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The Wiener index of a tree T obeys the relation W(T) = �e n1(e) ·n2(e) where n1(e) and n2(e) are
the number of vertices on the two sides of the edge e, and where the summation goes over all
edges of T. Recently Nikoli}, Trinajsti} and Randi} put forward a novel modification mW of the
Wiener index, defined as mW(T) = �e � n1(e) ·n2(e) �–1. We now extend their definition as
mW�(T) = �e � n1(e) ·n2(e) ��, and show that some of the main properties of both W and mW are,
in fact, properties of mW�, valid for all values of the parameter ��0. In particular, if Tn is any
n-vertex tree, different from the n-vertex path Pn and the n-vertex star Sn, then for any positive
�, mW�(Pn) > mW�(Tn) > mW�(Sn), whereas for any negative �, mW�(Pn) < mW�(Tn) < mW�(Sn).
Thus mW� provides a novel class of structure-descriptors, suitable for modeling branching-de-
pendent properties of organic compounds, applicable in QSPR and QSAR studies. We also
demonstrate that if trees are ordered with regard to mW� then, in the general case, this ordering
is different for different �.
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INTRODUCTION

The molecular-graph-based quantity W, introduced1 by
Harold Wiener in 1947, nowadays known under the
name Wiener index or Wiener number, is one of the most
thoroughly studied molecular-structure-descriptors.2,3 Its
chemical applications4–8 and mathematical properties9,10

are well documented. Of the several review articles on
the Wiener index we mention just a few.11–13

Already in Wiener's seminal paper1 the following
formula for the calculation of the Wiener number of acy-
clic (molecular) graphs was reported:

W n n( ) ( ) ( )T � ��
e

e e1 2 (1)

where T denotes a tree (= connected and acyclic graph),2,9

n1(e) and n2(e) are the number of vertices of T lying on
the two sides of the edge e, and where the summation
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goes over all edges of T. �Recall that formula (1) is not
the definition of the Wiener index, but a mathematical
theorem; the Wiener index is defined as the sum of dis-
tances between all pairs of vertices.�

A large number of modifications and extensions of
the Wiener index was considered in the chemical litera-
ture; an extensive bibliography on this matter can be
found in the reviews14,15 and the recent paper.16 One of
the newest such modifications was put forward by
Nikoli}, Trinajsti} and Randi}.17 They introduced the
»modified Wiener index« mW, defined as

m TW ( ) � �
e
� n1(e) · n2(e)�–1 (2)

in analogy to formula (1).
An important property of the Wiener index are the

inequalities

W(Pn) > W(Tn) > W(Sn) (3)

where Pn, Sn, and Tn denote respectively the n-vertex
path, the n-vertex star (cf. Figure 1), and any n-vertex
tree different from Pn and Sn, and n is any integer greater
than 4. Because of the relation (3), the Wiener index may
be viewed as a »branching index«, namely a topological
index capable of measuring the extent of branching of
the carbon-atom skeleton of molecules and capable of
ordering isomers according to the extent of branching.
(For more details on the problem of measuring branch-
ing see Ref. 16 and the references quoted therein.)

It has been demonstrated16 that also the modified
Wiener index mW possesses this desired property, i.e.,
that it satisfies relations fully analogous to (3):

mW(Pn) < mW(Tn) < mW(Sn). (4)

Motivated by the analogy between Eqs. (1) and (2),
as well as between the relations (3) and (4), we exam-
ined a class of modified Wiener indices mW�, defined via

m TW
�
( ) � �

e
� n1(e) · n2(e)� � (5)

where � is a parameter that may assume different values.
Clearly, for �= +1 and �= –1, the modified Wiener index
mW� reduces to the ordinary Wiener index W and the
Nikoli}-Trinajsti}-Randi} index mW, respectively.

As a pleasant surprise we found that mW� maintains
its branching-index-nature for any (non-zero) value of �.
This we prove in the subsequent section. In a later sec-
tion we demonstrate another intriguing property of our
class of modified Wiener indices, namely that for �1� �2,
the ordering of trees with respect to mW�1

and mW�2
is

never the same. We prove this result for �1, �2 < 0.

m
W� IS A BRANCHING INDEX FOR ALL �

In this section we prove a result implying that for all �

the modified Wiener indices mW� satisfy the basic re-
quirement for being a branching index.

Theorem 1. – If Tn is an arbitrary tree on n vertices, dif-
ferent from Pn and Sn, then for any n � 5,

mW�(Pn) > mW�(Tn) > mW�(Sn) (6)

holds for all positive values of �, and

mW�(Pn) < mW�(Tn) < mW�(Sn) (7)

holds for all negative values of �.

Clearly, relations (3) and (4) are special cases of (6)
and (7), respectively.

In order to demonstrate the validity of Theorem 1
we first state a general property of our class of modified
Wiener indices. For brevity n1(e) · n2(e), occurring in for-
mulas (1), (2) and (5), will be denoted by w(e � T). Then
Eq. (5) is rewritten as

m TW
�
( ) � �

e
w(e � T) �. (8)

The following result is an immediate consequence
of (8) and the fact that w(e � T) is greater than unity for
all edges e of any tree T, provided T has more than two
vertices.

Fundamental Observation. – Let T* and T** be two trees
with equal number of vertices (and hence equal number
of edges). If their edges can be labeled so that

w(e � T*) 	w(e � T**) (9)

for all e, then mW�(T*) 	 mW�(T**) for any � > 0 and
mW�(T*) � mW�(T**) for any � < 0. If at least one of the
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Figure 1. Trees extremal with respect to the modified Wiener indi-
ces mW�, for all non-zero values of the parameter �. Among the
n-vertex trees the path (Pn) and the star (Sn) are extremal, cf. Eqs.
(6) and (7), and the trees Pn

* and Sn
* second-extremal. The path is

evidently the least and the star the most branched tree.



inequalities (9) is strict, then the inequalities between
mW�(T*) and mW�(T**) are also strict.

The proof of the left-hand side inequalities in (6)
and (7) is now easy: Because n1(e) + n2(e) = n and n1(e),
n2(e) � 1, the product w(e � T) = n1(e) · n2(e) cannot be
less than 1·(n–1) = n–1. In the case of the star Sn, all
w(e � Sn)-values are equal to n–1. For all other n-vertex
trees, at least one w(e � T)-value is greater than n–1.

This proves one half of Theorem 1.
Instead of directly verifying the right-hand side in-

equalities in (6) and (7) we prove a somewhat more gen-
eral statement, namely Theorem 2. For this, consider the
trees T' and T'', depicted in Figure 2.

By R is denoted an arbitrary fragment with nR verti-
ces, and a � 0, b � 1. Hence both T' and T'' possess
nR + a + b + 1 vertices. Note that the vertex r belongs to
the fragment R. If r would be the only vertex of R, then
it would be T' = T''. Therefore, the only interesting case
is when nR � 2.

Theorem 2. – Let T' and T'' be trees the structure of
which is shown in Figure 2. Then the transformation T'


T'', increases mW� if � > 0 and decreases mW� if � < 0.

Proof of Theorem 2. The edge connecting the vertices x

and y is denoted by (x,y).

Lemma 1. – The edges of the trees T' and T'', depicted in
Figure 2, can be labeled so that equality w(e � T') =
w(e � T'') holds for all edges except one. These excep-
tional edges are (r,u1) in T' and (r,v1) in T''.

Proof of Lemma 1. Evidently, w(e � T') = w(e � T'') holds
for all edges belonging to R. Also evidently,

w((x,ua) � T') = w((ua,ua–1) � T'')

w((ua,ua–1) � T') = w((ua–1,ua–2) � T'')

w((u2,u1) � T') = w((u1,r) � T'')

and

w((vb,vb–1) � T') = w((x,vb) � T'')

w((vb–1,vb–2) � T') = w((vb,vb–1) � T'')

… …

w((v1,r) � T') = w((v2,v1) � T'')

Lemma 2. – If for the trees T' and T'', depicted in Figure
2, a + 1 	 b, then w((r,u1) � T') < w((r,v1) � T'').

Proof of Lemma 2.

w((r,u1) � T') = (a + 1) · (b + nR)

w((r,v1) � T'') = (b + 1) · (a + nR)

and therefore

w((r,v1) � T'') – w((r,u1) � T') = (b – a)(nR – 1)

which necessarily is positive.

Theorem 2 is a direct consequence of Lemmas 1 and
2 and the »Fundamental Observation«.

Repeating the transformation T' 
 T'' a + 1 times,
the entire a-branch of T' will be transferred to the
b-branch and the degree of the vertex r reduced by one.
Repeating such transformations sufficiently many times
we will finally obtain the path Pn.

This proves the right-hand side inequalities in (6)
and (7).

The proof of Theorem 1 is thus completed.

The same reasoning gives us the structure of the se-
cond maximal and second minimal trees. These are also
shown in Figure 1 as Pn

* and Sn
*.

MORE APPLICATIONS OF THE »FUNDAMENTAL
OBSERVATION«

Theorem 2 implies that there exist molecular graphs
whose order with regard to the modified Wiener indices
is independent of the parameter �. Indeed, there are nu-
merous pairs of trees obeying the relations (9). We illus-
trate this on the example of the 7-vertex trees.

In Figure 3 are depicted the eleven distinct trees on
7 vertices. The first nine of them are molecular graphs,
representing the nine isomeric heptanes C7H16. In Table
I are given the respective w(e � T)-values.

An inspection of Table 1 shows that the molecular
graphs of 2,2-dimethylpentane (6) and 2,3-dimethylpen-
tane (7) have equal w(e � T)-sequences, i. e., for them all
relations (9) reduce to equalities. Consequently, neither
the ordinary Wiener index W nor the Nikoli}-Trinajsti}-
Randi} index mW nor any of the presently considered

A CLASS OF MODIFIED WIENER INDICES 105

Croat. Chem. Acta 77 (1–2) 103¿109 (2004)

u
a

R

v
1

u
1

u
2

u
a-1

v
b-1

v
b

v
2

T'

x

r

u
a

R

v
1

u
1

u
2

u
a-1

v
b-1

v
2

T''

x

r

v
b

Figure 2. The trees considered in Theorem 2.



modified Wiener indices mW� can distinguish these two
isomers.

The inequalities (9) are fulfilled in a non-trivial man-
ner for several pairs of molecular graphs, e.g., between
2-methylhexane (2) and 3-methyhexane (3), between
3-methylhexane and 3-ethylepentane (4) or between
3-ethylpentane and 3,3-dimethylpentane (8). Then, in view
of the »Fundamental Observation«, the ordering of these

molecular graphs is independent of the actual value of
the parameter �.

On the other hand, some pairs of molecular graphs
do not satisfy the inequalities (9) by all edges. Such are
3-methylhexane and 2,4-dimethylpentane (5) or 3,3-di-
methylpentane and 2,2,3-trimethylbutane (9). The order-
ing of these isomers with regard to the modified Wiener
indices mW� does depend on the actual value of �.

In Figure 3 is shown the comparability (Hasse) dia-
gram of the mutual relations of the 7-vertex trees, in
view of the inequalities (9). Whenever these inequalities
are obeyed for all edges, there is a descending path be-
tween the circles representing the respective two trees.
Then the »Fundamental Observation« is applicable and
these two trees are equally ordered by all mW�. Other-
wise the ordering of these trees is �-dependent.

Analogous relations are encountered also for n-ver-
tex trees and n-vertex chemical trees when n > 7. Their
study will be communicated elsewhere. In what follows
we show that no matter what the values of �1 and �2 are,
there always exist trees that are oppositely ordered with
regard to mW�1

and mW�2
. The proof of this result is dif-

ficult and we restrict our considerations to the case of �1,
�2 < 0.

ON THE �-DEPENDENCE OF ORDERING
OF TREES BY MEANS OF m

W�

The set of all trees is denoted by T. The set of some top-
ological indices (e.g. the set of the modified Wiener in-
dices mW� for all values of �) is denoted by I. We define
an equivalence relation � on the set I as

(i1 � i2) � � (
Ta,Tb �T) (i1(Ta) 	 i1(Tb)) �
(i2(Ta) 	 i2(Tb)) �.

In words: two topological indices i1 and i2 are con-
sidered to be equivalent if they order all trees in the ex-
actly same manner.

Theorem 3. – For each two numbers �1, �2 < 0 the modi-
fied Wiener indices mW�1

and mW�2
are not equivalent.

Before proving Theorem 3, we state an auxiliary re-
sult:

Lemma 3. – Let �1, �2 � �� ,0 \�–1�, �1 � �2. There is
a rational number q � �1, , such that

q

q

q

q

� �
�

�
� �

�
� �1 2

2

1 2

2

1 2

1 1

�

�

�

�� � .

Proof. Suppose, to the contrary, that such number does
not exist. Then, for each rational x � �1, , we have

1

1

1 2

2

1

1

1 2

21 2

1 2

� �

� �

�
� �

�

�

�
�
�

�

�
�
� �

�
� �

�

�

�
�
�

�

�
�ln ln

x x

x x � .
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Figure 3. The 7-vertex trees and the comparability (Hasse) dia-
gram pertaining to their w(e � T)-values, cf. Table I.

TABLE I. The 7-vertex trees (numbered as in Figure 3) and their
w(e � T)-values

tree T w(1�T) w(2�T) w(3�T) w(4�T) w(5�Y) w(6�T)

1 6 6 10 10 12 12

2 6 6 6 10 12 12

3 6 6 6 10 10 12

4 6 6 6 10 10 10

5 6 6 6 6 12 12

6 6 6 6 6 10 12

7 6 6 6 6 10 12

8 6 6 6 6 10 10

9 6 6 6 6 6 12

10 6 6 6 6 6 10

11 6 6 6 6 6 6



Since both functions are continuous this equality
holds for any x � �1, . Then also the first derivatives of
these functions coincide. Replacing y = x + 2 and com-
puting the first derivatives we get

1

1

1

1 2 1
2 1

1

1
21

1

�
�

�

�
�

� �
� � � �

�

�
��

�

�
�� �

( ) /
( )

y y

1

1

1

1 2 1
2 1

1

2
22

2

�
�

�

�
�

� �
� � � �

�
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�

�
��

( ) /
( )

y y
.

Therefrom,

� �

� �

1 21

2 1

1

2 11 2

�

�
�

�

�

�

�
�

�

�
� y2 + (�1 – �2) y = 0

for each y � �3, . All the coefficients of the last polyno-
mial are equal to zero, because otherwise it would have
at most two zero-points. Therefore �1 = �2. This is a
contradiction, so our claim is proved.
Proof of Theorem 3. Denote by T(x,y) the tree depicted
in Figure 4. This tree has x + 2y + 1 vertices.

It is sufficient to find trees G and H such that

mW�1
(G) � mW�1

(H) and mW�2
(G) < mW�2

(H)

or trees G and H such that

mW�1
(G) > mW�1

(H) and mW�2
(G) 	 mW�2

(H).

We have to distinguish between three cases:

Case 1. (�1+1)(�2+1) < 0.

Without loss of generality, we may assume that �1 < –1
and �2 > –1. Then,

mW�1
(P2) = 1

mW�1
(S4) = 3 · 3�1 < 1

mW�2
(P2) = 1

mW�2
(S4) = 3 · 3�2 > 1

and therefore

mW�1
(P2) > mW�1

(S4)

mW�2
(P2) < mW�2

(S4).

Case 2. One of the numbers �1 and �2 is equal to –1.
Without loss of generality, we may assume that �1 = –1.
Distinguish two subcases:

Subcase 2.1. �2 > –1.

Let a be the smallest natural number such that

a �1+1 4 7 3 14
22

2

� � � ��

�
�

�

�
�

�

�
�
�

�

 
!
!

�
�

a
>1 .

Such a certainly exists, because �2 + 1 > 0. Let
b = 3a. Then,

mW�1(P2) = 1

mW�1
(T(a,b)) = (a + b)(a + 2b)–1 +

b � 2 (a + 2b –1) �–1 <
4

7

1

4
� < 1

mW�2
(P2) = 1

mW�2
(T(a,b)) = (a + b)(a + 2b) �2 + b �2 (a + 2b –1)� �2 =

a �1 4 7 3 14
22

2

� � � ��

�
�

�

�
�

�

�
�
�

�

 
!
!

�
�

a
>1

and therefore

mW�1
(P2) > mW�1

(T(a,b))

mW�2
(P2) 	 mW�2

(T(a,b)) .

Subcase 2.2. �2 < –1.

Let a be the smallest natural number, divisible by 4,
such that

a �2+1 5

4

3

2

1

4
3

22 2

��

�
�

�

�
� � � ��

�
�

�

�
�

�

�
�
�

�

 
!
!

� �

a
< 3 �2 + 4 �2 + 3 �2 .

Such a certainly exists, because �2 + 1 < 0. Let
b = �a/4�. Then we have

mW�1
(P4) =

1

3

1

4

1

3

11

12
� � �

mW�1
(T(a,b)) = (a + b)(a + 2b)–1 + b �2 (a + 2b – 1)�–1 >

5

6

1

10

11

12
� "

mW�2
(P4) = 3 �2 + 4 �2 + 3 �2

mW�2
(T(a,b)) = (a + b)(a + 2b) �2 + b �2 (a + 2b – 1)� �2
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= a �2+1 5
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3

2

1

4
3

22 2

��

�
�

�

�
� � � ��

�
�

�

�
�

�

�
�
�

�

 
!
!

� �

a
<

3 �2 + 4 �2 + 3 �2

implying

mW�1
(P4) < mW�1

(T(a,b))

mW�2
(P4) > mW�2

(T(a,b)).

Case 3. (�1+1) � (�2+1) > 0.
By Lemma 3, there is a rational number q �#1,�$, such
that

q

q

q

q

� �
�

�
� �

�
� �1 2

2

1 2

2

1 2
1 1

� �

� �� � .

Therefore

( )( ) ( )q q q� � � � �
�

1 2 2 21 1 11 � � ���

( )( ) ( )q q q� � � �
�

1 2 2 22 2 21 � � ��� .

Thus, either there is a positive rational number k

such that

(q + 1)(q + 2) �1 + 2 �1 (q + 2) �1 < k �1+1

(q + 1)(q + 2) �2 + 2 �2 (q + 2) �2 > k �2+1

or there is a positive rational number k such that

(q + 1)(q + 2) �1 + 2 �1 (q + 2) �1 > k �1+1

(q + 1)(q + 2) �2 + 2 �2 (q + 2) �2 < k �2+1.

Without loss of generality, we may assume that the
first of these two options applies.

Let a, b, c be positive integers, such that a = qc/k
and b = c/k. Multiplying the above two inequalities by
(c/k) �1+1 and (c/k) �2+1, respectively, we get

(a + b)(a + 2b) �1 + b (2 �1 (a + 2b) �1) < c � c �1

(a + b)(a + 2b) �2 + b (2 �2 (a + 2b) �2) > c � c �2

i.e.,

( )( ) ( ( ) )a b a b b a b

c c

� � � �

�

2 2 21 1 1

1

� � �

�
< 1

( )( ) ( ( ) )a b a b b a b

c c

� � � �

�

2 2 22 2 2

2

� � �

�
> 1 .

It follows that

lim
( )( ) ( ( ) )

( )m

ma mb ma mb mb ma mb

mc mc

�

� � � � �

�

2 2 2 11 1 1� � �

�1
< 1

lim
( )( ) ( ( ) )

( )m

ma mb ma mb mb ma mb

mc mc

�

� � � � �

�

2 2 2 12 2 2� � �

�2
> 1.

So, there is some sufficiently large integer m, such
that

(ma+mb)(ma+2mb) �1 + mb(2 �1(ma+2mb–1) �1) <
mc � (mc) �1

(ma+mb)(ma+2mb) �2 + mb(2 �2(ma+2mb–1) �2) >
mc � (mc) �2

This, finally, yields

mW�1
(T(ma,mb)) < mW�2

(Smc+1)

mW�1
(T(ma,mb)) > mW�2

(Smc+1).

By this all the cases are exhausted and the proof of
Theorem 3 is complete.
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SA@ETAK

Jedna klasa modificiranih Wienerovih indeksa

Ivan Gutman, Damir Vuki~evi} i Janez @erovnik

Wienerov indeks stabla T zadovoljava relaciju W(T) = �e n1(e) ·n2(e) gdje su n1(e) i n2(e) broj ~vorova na
dvije strane grane e, i gdje sumiranje ide preko svih grana stabla T. Nedavno su Nikoli}, Trinajsti} i Randi}
predlo`ili modifikaciju mW Wienerovog indeksa, definiranu kao mW(T) = �e � n1(e) ·n2(e) �–1. Mi sada pro-
{irujemo njihovu definiciju na mW�(T) = �e � n1(e) ·n2(e) ��, i pokazujemo da neka od va`nijih svojstava kako
W tako i mW va`e za mW�, za svaku vrijednost parametra � � 0. Ako je Tn bilo koje stablo s n ~vorova, razli~ito
od puta Pn i zvijezde Sn, onda za svaku pozitivnu �, mW�(Pn) > mW�(Tn) > mW�(Sn), dok za svaku negativnu �,
mW�(Pn) < mW�(Tn) < mW�(Sn). Na taj na~in mW� predstavlja novu klasu strukturnih deskriptora, pogodnih za
modeliranje o razgranatosti ovisnih svojstava organskih spojeva i u~inkovitih u QSPR i QSAR studijama.
Tako|er pokazujemo da ako su stabla ure|ena prema mW�, tada se, u op}em slu~aju, ovaj ure|aj razlikuje za
razli~ite �.
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