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Modeling quality of two different algorithms for the �v number, the main parameter for many

molecular connectivity indices, has been tested. The new algorithms for �v are able to take into

account the inner-core electrons of any heteroatom with the principal quantum number n � 2.

Both algorithms are based on the concept of regular complete graphs, which are an appropriate

tool for completing the graph representation of a molecule, extending it to the inner-core elec-

trons of the atoms of the molecule. The model of a theoretical and two experimental properties

was performed: the electron density at the bond critical point of fluorides and chlorides, the ex-

perimental lattice enthalpy of metal halides, and the experimental partition coefficient of

halogenated organic compounds. The two algorithms for the �v number, based on two different

types of complete graphs, are tested throughout the modeling of the quantum theoretical prop-

erty and of the two experimental properties. While the odd complete graphs behave better than

the sequential complete graphs, both types of algorithms for �v used with odd complete graphs

are able to model, alternatively, the different properties in a satisfactory way.
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INTRODUCTION

The goal of quantitative structure-property (QSPR) or

structure-activity (QSAR) studies could be synthesized

into the following logical assertion for every chemical

graph G: if it has a set of graph-theoretical basis indices,

���, then it has also the property (or activity) P, i.e., � G

(���� P). Clearly, this assertion has only a probabilistic

character. Another goal of QSPR studies is to define a

set of consistent rules that could possibly give rise to an

elaborated and coherent theory that can be used for mod-

eling purposes at any moment. The molecular connectiv-

ity theory (MC), with its variant, the electrotopological

state,1–3 is such a theory. Recently, with the aim to widen

the applicability and correct the incongruity of this theory,

three new concepts have been introduced, which have

further improved the modeling quality of the theory: the

pseudoconnectivity indices, the dual indices, and the com-

plete graphs for the core electrons.4–8 The MC theory has

recently undergone other improvements, such as, among

others, the introduction of the variable connectivity index,

the edge and line-graph connectivity index, the molecular

connectivity terms, together with the many interesting in-

terpretations developed for the connectivity index.9–20

In this paper, we will further check the modeling

quality of the molecular connectivity and pseudoconnec-

tivity indices, whose main parameter, the �v number, can

encode the core electrons of heteroatoms with the princi-

pal quantum number n � 2. This is done with the aid of

complete graphs, which proved to be an appropriate

'graph' tool for representation of the core electrons of at-

oms in a molecule.21–24 Here, two algorithms, based on
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sequential and odd complete graphs, will be tested. They

will be used to derive a set of basis indices, which will

model a quantum theoretical property and two experi-

mental properties of different classes of compounds. The

quantum property is the electron density at the bond crit-

ical point of a class of fluorides and chlorides. The two

experimental properties are the lattice enthalpy of metal

halides, and the partition coefficient of halogenated or-

ganic compounds. The choice of these halogenated com-

pounds allows checking of the modeling quality of those

indices which are based on regular complete graphs. The

quantum data for the first class of compounds are taken

from Refs. 25 and 26, while the sets of experimental

data are taken from Refs. 27 and 28, respectively.

METHOD

The Basis Indices

The set of molecular connectivity basis indices, ���,

used throughout this study can be divided into three dif-

ferent subsets. The subset of molecular connectivity in-

dices, ���, the subset of molecular pseudoconnectivity

indices, ���, and the subset of the dual basis indices,

��d�, which can be obtained from the previous ones with

a Boolean-like algorithm,

��� = ���������d�� (1)

To avoid computational problems, due to the large

number of indices belonging to each of these subsets,

only a small fraction of all possible indices will be used,

i.e,

��� = �D,0�,1�, �t, Dv, 0�v, 1�v, �v
t�

��� = �S�I,
0�I,

1�I,
T�I,

S�E,0�E,1�E,T�E�

��d� =

�0�d,
1�d,

1�s,
0�v

d,
1�v

d,
1�v

s,
0�Id,

1�Id,
1�Is,

0�Ed,
1�Ed,

1�Es�

Their definitions have been collected in pairs to un-

derline their formal similarity,

D = �i �i
S�I = �iIi (2)

0� = �i(�i)
–0.5 0�I = �i(Ii)

–0.5 (3)

1� = �(�i �j)
–0.5 1�I = �(IiIj)

–0.5 (4)

�t = (��i)
–0.5 T�I = (�Ii)

–0.5 (5)

0�d = (–0.5)N�i(�i)
0�Id = (–0.5)N�i(Ii) (6)

1�d = 1�Id =

(–0.5)(N+�–1)�(�i+�j) (–0.5)(N+�–1)�(Ii+Ij) (7)

1�s = �(�i + �j)
–0.5 1�Is = � (Ii + Ij)

–0.5 (8)

Sums in Eqs. (2) and (3) as well as products (�) in

Eqs. (5) are over all the vertices of the hydrogen-sup-

pressed chemical graph. Sums in Eqs. (4), are over all

the edges of the chemical graph (� bonds in a molecule).

Replacing in Eqs. (2–8) � with �v, and Ii with Si, the cor-

responding valence �v indices and E-state �E indices are

obtained. Exponent � in Eq. (7) is a cyclomatic number.

This number is a molecular descriptor that indicates the

number of bonds that must be broken in order to obtain a

cycle-free structure. For acyclic molecules: � = 0; for

monocyclic ones: � = 1 and for bicyclic ones: � = 2.

While the basis � indices and valence �v indices are di-

rectly related to the �, and �v numbers of a hydro-

gen-suppressed graph and pseudograph, respectively, the

basis � indices are indirectly related to � and �v numbers

through the I-state (�I subset) and the S-state (�E sub-

set) atom level indices defined by Kier and Hall.3

Ii = 	(2/n)2�i
v + 1
/�i and Si = Ii + �j�Iij (9)

�Iij = (Ii – Ij) / r2
ij, where rij counts the atoms in the

minimum path length separating two atoms, i and j,

which equals the graph distance, dij + 1. As the �i
v val-

ues are obtained from the hydrogen-suppressed pse-

udograph (ps) of a molecule, it is advantageous to rede-

fine �i
v in Eq. (9) as �i

v(ps). In this case, the first equa-

tion can be rewritten as: Ii = 	�i
v + 1
/�i, where, �i

v =

(2/n)2�i
v(ps). The contribution for the core electrons for

n � 2 is here encoded by the (2/n)2 parameter. The �v for

the �v indices for atoms with n > 2 has, instead, been de-

fined as �v = Z v / (Z – Z v – 1).2 Both definitions for �v

introduce concepts that do not belong to graph theory.

Recently,8,21–24 to avoid this state of affairs, and render

molecular connectivity more in keeping with chemical

graph theory, complete graphs have been introduced to

encode the core electrons of atoms with the principal

quantum number n � 2 (heteroatoms). A graph G is com-

plete if each pair of its vertices is adjacent. A complete

graph of order p is denoted Kp, (p – 1 = r) and is r-regu-

lar, where r denotes its regularity. A graph is regular if it

has all vertices with the same degree r. Thus, a complete

graph is always regular, even if a regular graph is not al-

ways complete. Figure 1 shows the hydrogen-suppressed

chemical pseudograph-complete graph for the CH3Br

compound with p odd.

Two different �v numbers centered on parameters

belonging to complete graphs can be derived from Eq.

(10), as q = 1, and p.23–24 Actually, these two values par-

allel the two 'quantum' values for �v previously seen. In

any case, for p =1, �v = �v(ps). The two values for q will

be used to derive the subset of valence �v indices and the

subset of pseudo-� indices, dual indices included,

�v = q � �v(ps) / (p � r + 1) (10)
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Parameter p � r is an important parameter in graph

theory since it represents the sum of the degree of the

vertices of a Kp graph, which for the hand-shaking theo-

rem equals twice the number of edges.20 Two different

types of complete graphs will be tested here, the sequen-

tial type where p can have sequential values, i.e., p = 1,

2, 3, 4,..… for 2nd , 3rd, 4th, 5th, ....... row atoms. To each

value of �v for q = 1 and for q = p an acronym will be

assigned, i.e., Kp-(p-seq), and Kp-(pp-seq), respectively.

The odd type of complete graph has instead p = 1, 3, 5,

7,.... for 2nd , 3rd, 4th, 5th, ....... row atoms. Consequently,

even here we have two acronyms: Kp-(p-odd), and

Kp-(pp-odd). Practically, we have four different values

for the �v of each heteroatom.

Even regular complete graphs with p = 2, 4, 6,.…

have been avoided due to conceptual difficulties. This

choice would oblige one to encode the inner-core elec-

trons for heteroatoms with n = 2, either with a K0 null

graph (with no vertices and edges),29 or with a K2 com-

plete graph. This last possibility would oblige one to re-

define most of the chemical graphs used to date, made

up of K1 vertices. Formally, the K0 null graph could be

used to encode the depleted hydrogens of a hydro-

gen-suppressed graph.

To obtain the �v values for q = 1, the adjacency ma-

trix of the hydrogen-suppressed Kp-(p-odd or p-seq)

chemical pseudograph of a molecule is needed. In Eq.

(11), a seemingly symmetric adjacency pseudograph-Kp

matrix for a tri-atomic system is shown,

A 
 � � �( )

, , ,

, , ,

, ,

p r

ps g g

g ps g

g g ps
p

1 1

11 2 1 1 2

2 1 2 2 2 3

3 1 3 2 3

K

,3

�

�

�
�
�

�

�

�
�
�

(11)

Here, gi,j can be either 0 or 1. It is one only if verti-

ces i and j are connected, otherwise it is zero; psi,i is the

sum of the self-connections (they count twice) and mul-

tiple connections of vertex i (pseudograph characteris-

tics only, ps). Factor (p·r + 1)–1
Kp encodes the com-

plete-graph characteristics for the case q = 1. It depends

on the p value of the complete graph used to model the

core electrons of each atom. The final form of the matrix

is normally asymmetric, as can be seen in the following

example for the Kp-(p-odd) pseudograph adjacency ma-

trix of MgI2 (K7 for I, and K3 for Mg; the atom number-

ing indicates the row):

A(I Mg I )1 2 3 

�

�

�
�
�

�

�

�
�
�

6 43 1 43 0

1 7 2 1 7

0 1 43 6 43

/ /

/ /

/ /

Higher-order Descriptors

The basis indices can either be used in simple linear re-

lationships, P = c1 � + c0U0 (U0 � 1), or in multilinear re-

lationships, P = �i ci �i (�0 = U0), or they can be used,

with the aid of a trial-and-error procedure, to build a se-

ries of powerful higher-order single descriptors (S).

Three different types of higher-order descriptors are nor-

mally used, S = X, Y, and the mixed term Z: X = f(�), Y =

f(�), and Z = f(X,Y) or f(X, Y, �), where � = � or �. Dual

indices are normally introduced at the Z level, giving

rise to Z� = f(X,Y, �d) or f(X, Y, �, �d) terms. This proce-

dure is used to short-circuit the huge combinatorial

problem generated by twenty-eight indices. Clearly, it is

also possible to construct terms like: X�= f(�, �d), Y� =

f(�, �d).

The general form of terms X and Y is S = 	a(�1)
m +

b(�2)
n
q / 	c(�3)

o + d(�1)
p
r, where � is a basis index, and

S = X or Y for � = � or � = �, respectively. Parameters

a–d, m–q, and r are optimization parameters. If some of

these parameters are zero or one, the rational function

assumes a simplified form.

Statistical performance of the graph-structural in-

variants, be it a basis index or S, is controlled by a

quality factor, Q = r / s, and by the (Fischer) ratio F =

nfd r2/	(1–r2)�
, where r and s are the correlation coeffi-

cient and the standard deviation of the estimates, respec-

tively, nfd is the number of freedom degrees = n – (� + 1),

� is the number of variables, and n is the number of data.

Parameter Q has no absolute meaning, it can only com-

pare the descriptive power of different descriptors within

the same property. The F ratio, which has the character

of an 'inter’ statistical parameter, tells us, even if Q im-

proves, which additional descriptor endangers the statis-

tical quality of the combination. For every structural

descriptor, be it a basis index of a linear combination, a

term or the unitary descriptor, U0, the fractional utility,

ui = �ci / si�, has been defined; here si is the confidence

interval of ci. The average fractional utility <u> =

�ui / (� + 1) will also be given. Utility statistics allows de-

tecting descriptors that give rise to unreliable coefficient

values (ci) whenever they give rise to a high deviation
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Figure 1. The hydrogen-suppressed pseudograph plus the com-
plete graph of CH3Br. The core electrons of the carbon atom are
encoded with a K1 complete graph, i.e., a vertex. The core elec-
trons of Br are encoded with a K5 complete graph. The dimen-
sions of this last complete graph have no metric meaning; it can
be seen as a zoom of this vertex that allows noting its details.



interval (si). The standard deviation of the estimates, s,

has a critical importance throughout these modeling

studies. For this reason, the ratio sR = s0/si has recently

been introduced,8,22 where s0 is the s value of the best

single basis index description and si refers to the s values

of improved descriptions. This parameter gives a direct

idea about how much s improves throughout a series of

descriptions. The reader should keep in mind that (i) all

statistical parameters will now grow with improving

modeling, that (ii) every modeling will be under the con-

trol of all of these statistics, and that (iii) nothing justi-

fies that an improved Q is a good receipt for good mod-

eling. The abundance of statistical parameters can also

be used to detect possible printing errors, since redun-

dancy is very useful in self-correcting codes. To avoid

bothering the reader with dimensional problems, every

property P should be read as P/P° where P° is the unitary

value of the property; this will allow to read P as a pure

number.

Before leaving this section, it should be underlined

that the factor �j�Iij in Si = Ii + �j�Iij (see Eqs. 9) incor-

porates information about the influence of the remainder

of the molecular environment; thus, highly electroposi-

tive atoms have S < 0.3 To avoid this possibility, which

could give rise to imaginary �E values, a rescaling pro-

cedure is mandatory.4,5 In this study, the S value for

metal halides, MeX, has been rescaled to the S value of

Ba in BaF2, where, S	Ba(BaF2)
 = – 3.083. The S value

for the fluorides and chlorides has, instead, been

rescaled to a hypothetical S = – 7.711 = (S	Si(SiF4)
 –

1.1), to avoid gigantic values for the �E indices. For the

halocompounds used in the partition coefficient section,

the S values have been rescaled to S	C(CF4)
= – 5.5. The

rescaling procedure, which is also done with the intent

to avoid either too small or too large Si values, has a mi-

nor influence on the quality of the modeling.5

RESULTS AND DISCUSSION

Electron Density at the Bond Critical Point, �b, of

Fluorides and Chlorides

The best algorithm for �v for this property of this class

of compounds is the Kp-(pp-odd) algorithm, i.e., �v =

p � �v(ps) / (p · r + 1) with p odd. The best single- and

two-basis indices are:

�T�I�: Q = 11.03, F = 16, r = 0.682, s0 = 0.06

�D, 1�v�: Q = 30.36, F = 59, r = 0.935, sR = 2.0,

n = 20, <u> = 9.7, u = (10, 10, 8.8)

The best terms are:

X = 	(Dv)0.7(1�v)1.1�t
v
–0.3: Q = 29.56, F = 112, r = 0.928,

sR = 2.0, n = 20, <u> = 7.8, u = (11, 4.9)

Y = 	(T�I � 1�E)–1 + 0.6 � S�E
: Q = 22.64, F = 66,

r = 0.886, sR = 1.54, n = 20

Z = 	X – 0.003Y
1.8: Q = 30.21, F = 117, r = 0.931,

sR = 2.0, n = 20, <u> = 6.4, u = (11, 1.9)

This last term can be improved by insertion of a

dual index, giving rise to the following mixed dual term:

Z� = 	Z – 0.8 � (1�v
s)
1.1: Q = 34.97, F = 157, r = 0.947,

sR = 2.22, <u> = 6.5, u = (13, 0.6),

C = (0.12552, 0.01250)

We will not let us be excessively bothered by the

low utility values of constant term of the regression, u0 =

0.6, since the value of the corresponding regression pa-

rameter, c0, is nearly zero (0.0125) and even small devi-

ations around zero can cause high deviations in u0 = c0 /

s0. Table I shows the original quantum mechanical val-

ues, the residuals relative to the present calculated val-

ues (with Z� term), and the residuals relative to the pres-

ent calculated values with the leave-one-out method. In

Figure 2, instead, quantum values vs. our own values

and the corresponding residuals are plotted. As the origi-

nal values are quantum values, it can be concluded that

the two methods are not divergent, and that the molecu-

lar connectivity results are as good as the quantum re-

sults.
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TABLE I. Electron density at the bond critical point of fluorides and
chlorides, �b/au, residuals of the modeled electron density at the
bond critical point, ��/au, and residuals of the modeled electron
density at the bond critical point with the leave-one-out method,
��(loo)/au

Compound(a) �b/au ��/au ��(loo)/au

LiF 0.075 –0.019 –0.021

BeF2 0.145 –0.011 –0.011

BF3 0.217 –0.010 –0.013

CF4 0.309 –0.023 –0.032

NF3 0.314 0.026 0.032

OF2 0.295 0.025 0.029

F2 0.288 0.028 –0.032

LiCl 0.047 –0.015 0.018

BeCl2 0.097 0.003 0.003

BCl3 0.157 0.038 0.041

CCl4 0.182 0.041 0.044

NCl3 0.176 0.022 0.023

OCl2 0.184 0.014 0.015

FCl 0.187 0.002 –0.002

NaF 0.051 0.007 0.009

MgF2 0.080 –0.010 –0.011

AlF3 0.115 –0.025 –0.026

SiF4 0.154 –0.069 –0.074

PF3 0.168 –0.021 –0.023

SF2 0.182 0.002 0.002

(a) The first fourteen data are taken from Ref. 25, the others are from

Ref. 26.



Lattice Enthalpy of Metal Halides (MeX)

The lattice enthalpy, �HL
o (kJ mol–1), of twenty metal

halides, MeX, at 298.15 K are collected in Table II, to-

gether with the corresponding calculated values with

two different odd complete graph algorithms, the

Kp-(p-odd), and the Kp-(pp-odd) algorithms, i.e.,

�HL
o(Kp), and �HL

o(Kpp), respectively. Table II also

gives the corresponding modulus percent residual ob-

tained with the two different sets of calculated values,

��%� = �(�HL
o – �HL

o(Ki))100/�HL
o�, with i = p or pp.

As in the preceding case, also here four complete graph

algorithms have been considered for �v, two based on se-

quential complete graphs and two on odd complete

graphs. About the possibility to model salts with graph

concepts see Refs. 6, 20 and 25–27. Here, the vague and

ill-defined concept of purely ionic bonds and purely co-

valent bonds is reconsidered.

The graphs of metal halides can be represented by

two connected points: ���. Thus, the only meaningful

indices here are: ��� = �Dv, 0�v, 1�v�, and ���=�S�I,
0�I,

1�I,
S�E, 0�E, 1�E�. Two descriptions compete in

modeling this property: the Kp-(p-odd) and Kp-(pp-odd)

descriptions; the Kp-(p-seq) and Kp-(pp-seq) descrip-

tions, instead, lead to poorer modeling.

Kp-(p-odd) Description. – The Kp-(p-odd) description

starts with a deceptive single-� descriptor:

�0�E�: Q = 0.023, F = 108, r = 0.926, s0 = 40.6

but improves consistently with the following combina-

tion:

� 0�v,1�E�: Q = 0.042, F = 183, r = 0.978, sR = 1.8,

u = (8.1, 11, 31), <u> = 16, n = 20

It improves even more with the following X term:

oddXp = 	(Dv)0.5/(Dv + 13.3�(0�v)0.9
0.6

Q = 0.056, F = 654, r = 0.987, sR = 2.3, n = 20,

u = (26, 74), <u> = 50, n = 20

Thanks to a less satisfactory Y term, oddYp = (0�E +
1�E): Q = 0.025, F = 133, r = 0.938, sR = 1.1, a quite in-

teresting oddZp term could be detected:

oddZp = 	oddXp + 0.3 oddYp


Q = 0.068, F = 953, r = 0.991, sR = 2.8,

u = (31, 10), <u> = 21, n = 20

Further, insertion of a zeroth-order dual basis index

improves the quality of the description with the follow-

ing mixed dual term:

oddZ �p = 	1.2 � Z 0.3 + 0.004(0�v
d)

2
0.1

Q = 0.074, F = 1145, r = 0.992, sR = 3.0,

u = (34, 33), n = 20, C = (36789.0, –35815.7)

The �HL
o values, calculated with the aid of this oddZ 	p

term, �HL
o(po), and the corresponding modulus percent

residual, ��%(po)�= ��HL
o – �HL

o(Kp)�100/ �HL
o, are

shown in Table II. In Figure 3, the calculated vs. the ex-

perimental values (top) and the corresponding residuals,

�HL
o – �HL

o(po) (bottom) are plotted. The agreement

among the data seems satisfactory.
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TABLE II. Lattice enthalpies for twenty metal halides, �HL
o (kJ

mol–1), at 298.15 K, the calculated Kp-(p-odd) values, �HL
o(po),

the corresponding modulus percent residual, ��%(po)�, the calcu-
lated Kp-(pp-odd) values, �HL

o(ppo), and the corresponding re-
sidual, ��%(ppo)�.

MeX �HL
o �HL

o(po) ��%(po)� �HL
o(ppo) ��%(ppo)�

LiF 1037 1036 0.1 1034 0.3

NaF 926 910 1.7 902 2.6

KF 821 837 2.0 825 0.5

RbF 789 787 0.3 781 1.0

CsF 750 754 0.6 752 0.2

LiCl 852 872 2.3 886 4.0

NaCl 786 771 1.9 787 0.2

KCl 717 719 0.3 732 2.1

RbCl 695 687 1.2 702 1.0

CsCl 678 666 1.7 681 0.5

LiBr 815 813 0.2 805 1.2

NaBr 752 724 3.7 749 0.4

KBr 689 686 0.5 683 0.9

RbBr 668 664 0.7 660 1.3

CsBr 654 650 0.6 644 1.5

LiI 761 777 2.1 763 0.3

NaI 705 697 1.1 692 1.7

KI 649 664 2.3 656 1.2

RbI 632 646 2.2 637 0.8

CsI 620 635 2.5 624 0.7
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Figure 2. Plot of the electron density at the bond critical point,
�b/au of Gillespies' calculations (G) vs. present calculations (P),
and plot of the corresponding residuals, ��b/au (�).



Kp-(pp-odd) Description. – This description is slightly bet-

ter than the preceding one, but the difference is not dra-

matic. The best single- and two-basis index descriptions

are (s0 = 40.6):

�0�I�: Q = 0.028, F = 159, r = 0.948, sR = 1.2,

u = (13, 23), <u> = 18, n = 20

�0�I,
1�I�: Q = 0.041, F = 173, r = 0.976, sR = 1.7,

u = (8.2, 4.4, 16), <u> = 9.7, n = 20

This last description, based on �I indices alone, is

quite similar to the description achieved by the �I indices

calculated with the �v=(2/n)2 �v(ps) algorithm. Actually,

the two algorithms give rise to similar, but not equal �v

values; in fact, the small difference plays a major role in

determining the better quality of the higher-order terms

based on the Kp-(pp-odd) algorithm. The following X, Y

(a deceptively simple term), Z, and Z� terms can be de-

tected:

oddXpp = (Dv)0.4/	0.9Dv + 50(0�v)1.1
0.9

Q = 0.071, F = 1035, r = 0.991,

sR = 2.9, u = (32, 71), <u> = 52, n = 20

The best Y term is of inferior quality and gives rise,

together with the X term, to a Z term, which is hardly

better than the X term:

oddYpp = (0�I)
0.01

Q = 0.031, F = 206, r = 0.959, sR = 1.3, n = 20

oddZpp = (0.6X + 0.1Y 3)0.01

Q = 0.072, F = 1087, r = 0.992, sR = 3.0, n = 20

Anyway, with this last term and with the help of a

dual basis index, it is possible to derive a higher-order

dual term with an overall improved quality:

oddZ �pp = 	Z 0.9 + 0.0001(1�v
s)
0.2

Q = 0.081, F = 1374, r = 0.994, sR = 3.3,

u = (37, 37), n = 20, C = (258391, – 252589)

The �HL values, calculated with the aid of this

Z �	Kp-(pp-odd)
 term, �HL
o(ppo), and the correspond-

ing modulus percent residual, ��%(ppo)� = ��HL
o –

�HL
o(Kp)�100/�HL

o, are shown in the last two columns

of Table II. In Figure 4, the calculated vs. the experimen-

tal values (top) and the corresponding residuals, �HL
o –

�HL
o(ppo) (bottom) are plotted. Even here the agree-

ment between experimental and calculated data is quite

satisfactory. We leave to the reader the choice between

the Kp-(p-odd) and Kp-(pp-odd) representation. Table II

shows two anomalous residuals, a 4 % one for LiCl-(ppo),

and a 3.7 % one for NaBr-(po). The origin of this rela-

tive anomaly is far from obvious, considering that the

two kinds of atoms involved give rise, with other atoms,

to decent residuals. The reason could be that a small dis-

crepancy in the �v value of each atom adds up, giving

rise in each case, Kp-(p-odd) for NaBr and Kp-(pp-odd)

for LiCl, to a large discrepancy, i.e., to a large residual.

Partition Coefficient (PC) of Halogenated Organic

Compounds

The air partition coefficient, at 37 °C, of the rat fat tissue of

twenty-five halogenated methanes, ethanes, and ethylenes

and their Log values are collected in Table III, together
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Figure 3. Top: plot of the calculated (with Kp-(p-odd) algorithm)
vs. the experimental lattice enthalpies, �HL

o, for twenty metal
halides, MeX. Bottom: the corresponding residuals.
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Figure 4. Top: plot of the calculated (with Kp-(pp-odd) algorithm)
vs. the experimental lattice enthalpies, �HL

o, for twenty metal
halides, MeX. Bottom: the corresponding residuals.



with the corresponding calculated values, Log(PC)C,

whose �v, and �I,E values have been obtained with the

odd complete Kp-(p-odd) graph algorithm. Table III also

shows the corresponding modulus percent residual ob-

tained, ��%Log(PC)� = �Log(PC) – Log(PC)C�100/Log(PC).

The experimental data were taken from Ref. 24, where all

values are mean values with a maximal error of ca. 10 %.

Even here the four-valued complete graph algorithm

for �v has been considered. Only the �v-Kp-(p-odd) case

leads to satisfactory results. The other cases give rise to

a deceiving model. Nevertheless, for comparison pur-

poses, we will also show some results of the �v-Kp-

(pp-odd) case. Let us start telling the reader that the pre-

vious model by Cargas et al.28 was based on a mixed set

of five different parameters: two �v = f	�v = Zv/(Z –

Zv – 1)
 indices, a Cl index, an F index, and a polar hy-

drogen factor index. All together they generated an in-

teresting model:

�1�v, 3�v
c, NF, NCl, QH�: Q = 9.04, F = 256,

r = 0.993, s = 0.11, n = 25

If we restrict the number of parameters used for this

model, e.g., to two indices alone, we have:

�1�v, 3�v
c�: Q = 2.69, F = 57, r = 0.915,

s = 0.34, n = 25

Here, the second index, 3�v
c, is rather useless; in

fact, for the single best index we have:

�1�v�: Q = 2.67, F = 111, r = 0.910,

s = 0.34, n = 25

Consistent deterioration of the F value produced by

the 3�v
c index is evident.

Kp-(p-odd) Description. – In the following lines, descrip-

tions with no more than three indices will be considered,

a choice that seems reasonable for n = 25 points.

�1�v�: Q = 2.815, F = 124, r = 0.918,

s0 = 0.34, n = 25

�0�, 0�I�: Q = 5.813, F = 264, r = 0.980,

sR = 2.0, n = 25

�0�, 0�I,
1�v�: Q = 7.116, F = 264, r = 0.987,

sR = 2.4, n = 25, <u> = 7.0

u = (10, 9.8, 3.5, 4.5);

C = (–1.08143, 1.64032, 0.42748, 0.53332)

Four points can be highlighted: (i) the good quality

of the present combinations, (ii) the positive character of

every new basis index, whose introduction does not de-

teriorate the F statistics. The third and fourth point are:

(iii) the impressive statistics of the two-basis index com-

bination, and (iv) the good quality of the three-basis in-

dex combination achieved with the help of no 'external'

index. The rloo obtained, by the leave-one-out method, with
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Figure 5. Top: plot of the calculated (with Kp-(p-odd) algorithm) vs.
the experimental lattice partition coefficient, Log(PC), for twenty
five halogenated organic compounds, and plot of the corre-
sponding residuals (�).

TABLE III. Air partition coefficients (PC), at 37 °C, of rat fat tissue,
Log(PC), calculated Log(PC)C, and modulus percent residual
��%Log(PC)�

Molecule Log(PC) Log(PC)C ��%Log(PC)�
MeCl 1.130 1.118 1.1

MeCl2 2.079 1.869 10

CHCl3 2.307 2.305 0.1

CCl4 2.555 2.628 2.9

CH2=CHCl 1.301 1.296 0.4

CCl2=CH2 1.836 1.781 3.0

CHCl=CHCl(cis) 2.356 2.117 10

CHCl=CHCl(trans) 2.170 2.117 2.5

CCl2=CHCl 2.744 2.608 4.9

CCl2=CCl2 3.214 3.101 3.5

CH3-CH2Cl 1.587 1.869 18

CHCl2–CH3 2.215 2.305 4.1

CH2Cl–CH2Cl 2.537 2.658 4.8

CCl3–CH3 2.420 2.628 8.6

CHCl2–CH2Cl 3.158 3.110 1.5

CHCl2–CHCl2 3.576 3.569 0.2

CCl3–CH2Cl 3.332 3.443 3.3

CH2F2 0.155 0.333 115

CH2FCl 1.188 1.101 7.3

CH2BrCl 2.512 2.352 6.4

CH2Br2 2.899 2.834 2.2

CF3–CHClBr 2.260 2.209 2.2

CH2=CHBr 1.692 1.735 2.6

CH2Br–CH2Cl 2.982 3.140 5.3

CF3–CH2Cl 1.326 1.304 1.7



the �0�, 0�I,
1�v� combination, is just equal to the ob-

tained r up to the third decimal figure. The calculated

Log(PC)C values of Table III and the modulus percent re-

sidual, ��%Log(PC)�, have been obtained with �0�, 0�I,
1�v� and with vector C. Figure 5 has been obtained with

this combination and with its correlation vector. Here, the

calculated values are plotted vs. the experimental ones,

together with their residuals.

Kp-(pp-odd) Description. – For comparison, we will give

the quality of the (second) best descriptions obtained with

the Kp-(pp-odd) algorithm for �v (s0 = 0.34), which are

self-explanative:

�1�v�: Q = 1.534, F = 37, r = 0.784,

sR = 0.67, n = 25

�Dv, 1��: Q = 2.957, F = 68, r = 0.928,

sR = 1.1, n = 25

�Dv, 1�, S�E�: Q = 3.214, F = 54, r = 0.941,

sR = 1.2, n = 25

CONCLUSIONS

The core electrons of atoms that have so far been ig-

nored by chemical graph theory can be encoded advan-

tageously, for what concerns the molecular connectivity

theory, with odd complete graphs. Thus far, the �v va-

lence number used to be two-valued, following the two

values of q parameter of Eq. (10), i.e., q = 1, and p. The

two-valued �v is based on the concept of odd complete

graphs, and gives rise to the Kp-(p-odd) and Kp-(pp-odd)

cases, where p = odd. These two �v values can be used

to derive the basis �v and � indices. The modeled prop-

erties of the three different halogenated classes of com-

pounds show that it is not possible to predict 'a priori'

which �v works better for a class of compounds. The

choice can be made only with considerations based on 'a

posteriori' arguments. Nevertheless, these results to-

gether with the results from other studies 8, 23-24 suggest

that to 'graph' encode the core electrons of atoms in mol-

ecules, odd complete regular graphs are more useful

than other types of complete graphs. The model

achieved for the first two properties underlines also the

positive role of the recently introduced dual indices. The

quality of the modeling achieved for the quantum-theo-

retical property indicates, instead, the parallelism of the

two computing methods.

Recently, Basak et al. published a work on forty-six

partition coefficients,30 where the aim was to optimize

the model, a somewhat different task from ours. Here,

our intent was to check different molecular connectivity

complete graph conjectures with different sets of proper-

ties of different classes of compounds.
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SA@ETAK

Modeliranje s indeksima dobivenim iz potpunih grafova

Lionello Poglianni

Uspore|ena je kvaliteta modeliranja dvaju algoritama za ra~unanje �v, koji je glavni parametar na kojemu

se temelje mnogi indeksi povezanosti. Ti algoritmi uzimaju u obzir i doprinose unutarnjih, a ne samo valentnih

elektrona za bilo koji heteroatom s glavnim kvantnim brojem n � 2. Oba se algoritma temelje na regularnim

potpunim grafovima, koji su pogodni za prikaz molekula, kada se uz valentne elektrone uzimaju u obzir i

elektroni unutarnjih ljusaka. Jedan se algoritam temelji na neparnim potpunim grafovima, a drugi na sekvenci

potpunih grafova. Prikazano je modeliranje triju molekularnih svojstava: elektronske gusto}e kriti~ne veze kod

fluorida i klorida, entalpije re{etke metalnih halogenida i particijskih koeficijenata halogeniranih organskih

spojeva. Krajnji je zaklju~ak ovoga rada kako se ne mo`e a priori predvidjeti koji je algoritam bolji za predvi-

|anje svojstava neke klase molekula.
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