical sense from what are treated by other research

groups, they are found to belong to the non-planar to-

roidal hydrocarbons according to the classification pro-

posed by Trinajsti}.13

Recently Stewart found that by using our tori as unit

cells new mathematics of symmetry groups of a third

type (between point groups and space groups) can be
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constructed for discussing the properties of infinitely

large lattices such as graphite.14

On the other hand, Aihara et al. found that the hypo-

thetical 54-carbon network (see Figure 1a) of the next

higher member of the coronene torus, or supercoronene

torus, can be used as the reference structure for the �-

electronic properties of the infinitely large graphite and

graphitic tubulene networks.15

Besides these physico-chemical features the series

of the torus networks in Figure 1 were found to have in-

teresting graph-theoretical characteristics, e.g., exceed-

ingly high symmetrical properties and isomorphic rela-

tions. A number of other torus series were found and

their topological symmetry was extensively studied by

our group.16 Both the series of (a) and (b) torus networks

were found to be isomorphic to generalized Petersen and

Heawood graphs17 and multilayered cyclic fence graphs

(MLCFGs).18–20 Since most of the results of hexabenzo-

coronene torus (HBCT) graphs, (c), have not been pub-

lished yet, their interesting mathematical properties are

introduced in this paper with particular reference to its

highly symmetrical properties.

HEXABENZOCORONENE TORUS

Hexabenzocoronene (HBC), or hexa-peri-benzocoronene,

existing in yellow crystalline state is noted for its ex-

treme stability. Namely, it does not dissolve into concen-

trated sulfuric acid, and its melting point could not be

determined because the melting-point tube melted long

before the hydrocarbon.21 According to Clar it belongs

to the most stable group of aromatic hydrocarbons called

»fully benzenoids« whose ground states are best described

by the following structural formula, a symbol mark of his

aromatic sextet theory, composed of only (resonant) sex-

tets (depicted by circles) and no isolated double bond.22

Later graph-theoretical basis and interpretation for

the empirically derived Clar’s aromatic-sextet theory were

given by our group.23–25 In this sense HBC and HBCT

have an important role in the discussion of the �-elec-

tronic stability of polycyclic aromatic hydrocarbons and

graphite network.

The idea of the construction of the series of torus

graphs in Figure 1 naïvely comes from the problem of

periodically homogeneous tiling of the graphite network.

The �-electronic structure of graphite in the HMO ap-

proximation can easily be factored out into the product

of 2 � 2 determinants.26 In this case the �-electronic sys-

tem of ethylene is the tiling unit to span the entire net-

work. Similarly a number of polycyclic aromatic hydro-

carbon molecules, such as benzene, naphthalene, pyrene,

coronene, etc. can be the tiling unit.16,27
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Figure 1. Three series of hypothetical benzenoid torus networks.
(a) coronene, (b) pyrene, and (c) hexabenzocoronene.

Figure 2. Criterion for constructing the torus of hexabenzocoro-
nene from the tiling of the graphite network.



As shown in Figure 2, HBC and its higher members

are also found to have this property. The mode of joining

the distant pairs of the peripheral carbon atoms to yield a

»torus« structure is uniquely determined so that the

interunit i-j ' bond is cut and rejoined to form i-j (bridg-

ing) bond within the unit.

Then there arises a problem. Does the resultant net-

work really have the property of a mathematically defined

torus? The answer is »Yes« as will be shown later in this

paper.28 Further, it was found that our HBCT can be iden-

tified by a triplet of integers proposed by Klein in his

generalized expression for toroidal benzenoid networks.29

C6 ROTATIONAL SYMMETRY

The six-fold rotational symmetry of the structure of

HBCT is easily seen as in Figure 3. Six benzyl radicals

are joined together through short and long (bridging)

bonds to form the network of HBCT. Note that there is

no difference in strength among all the bonds. In this

special case each benzyl radical unit is connected to all

other five units.

Then by using the recipe30 for the graph with rota-

tional symmetry in a topological sense one can factorize

the Hückel determinant of HBCT into the product of the

six 7 � 7 determinants of the cyclic monomer of benzyl

radical, which can be obtained by adding the contribu-

tion of bridging to the respectively corresponding ele-

ment in the determinant of the cyclic monomer unit.

Namely, if the r-th atom in a tiling unit is joined with the

s-th atom in the clockwise j-th unit, the term aj

(a = exp(2k�i/6), (k = 1,...6)) is added to the (r, s) ele-

ment of the secular determinant of the parent skeleton of

the cyclic monomer, while the complex conjugate a* j to

the (s, r) element to make the determinant Hermitian.

The resultant secular determinant D and modified

structural formula of the cyclic monomer of benzyl radi-

cal are shown in Figure 3, where an arrows and loops

depict the bridging interactions.

By expanding D for the respective values of k = 1~ 6

one gets

x A k = 1, 2, 4, 5

D =

�

�
�

�
�

(x + 3) A k = 3 (1)

(x – 3) A k = 6

with

A = x6 – 9 x4 + 21 x2 – 14 = (x2 – 2) (x4 – 7 x2 + 7) (2)

This means that the 42 eigenvalues of HBCT are

highly degenerate. There are six sets of 6-fold degeneracy,

a set of quadruplet NBMO's, and a non-degenerate pair of

the lowest and highest orbitals (x = �3), the last of which

necessarily come from a cubic graph. In fact the degrees of

all the vertices of HBCT and other tori are three.

It is remarkable that the eigenvalues of HBCT can be

solved by at most quadratic equations, revealing the ex-

istence of some hidden higher symmetry. Actually, as seen

in Figure 4 HBCT is more highly degenerate than the parent

HBC, which, however, has a pair of 6-fold degenerate

levels. This unusually high degeneracy of HBC might be

accidental, possibly because their values are �1.

A similar relation is also observed in the eigenvalues

of the pair of coronene and its torus. The 24 eigenvalues

of the coronene torus are distributed as (�3, �26, �13,

04), while the parent coronene has a pair of triply degen-
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Figure 3. Factorization of the secular determinant of HBCT into
that of the benzyl radical-shaped cyclic monomer.

Figure 4. Hückel MO energy level diagrams of the HBC and its
torus, HBCT.



erate (�1), six doubly degenerate, and six non-degener-

ate orbitals. In graph theory this graph is known to be

one of the eight bipartite »integer graphs« discovered by

Schwenk.31 The only triply degenerate pair of coronene

eigenvalues is also thought to be accidental, because

their values are again �1.

Anyway the unusually high symmetry of these torus

graphs is possibly due to the lack of a peripheral region

as in the graphite network. However, just the lack of pe-

ripheral region does not necessarily explain the abnor-

mally high symmetry of HBCT, since many other

benzenoid torus networks were found to have lower

symmetry than HBCT.16

The bond orders of all the bonds in HBCT were cal-

culated to have the same value of 0.5126. Namely, this

network is not only vertex-transitive but also edge-tran-

sitive.32 In other words both the topicities of vertex and

edge of HBCT are unity.33

The edge-transitive property of HBCT can be demon-

strated as in Figure 5, where the mapping (a) is trans-

formed into (b) step-by-step by changing the geometrical

shape of the graph constructed as if from elastic strings.

C7 ROTATIONAL SYMMETRY

Close examination of Figure 5 reveals that all the seven

»Clar’s aromatic sextets« of the HBC skeleton are circu-

larly changing their positions one by one according to

some rule. Thus the aromatic sextet pattern of HBC pro-

posed by Clar22,25 gave us a hint to disclose the hidden

7-fold symmetry of the HBCT network. See Figure 6

and trace the cyclic structure of HBCT where the num-

bered seven benzene rings located just on the aromatic

sextets of HBC are connected to form a big ring and

span the whole skeleton.

In the cyclic monomer of this network the number

of arrowheads indicates the difference between the num-

bers (or the count of the steps) assigned to the cyclic

monomers which are connected by the bridging bonds. It

is to be noted here that a cyclic monomer, or the aro-

matic sextet of HBC, is connected to all six other mem-

bers through the bridging bonds forming the skeletal

structure of the HBCT network.

The 6 � 6 determinant of the cyclic monomer of

HBCT were found to be simpler than for the case of the

6-fold symmetry. Namely, all the different k values ex-

cept for k = 7 yield the same polynomial D of order six,

clearly showing the essentially 6-fold degeneracy of the

eigenvalues of HBCT.

HAMILTONIAN CYCLE AND HEAWOOD GRAPH

In the study of multilayered cyclic fence graphs a num-

ber of benzenoid torus graphs were found to have a

Hamiltonian cycle of high symmetry.18,20,27 After trial

and error search on the HBCT network we found a

Hamiltonian cycle as shown in Figure 7.
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Figure 5. Edge-transitive property of HBCT. Compare the relative
sites in (a) and (b) of the seven benzene rings which are located at
the aromatic sextets in the Clar pattern of the parent HBC. Figure 6. Factorization of the secular determinant of HBCT into that

of the benzene-shaped cyclic monomer. Compare with Figure 3.



Namely, by tracing the zigzag path along the num-

bers from 1 to 42 and back to 1 as shown in (a) a

Hamiltonian cycle is obtained, with which one can re-

draw the network of HBCT into a circular diagram (b) of

21-fold rotational symmetry in a topological sense. It

can be said that this graph belongs to D21h point group.

Each odd numbered vertex is bridged to the clockwise

ninth vertex, while each even numbered vertex is

bridged to the counterclockwise ninth vertex. Then ac-

cording to our definition18 Figure 7b is a generalized

Heawood graph, H(42, 9, –9), whose topological struc-

ture can be reduced to the cyclic monomer consisting of

only two vertices. Vertex 1 is bonded triply to vertex 2,

i.e., of the same, fourth next, and minus first next cyclic

monomers. Then the secular determinant of this cyclic

monomer is obtained as follows:

� 	 	

	 	 �

x a a

a a x

m

m

1

1

*

*

= x2 – 
3 + 2cos
2k

n

p

+ 2cos
2km

n

p

+ 2cos
2 1k m

n

( )	 p

� (3)

a =
2k i

n

p

(k = 1,2,�,n)

with n = 21 and m = 4. The 42 eigenvalues of HBCT are

given by

x = � 3 2
2

21
2

8

21
2

10

21
	 	 	cos cos cos

k k kp p p

(k = 1,2,�,21) (4)

By putting 21 different integers into k one gets

0 k = 7, 14 (doubled)

�1.09941 k = 2, 8, 10, 11, 13, 19

x =

�

�

�
�

�

�
�

�1.41421 k = 3, 6, 9, 12, 15, 18

�2.40651 k = 1, 4, 5, 16, 17, 20

�3.00000 k = 21

as plotted in Figure 4.

Klein et al. found that the HMO secular determinant

of all toroidal benzenoids as bucky tubes can be reduced

to 2 � 2 determinants as in the case of the graphite net-

work.29,34 The above result reveals that the network of

our HBCT belong to this family.35

The topological structure of the cyclic monomer of

HBCT is very simple and one can extend this process to

the larger members of the series (c) in Figure 1.27

Namely, the next larger member of HBCT can be con-

structed by joining the 19 benzene-like cyclic structure

as in Figure 8. Then by tracing a path as in Figure 7a

one can find a Hamiltonian cycle and draw a generalized

Heawood graph, H(114, 15, –15), which is composed of

114 vertices with 57-fold rotational symmetry. The

eigenvalues can be obtained from Eq. (3) with n = 57

and m=7.

TORUS STRUCTURE

It is not difficult to imagine from Figure 7b that this net-

work can be mapped on the surface of a donut without

crossing any two bonds. Another way of mapping the

HBCT network on a donut surface can be illustrated by

the use of Figure 9. Glue the top and bottom edges of the

rectangle to make a tube, join its open ends with each
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Figure 7. A Hamiltonian cycle (a) and a circular diagram, or gen-
eralized Heawood graph, (b) of HBCT.

Figure 8. Cyclic structure with 19 benzene rings of the next higher
member of HBCT.



other by twisting the tube into a ring shape, and then a

ring donut comes out.

As has been noted before all the cyclic monomers of

HBCT are connected with each other through bridges of a

unit length in a topological sense. This means that if each

of these seven hexagons is compressed to a node, the

skeletal structure of HBCT becomes the complete graph,

K7. Since HBCT has been shown to be mapped on the

surface of a donut, K7 can thus be embedded in a torus

(see Figure 10a).17,37 This means that at least seven colors

are necessary for painting a given (geometrical) map on a

torus, or a donut, so that no two countries of the same

color are facing at their border. This is an extension of the

famous 4-color problem in a plane or on a sphere.

Further, the dual of K7 (b) is known to be the unique

six-cage,37 or the original Heawood graph (c) denoted by

H(14, 5, –5),18 which can be obtained by tracing the num-

bers given in (b). Also from (b) one can obtain the paving

unit (d) for the graphite network, which however cannot

be expressed as MLCFG.18 This network can be trans-

formed into a monobranched phenarene composed of three

pericondensed benzene rings. Although this network can

also span the graphite network, its pattern is not unique

as in the case of naphthalene and all other polyacenes.

EXTENSION

As suggested from Figure 8 one can extend our analysis

along the networks in Figure 1c to graphite,27 and dis-

cuss the electronic structure of graphite and also perform

model calculations of reactions occurring on its surface.

Group-theoretical consideration as Stewart14 can be ex-

tended for these networks.

Study of the perfect matchings of toroidal benzenoids

is being underway along the extensive study by Klein and

Zhu.38–40
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Supersimetrija heksabenzokoronenskoga torusa

Haruo Hosya, Yoko Tsukano, Kyoko Nakada, Sayaka Iwata i Umpei Nagashima

Heksabenzokoronenski torus (HBCT) hipotetska je mre`a oblika torusa izvedena pravilnim povezivanjem

devet parova perifernih ugljikovih atoma heksabenzokoronenskoga kostura. �-Elektronska struktura te hipo-

tetske konjugirane mre`e posjeduje izrazito visoku simetriju (supersimetriju) i sli~na je grafitnoj mre`i. Rabe}i

metodu temeljenu na teoriji grupa, koju su razvili autori, pokazano je da se 42 � 42 sekularna determinanta za

HBCT mo`e faktorizirati u produkt od 21 kvadratne jedna~be. Autori su naveli brojna zanimljiva matemati~ka

svojstva supersimetrije HBCT.
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