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A new approach for structure elucidation using genetic algorithms is introduced. In analogy to

the genetic programming paradigm developed by Koza, the new concept supports genetic ope-

rations on hierarchically coded chemical line notations. The implementation of this concept

consists of 5 steps. In the first step, a start population of chemical compounds is randomly gen-

erated. As the second step, physical properties of each compound of the population are pre-

dicted. The third step is the comparison of each individual property with the observed property

of an unknown compound, resulting in the calculation of the fitness value for each generated

compound. Depending on the fitness values, the candidates for the next generation are selected

by a spinning wheel procedure during the fourth step. In the last step, these candidates are rear-

ranged by genetic mutation and crossover to form the next generation. Steps 2 to 5 of the de-

scribed procedure are repeated until the spectrum of one candidate is almost equal to the spec-

trum of the unknown compound within acceptable tolerances. The introduced concept was

verified for halogenated alkanes.
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INTRODUCTION

Since the first publications in 1990, the interest in appli-

cations of genetic algorithms in chemistry or in closely

related sciences has dramatically increased. Today, there

are nearly 4000 papers published, with a yearly growth

of more than 600 contributions. An overview of the

varying application fields of genetic algorithms in chem-

istry was given by Leardi.1

Different approaches have been used to apply gene-

tic algorithms in structure elucidation.2,3,4 The objects of

these investigations are the protein fold prediction and the

pharmacophore elucidation, etc. Solving molecular crystal

structures directly from powder diffraction data using

genetic algorithms was reviewed recently.5 An application

of genetic algorithms to structure elucidation in a more

general way was given by Meiler.6,7 This approach re-

quires the measured 13C NMR spectrum of the unknown

compound and its experimentally determined molecular

gross formula. Depending on the molecular formula, the

space for searching the corresponding constitution in-

creases rapidly. Genetic algorithms and 13C NMR spec-

trum prediction by neural networks are demonstrated as

tools to find the constitution corresponding to the mea-

sured spectrum.
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The concept of structure elucidation in the present

paper also focuses on 13C NMR spectra and genetic al-

gorithms. As first described in 1995,8 the present method

abstains from the molecular formula and allows struc-

ture elucidation without a priori structural knowledge.

GENERAL CONCEPT AND IMPLEMENTATION
STRATEGY

When including genetic algorithms into the structure

elucidation procedure the most important difference

from the classical elucidation circuit is that, instead of

only one actual structure proposition, a whole popula-

tion of possible chemical structures has to be considered.

Each time the population passes through the elucidation

circuit, the individual structures are modified by genetic

operations. Figure 1 shows the general concept of struc-

ture elucidation using genetic algorithms.

The starting point of the genetic algorithm is the ge-

neration of an initial population of chemical structures.

In generating an initial population the main problem is

to find a structure notation that allows genetic modifica-

tions of the individual structures e.g. mutation and cross-

over. Genetic algorithms can conveniently process binary

coded individuals. These individuals are often represent-

ed as bit strings of fixed length or as the corresponding

real numbers. On the other hand, typical computer-ori-

ented molecular codes9 are far from bit strings or real

number coding. The three most widespread structure no-

tations are the connection table, the different types of line

notations, and the adjacency matrix.10 Transformation of

one of these representations into a bit string or a real

number is difficult and results in data structures unsuit-

able for genetic operations. E.g., transformation of the

adjacency matrix to a bit string might succeed in linking

the single lines or columns of the matrix one after the

other. Genetic modifications of such bit strings could re-

sult in structures containing atoms with wrong valencies.

To allow only genetic modifications that result in correct

chemical structures, a system of corresponding constraints

and modification rules seems to be necessary. This com-

plication slows down the genetic algorithm and decreases

practicability.

A completely different way of coding the individu-

als of a genetic algorithm was introduced by J. Koza.11

Koza’s Genetic Programming is a technique for finding

the best mathematical formula in order to solve a given

problem. The principal idea is to code formulas in a

tree-like hierarchical way and to modify them by genetic

operations from generation to generation until an opti-

mal result is reached. Within a tree, sub-trees can be cut

off and substituted by sub-trees from other trees in the

sense of a genetic crossover. Point mutations can be also

performed easily. In the following chapter, we will dis-

cuss in detail the transformation of this coding to chemi-

cal structures.

As the second step of the genetic structure elucida-

tion, the prediction of a physical property of each indi-

vidual chemical structure is to be performed. Physical

properties, e.g. spectral, diffraction, chromatographic,

thermodynamic or other data, can be used if a well de-

fined quantitative structure property relationship (QSPR)

is known. Besides a single QSPR, the prediction of dif-

ferent properties or a combined QSPR is also of interest

and may improve the accuracy of the results of the ge-

netic structure elucidation. Especially in cases when sin-

gle QPR’s are of less predictive quality, a combination

may be successful. A set of property values correspond-

ing to each individual structure of the actual population

is the result of this step.

As the third step, the fitness value for each individual

has to be calculated, including the comparison between

the observed and the estimated property. Typical fitness

functions are error measures such as the root mean square,

mean absolute error, etc. In the case of combined proper-

ties, different fitness measures can be taken into account

with respect to the reliability of the estimated properties.

If the fitness value of an individual or the mean fitness

of the complete population becomes better than the thre-

shold value, the genetic algorithm stops; otherwise, the

algorithm is continued with the next step.

The fourth step is responsible for the selection of the

individuals for the next generation. Depending on the fit-

ness values, a random procedure decides which individ-

uals or pairs of individuals are selected for mutation or

crossover operations. A typical selection procedure is the

spinning wheel method12 with circle sectors proportional

to the fitness values of the individuals.

In the fifth step, genetic operations applied to hierar-

chically notated chemical structures are performed. Con-

cerning the genetic crossover, randomly chosen sub-trees

of two individuals are exchanged. Concerning the gene-

tic mutation, a randomly chosen sub-tree of a single in-
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Figure 1. Overview of the iterative structure elucidation strategy
applying genetic algorithms. Instead of one chemical compound,
whole generations of substances are passing through the circuit.



dividual is eliminated and substituted by a randomly ge-

nerated new sub-tree to form an individual for the next

generation. After the fifth step, the first elucidation cir-

cuit is finished and a new generation of chemical struc-

tures has been built to pass the next circuit, and so on.

Because the genetic operations as well as the gener-

ation of the start population have been verified as sym-

bolic programming techniques instead of conventional

numerical methods of the other steps, these operations

are described in more detail in the next two chapters.

GENERATION OF HIERARCHICALLY CODED
CHEMICAL STRUCTURES

In a previous paper, we have introduced the basic list

data types for performing list operations on chemical

graphs.13 Among these data types, we have given an ex-

ample of a tree – like hierarchical notation of a chemical

structure. This hierarchical structure is based on a line

notation that is a near SMILES14 implementation in the

programming language LISP.15 As an example, Figure 2

gives the line notation of 1-bromo-2-chlorobutane.

In order to generate a hierarchical representation need-

ed in the genetic algorithm, a root atom has to be deter-

mined. Then, corresponding to the root atom, branches and

sub-branches are added, characterized by additional pa-

rentheses. The hierarchical representation of the exam-

ple molecule is also shown in Figure 2. Obviously, the

hierarchical notation as well as the line notation of a chemi-

cal compound is not unique. Even if the root atom is de-

termined, different notations are possible dependending

on the order of branches and sub-branches. With respect

to the genetic algorithm, uniqueness of the notation is

not necessary provided that all possible notations of a

compound result in the same value during the property

estimation of step 2 of the algorithm.

In order to discuss the principle of the generation of

hierarchically represented chemical structures, we have

chosen the class of chlorinated and brominated alkanes

as example compounds. In this context, it is important

that the corresponding compound space contains all pos-

sible chlorinated, brominated, and mixed halogenated con-

geners as well as pure alkanes as potential candidates. In

analogy to Koza’s Gentic Programming, we classify all

skeleton atoms of a chemical structure into terminal or

node atoms. Corresponding to the example class of halo-

genated alkanes, the following terminal and node sets re-

sult:

Terminal set: CH3, Cl, Br

Node set: C, CH, CH2

The generation of a tree-like chemical structure starts

with the selection of the root atom as a randomly chosen

atom from the union of terminal and node sets. The gen-

eration procedure stops if the selected atom is a member

of the terminal set. It continues with a recursive proce-

dure if the actual atom belongs to the node set. The num-

ber and kind of the elements of the terminal and node sets

are responsible for the magnitude of the generated trees.

For example, multiple occurrence of CH3-groups in the

terminal set reduces the magnitude of the trees while

multiple occurrence of node set atoms expands it. Also,

the degree of halogenation of the generated compounds

can be influenced by the ratio between halogens and

other atoms.

GENETIC OPERATIONS APPLIED
TO HIERARCHICAL CODED CHEMICAL
STRUCTURES

The most important genetic operation is the crossover of

two molecules. Figure 3 illustrates the crossover proce-

dure with the example molecules 1,2-dichlorohexane and

3-methylheptane. First, the random selection is performed

of one atom of each molecule as root atoms for the cor-

responding sub-trees. In the next step, the sub-trees de-

fined by their root positions are extracted from the trees.

Finally, the sub-trees are swapped, rearranging the two

new molecules 1,2-dichloro-5-methylheptane and n-hex-

ane as shown in the example.

In cases of large compound spaces, genetic mutation

is of increasing significance. Especially if the compound

population has settled after some elucidation cycles near

a local maximum of fitness, mutations can increase the

structural variability of the population in order to find

the global maximum. Mutation is done by either cutting

some atoms at the end of a (side-)chain or introducing a
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Figure 2. Example of a hierarchical coded chemical line notation.
Because it is not unique several notations are belonging to the
same molecule. A corresponding property prediction has to result
in the same value independent of the hierarchical notation of the
molecule. (a) Line notation of 1-bromo-2-chlorobutane. (b) Hier-
archical representations of 1-bromo-2-chlorobutane.

(a)

(b)



randomly generated side-chain at a random position. In

the latter case, the mutation can also be understood as

applying the first two steps of the described crossover

operation to one molecule only, followed by the inser-

tion of a randomly generated side-chain. The complete

program code of the genetic operations can be found in

Blenkers.8

13C NMR SPECTRUM GENERATOR

When realizing the introduced concept of the quantita-

tive structure property relationship, a spectrum generator

must be available in order to perform the fitness calcula-

tion. Because of some experiences with the 13C NMR

spectrum generation16 and the corresponding straightfor-

ward implementation of increment rules,17 such a spec-

trum generator was chosen. Chlorinated and brominated

alkanes were selected as the investigated compound group.

As a consequence of genetic crossover operations, be-

sides halogenated compounds, also 13C shifts of pure al-

kanes must be predictable by the spectrum generator.

Developing the spectrum generator, the 13C shifts of

compounds including 1–12 carbon atoms and 1–5 chlorine

or bromine atoms were extracted from the SPECINFO

data base.18 In order to guarantee high homogeneity of

the measurement conditions, the retained data set in-

cludes only spectra meeting the following criteria:

– Deutero-chloroforme was used as solvent.

– Measurement temperature ranged from 17 to 37 °C.

– TMS or CDCl3 were used as standards.

Under these conditions, the final data set contained

118 chlorinated and brominated acyclic alkanes, includ-

ing 651 13C shifts. Building up a prediction model for

high-precision prediction of chemical shifts, the model

increments were derived by multiple linear regression:

�ipso = �Methan +
m,X

� Nm,X � Sm,X

Increments Sm,X are the resulting regression coeffi-

cients and Nm,X are the corresponding descriptors. De-

scriptors are the counts of different atoms or groups (X =

C, CH, CH2, CH3, Cl, Br) in different spheres (m = �,

�, �) around the observed ipso-carbon atom. All the con-

sidered descriptors and corresponding increments are given

in Table I. Additionally, the standard errors and the fre-

quencies of occurrence of the descriptors ensure that the

incorporated 29 increments are significant. In accordance

with the NMR theory, we found significant influences on

the chemical shift only in the �, �, and � spheres, with de-

creasing importance. Furthermore, squared descriptors and
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Figure 3. Single steps of the genetic crossover applied to hierar-
chically notated chemical compounds.

Descriptor Frequency Coefficient Standard error

NáCH3 115 32.69 0.72

NáCR 637 27.62 0.72

NáCl 133 26.74 0.40

NáBr 67 17.20 0.55

NâCH3 163 14.81 0.81

NâCH2 458 11.33 1.05

NâCH 90 8.17 1.10

NâCq 39 8.51 1.57

NâHal 241 –3.64 0.40

NãC 489 4.22 0.51

NãBr 66 –2.43 0.46

NáH NãC 471 –2.09 0.19

NáH NãCl 118 –1.41 0.18

NáCH3 NãCl 21 1.31 0.26

NáCH3 NãBr 9 2.86 0.55

N2
âH 578 –0.68 0.02

N2
äH 477 –0.08 0.01

N2
áBr 67 –3.78 0.30

N2
áCl 133 –0.49 0.13

NáH NâCH3 159 –2.69 0.16

NáH NâCH2 448 –1.61 0.21

NáH NâCq 32 1.00 0.42

NáH NâHal 110 3.18 0.10

NáH NâH 540 –1.59 0.07

NáCH3 NâC 93 –7.28 0.36

NáCH2 NâC 427 –3.74 0.23

NáCH NâC 134 –4.61 0.25

NáCq NâC 90 –4.48 0.32

NáCl NâC 229 –2.93 0.27

TABLE I. Descriptors of chlorinated and brominated acyclic al-
kanes for the prediction of 13C NMR shifts(a)

(a) Columns 2–4: frequency of descriptors occurrence in the data set,

the corresponding increments and standard errors (in ppm).



different types of combined descriptors were of signifi-

cant influence in modeling 13C shifts. An illustration of

the robustness of the derived increment model is given

in Figure 4. Plotting the predicted versus the observed

chemical shifts, a standard error of 1.65 was calculated.

This result is acceptable if one keeps in mind that the
13C shifts included in the SPECINFO data base and the

model development stem from different origins. Calcu-

lation of the intensities of the NMR peaks was not con-

sidered. All peaks were treated as being of equal height.

FITNESS CALCULATION

The spectrum generator is the basis for the calculation of

the fitness value between the spectrum of an intermedi-

ately generated individual molecule and the observed target

spectrum. Fitness should express the similarity between

the two spectra. Large similarity should be expressed by

a high numerical value and a great difference should give

a small value. A widely used value for the comparison of

two spectra is the sum of the squares of errors (differ-

ences), SSE. Because the SSE is countercurrent to fitness,

it is transformed to a fitness conformable value:

fitness = 1 / (SSE + 1)

This fitness definition ensures that a difference of 0

can also be treated. The fitness value equal to 1, which

means zero difference between the two spectra, is used

as an aborting criterion for the genetic algorithm. For

easier interpretation of the results, the reciprocal value

1/fitness called »malus« or »worse value« is also used.

Direct comparison of the observed and predicted spec-

tra is not suitable because in many cases no direct asso-

ciation between the observed and predicted NMR signal

is possible. Therefore, the range of the shifts is restricted

from 0 to 100 ppm and is divided in a fixed number of

sectors, typically 100 (one sector = 1 ppm). Whenever a

chemical shift is calculated, the numerical value of the

corresponding sector is increased by one. At the end of

the calculation, the spectrum is represented by a vector

of numbers, mostly 0’s, some 1’s and a few higher num-

bers for peaks of nearly isochronic atoms in the same

sector. Figure 5 shows the described spectral representa-

tion in detail.

A sectorwise comparison between the observed and

the corresponding predicted peaks has the same influence

on the fitness value regardless of the difference from the

expected sector. Therefore, a kind of fuzzy comparison

is involved, increasing the half width of each peak over

several sectors for the observed and predicted spectra.

After the transformation, it is much more likely that a

predicted and an observed peak overlap within their

broadened area if their centers are next to each other.

Figure 6 gives an example of the fuzzification included

in the complete operation of the fitness calculation.

SYSTEM VALIDATION AND RESULTS

The elucidation procedure was implemented in the pro-

gramming language LISP19 running under the Suse

LINUX 6.0 operating system. Although LISP offers a

compact programming style, it is time consuming. Eluci-

dation of one component running on a Pentium2 plat-

form with 110 MHz takes about 0.5 hours. More power-

ful computer equipment would decrease the computation

time to an acceptable length.

The determination of the terminal and node sets of

the skeleton atoms such as C, CH, CH2, CH3, Cl, and

Br is orientated to the frequency of the skeleton atoms in

the data set in such a way that the magnitude of the gen-

erated molecules is almost comparable with those of the

data set.

Genetic modification of individuals is conveniently

restricted to crossover probabilities of high percentages

and mutation probabilities of low values. Besides both

basic genetic operations, we additionaly considered an

elitism, which means that the fittest individuals were kept
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Figure 4. Observed versus predicted chemical shifts resulting from
the multiple linear regression model including the descriptors from
Table I. The standard error of the model is SE = 1.65 ppm.

Figure 5. Transformation of the 13C NMR spectra from the SPECINFO
database into data vectors with 100 elements in the range of 0 to
100 ppm. The resulting example vector will be (2 0 0... 1 1 2 0 2).



from one generation to the other. In several test runs this

strategy was found to be successful.

In order to validate the introduced new approach, an

attempt was made to find the structure of each of the 118

molecules of the data set. The validation parameters

were kept unchanged during the validation runs:

– Terminal set: (CH3 CH3 CH3 Cl Br),

– Node set: (C CH CH2 CH2),

– Evolution time: 50 generations,

– Population size: 25 individuals,

– Elitism: 1 molecule,

– Probability of crossover: 90 %,

– Probability of mutation: 30 %,

– Fuzzy function: (1 1 1 2 3 3 3 2 1 1 1),

– Number of slots: 100 (1 slot = 1 ppm).

Under the conditions of the parameter set validation,

Figure 7 gives the first impression of the results. The al-

ready defined worse value or malus of the best molecule

at the end of a test run is shown versus the indexes of the

molecules in the data set. The bars pointing downwards

indicate runs where the correct molecules could not be

found. With only one exception, such molecules have a

worse value of more than 50. On the other hand, these

values can be obtained for some other molecules as well.

Therefore, it was proven to be better for the interpreta-

tion of the results to use the quotient of the »worse value

of the best molecule found« / »worse value of the ex-

pected molecule«. According to this quotient, we ob-

tained three different groups of molecules, as illustrated

in Figure 8:

– Group one: molecules found with the GA,

quotient = 1 (53 molecules).

– Group two: molecules that might be found,

quotient > 1 (43 molecules).

– Group three: molecules that cannot be found,

quotient < 1 (22 molecules).

The number of molecules in group one is of high

significance compared to the number that would be ex-

pected only by pure chance retrieving without genetic

modifications. Consequently, it is demonstrated that

chemical structures could be predicted applying genetic

algorithms without any structural a priori knowledge.

Prediction improvements can be made easily by ini-

tiating the GA with the generation of other start popula-
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Figure 6. Example of the fitness calculation including a fuzzifica-
tion step and the building of the sum of squares of spectral differ-
ences.

Figure 7. Worse values (= reciprocal fitness values) of the 118 mol-
ecules used in the data set for calculation of the prediction system.
Lines pointing down indicate the molecules of group 3 and still have
positive values. The two horizontal lines represent a worse value of
50, which mostly separates good from bad solutions.

Figure 8. If the quotient »worse value of the best molecule found« /
»worse value of the target molecule« is less than 1, the found mole-
cule has a lower worse value than the expected molecule would
have. The expected molecule cannot be found in such cases. The
horizontal line represents a quotient of one. Bars lying on this line
indicate molecules that were directly found using the given system
parameter set.



tions or by modifing genetic operations. For that pur-

pose, after changing the system parameters in other test

runs, all the molecules in group two could also be identi-

fied correctly.

The molecules in group three could not be found,

even if the GA was modified. The size of this group may

be decreased by increasing the precision of the increment

system. A limitation in precision will still remain because

the applied increment system is based on pure topological

instead of more fundamental geometric models for charac-

terization of the molecules. For example, some molecules

of group three are diastereomeres with different shifts from

each other. Therefore, the corresponding chemical shifts

can only be computed correctly if the geometric arrange-

ment is incorporated into the prediction model. Another

limitation may be established in the accuracy of the avail-

able spectra in the utilized SPECINFO data base.

CONCLUSIONS

The presented investigation has shown that the predic-

tion of chemical constitutions is possible applying gene-

tic algorithms to NMR data without any a priori structural

knowledge. Although the investigated compound class is

restricted to halogenated alkanes, the approach can be

transferred to other substance classes provided a precise

property or spectrum generator is available. If the preci-

sion of the property predictor is not sufficient, a combi-

nation of different properties e.g. the intensity and multi-

plicity of NMR signals or the incorporation of a priori

structural knowledge can be helpful. In order to expand

the approach to cyclic compound classes, a quasi hierar-

chical structure notation has to be developed. A more dif-

ficult problem is the incorporation of geometric isomerism

because the described approach uses pure topologically

based structures for the hierarchical representation of the

molecules. Essential modifications seem to be nessesary,

including the corresponding isomerisms and 3D-QSAR

approaches.

REFERENCES

1. R. Leardi, J. Chemometrics 15 (2001) 559–569.

2. T. Dandekar and P. Argos, Protein Eng. 10 (1997) 877–893.

3. G. Jones, P. Wilett, and R. C. Glen, Comput. Aided Mol.

Des. 9 (1995) 532–549.

4. B. Contreras-Moreiro, P. W. Fitzjohn, and P. A. Bates, J.

Mol. Biol. 328 (2003) 593–608.

5. W. I. David, K. Shankland, and A. Markvardsen, Crystal-

logr. Rev. 9 (2003) 3–15.

6. J. Meiler and M. Will, J. Am. Chem. Soc. 124 (2002) 1868–

1869.

7. J. Meiler and M. Will, J. Chem. Inf. Comput. Sci. 41 (2001)

1535–1546

8. T. Blenkers, Degree Thesis, Ruhr-Universität, Bochum, 1995.

9. J. V. Knop, W. R. Mueller, K. Szymanski, S. Nikoli}, and

N. Trinajsti}, Comput. Chem. Graph Theory (1990) 9–32.

10. A. T. Balaban, J. Chem. Inf. Comput. Sci. 25 (1985) 334–343.

11. J. R. Koza, Genetic Programming, MIT Press, Cambridge

Mass., 1993.

12. D. E. Goldberg, Genetic Algorithms in Search, Optimisation

and Machine Learning. Addison-Wesley, Reading Mass., 1989.

13. R. Gautzsch and P. Zinn, J. Chem. Inf. Comput. Sci. 32 (1992)

541–550.

14. D. Weininger, J. Chem. Inf. Comput. Sci. 28 (1988) 31–36.

15. G. L. Steele, Common Lisp. Digital Press, 1990.

16. Chr. Duvenbeck, Ph.D. Thesis, Ruhr-Universität Bochum,

1995.

17. D. M. Grant and E. G. Paul, J. Am. Chem. Soc. 86 (1964)

2984–2990.

18. SPECINFO Database, Chemical Concepts GmbH, Weinheim,

1995.

19. B. Haible and M. Stoll, CLISP. http://clisp.cons.org/.

SA@ETAK

Primjena generi~kih algoritama na razja{njavanje strukture halogeniranih alkana
pomo}u njihovih 13C NMR spektara

Thomas Blenkers i Peter Zinn

Uveden je novi postupak za razja{njavanje strukture molekula pomo}u geneti~kih algoritama. U analogiji s

paradigmom geneti~koga programiranja, koju je razvio Koza 1993., nova koncepcija podupire geneti~ke opera-

cije na hijerarhijski kodiranim kemijskim linearnim notacijama. Implementacija ove koncepcije sastoji se od

pet koraka. U prvom se koraku nasumice generira po~etni skup kemijskih spojeva. U drugom se koraku predvi-

|aju fizikalna svojstva svakoga spoja u skupu. U tre}em se koraku uspore|uje svako pojedino svojstvo s izmje-

renim svojstvom nepoznatoga spoja {to rezultira u ra~unanju vrijednosti pode{avanja (fitness value) za svaki

generirani spoj. Ovisno o vrijednosti pode{avanja biraju se kandidati za sljede}i korak pomo}u postupka nazva-

noga kolovrat (spinning wheel). To je ~etvrti korak, a u petom, posljednjem koraku odabrani kandidati se pre-

slo`e pomo}u geneti~ke mutacije i formiraju novu generaciju. Postupak je iterativan i ponavlja se sve dok nije

spektar jednoga kandidata skoro jednak spektru nepoznatoga spoja unutar prihvatljivih odstupanja. Predlo`eni

je postupak provjeren na halogeniranim alkanima.
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