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The problem of exhaustive and non-redundant generation of formulas of chiral isomers of al-
kanes was considered. The procedure starts with the generation of optimal codes of all
N-alkane structures (N denotes the number of carbon atoms.) and then the algorithm deter-
mines whether a given structure contains at least a single carbon atom, with four different sub-
stituents. In order to accomplish these tasks, two simple rules have been used to delete redun-
dant structures and determine whether two (alkyl) branches are identical or not.
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INTRODUCTION

The problem of enumerating structural isomers has fasci-
nated mathematicians and chemists since the end of the
nineteenth century. The most basic problems have already
been solved by the end of the thirties of the last century.
Nevertheless, since then a great number of researchers
have addressed this problem and the latest developments
have been reviewed recently.1,2,3 The formal enumeration
of isomers is most often accomplished by using generat-
ing functions.1,3 The problem of the exhaustive and
non-redundant generation of structural formulas of
isomers4 has also attracted a great number of chemists,
and one of the first reviews on this topics was written by
Trinajsti} et al. in 1985.5 Their method used to generate
formulas of alkane isomers was based on the N-tuple rep-
resentation (NTR).6 Since then the method based on NTR
has been extended to include cycle containing structures,
stereoisomers and structures containing heteroatoms.7 A
computer program capable of generating the NTRs of any
acyclic structure has also been created.8

Besides the NTR method, other approaches9 of gen-
erating formulas have also been proposed. Canonical la-

beling and coding of alkane isomers based on local ver-
tex invariants and topological indices was proposed by
Balaban et al.10 Because of the degeneracy in the topo-
logical indices, special care has to be devised to elimi-
nate redundant structures in this approach. Davidson
generated an alkane series dictionary, ordered by side
chain complexity.11 The alkane isomers were coded by
using a special alphabet representing the simplest alkyl
groups. Structure generation from fragments was pro-
posed by Bohanec.12 In this approach, however, dupli-
cates could not be avoided, making comparisons of final
structures necessary. Construction and enumeration of
alkane isomers was also accomplished by Jackson and
Bieber13 through utilizing the degree distribution do-
mains and sub-domains of constitutional isomers. The
concept of strereoisomerism was extended to knots and
the topics was reviewed by Dobrowolski recently.14

Our approach,15 proposed earlier, is based on the
generation of codes of Morgan-trees16 (MTs) and the
concept of canonical numbering.3 Each code represents
a (labeled) structure. The generated codes are checked
by using simple rules to delete non-canonically labeled
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structures.15 Note that two rules (to be discussed below)
are sufficient to determine whether the tree under con-
sideration is numbered canonically, or not: there is no
need to compare different structures. The number17 of
MTs is just a small fraction of all possible physical
trees.18 (Each vertex k of a physical tree – except vertex
1 – has just single neighbor labeled with an ordinal m

being less than k.5) It was shown that the formula used
to determine the number of Morgan-trees can also be de-
rived by using the concept of Dyck-paths.19

In this paper the concept of canonical labeling will
be extended to alkyl groups and the method will be used
to generate formulas of optical isomers of (acyclic) al-
kanes. The problem is to determine whether the four
substituents attached to carbon atom, m, are all different
or not. Those alkyl-groups the vertices of which are la-
beled with numbers greater than m, can be evaluated rel-
atively easily, the real problem is the branch where the
numbering starts. The algorithm proposed in this work
generates a complete and non-redundant set of optimal
codes representing the structures of alkanes15 from
which all structures containing at least one chiral carbon
are singled out. The structure of this paper is the follow-
ing: the next section introduces the »lowest degrees
first« (LDF) concept and the canonical numbering based
on this principle. In the third section we discussed and
proved two rules used to determine whether a given la-
beling is canonical. These concepts have been used to
generate the exhaustive and non-redundant set of struc-
tures representing both structural as well as stereoisomers.
In the fourth section the selection of the stereoisomers
out of this set was described and the results were dis-
cussed.

CANONICAL NUMBERING

Figure 1 illustrates four different methods of labeling
used in this work. Structure a (Figure 1) represents an
unconstrained labeling, with no naming rules to be taken
into account. Structure b (Figure 1) is an example of a
»physical tree«: the technical term was coined by
Trinajsti} et al,5 and means that numbers 2,…,N (N de-
notes the number of carbons) are assigned consecutively
to vertices. At this point label 1 may be assigned to any
vertex. Each consecutive new label n (1< n � N) can be
attached only to a vertex which has an already labeled
neighbor. With this restriction the adjacency matrix of
the structure becomes rather simple: each column of the
right-hand triangle will contain just a single non-zero
entry.17 (Since matrix A is symmetric, the same rule ap-
plies to the rows of the left-hand triangular part, too.)
This fact in turn allows us to replace the adjacency ma-
trix by the »condensed representation of matrix A«
(CAM), which is a vector composed of N–1 entries. The
abbreviation CAM refers to the denotation compressed

adjacency matrix.17 Denoting the CAM of matrix A by
vector C, we can transform matrix A of any physical tree
into vector C by using the following rule:

If Ai,j = 1, then Cj–1 = i (j = 2,3,…,N) (1)

Note that C1 = 1, in all cases. Examples have been
given in earlier papers.15,17,18 Of course matrix A can
readily be reconstructed from vector C:

If Ci = k, then Ak,i+1 = Ai+1,k = 1 (2)

Example: if C1 = 1, then A1,2 = A2,1 = 1, in accor-
dance with the fact that in physical trees vertex 2 must
be a neighbor of vertex 1.

A CAM can be determined directly by inspecting the
numbering of a physical tree. As an example consider
structure b in Figure 1. Inspect vertices 2, 3, 4, 5, 6, 7, 8,
and 9 in turn, and observe the only first neighbor, which
is labeled by a lower ordinal. This is vertex 1, vertex 2,
vertex 1, vertex 1, vertex 4 vertex 6, vertex 4, and vertex
8, respectively, and therefore C = (1,2,1,1,4,6,4,8).

A Morgan-tree (MT) is a physical-tree which is
numbered so, that Ci � Ci+1. It is clear that the number of
MTs is (much) less than the number of physical
trees.15,18 Structure c in Figure 1 is an example of a MT.
In order to obtain a MT, the rule according to which
each new label m should be attached to an already la-
beled vertex, must be supplemented by a second rule: la-
bel m must be attached to the vertex which is adjacent to
a vertex labeled with the lowest ordinal. The CAM of
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Figure 1. Four different numberings of the hydrogen suppressed
graph of 3-methyl-4-ethyl-hexane: a, unconstrained labeling; b,
physical tree; c, Morgan-tree; d, canonically labeled (LDF) tree.



structure c (Figure 1) is C' = (1,2,3,3,4,5,5,8), which can
be obtained directly by inspecting structure c. Let’s de-
note the valence of vertex i by di. Then the following
simpler (than in the case of physical trees) algorithm can
be used:

1. Set C1 equal to 1.

2. If d1 = 1, go to next step, otherwise write down 1
d1–1 times.

3. If d2 = 1, go to next step, otherwise write down 2
d2–1 times.

4. Continue this procedure in the same manner until
vertex N–1 has been processed. Vertex N can not appear
in C, since it must be an endpoint.

The reconstruction of structure c from its CAM, C',
can be accomplished in the same manner as in the case
of physical-trees.

In what follows the method of lexicographic
comparisons5 of vectors will be explained. Compare
CAMs (or any other vector) C and C'. C1 = C1’ in all
physical trees. If C2 = C2’, inspect C3 and C3’. If C2 <
C2’, then C < C', etc. Formally, vectors composed of dif-
ferent number of entries can also be compared, if the last
non-zero entry is followed by a number of zeros in the
vector containing a fewer number of entries. Lexico-
graphic comparisons will be utilized in the next section.

A »lowest degrees first« (LDF) tree is a MT (and
therefore a physical-tree, too), in which a new label n is
attached to a vertex, which has a first neighbor labeled
with the lowest ordinal k, and which in addition has the
lowest degree (valence) of all possible vertices attached
to the same vertex k. Structure d (Figure 1) is an exam-
ple of a LDF tree, and its CAM is equal to C'' =
(1,2,3,3,5,5,6,7). Note the lexicographic order of CAMs
related to structures b, c, and d (Figure 1) C, C', and C'',
respectively. The order is C < C' < C''.

In LDF trees the numbering must start at an end-
point. LDF trees are therefore canonically labeled trees
as they possess the maximal CAM code of all MTs de-
noting the same structure (graph) G. An optimally coded
tree is a tree which is numbered canonically with respect
to a specified endpoint. An optimally numbered tree is
therefore not necessarily a canonically numbered (i.e.

LDF) tree, but an LDF tree is also an optimally num-
bered tree.

DETECTION OF NON-CANONICAL CODES

As it can be seen, different MTs may denote the same
structure, and any tree can be labeled in a way that we
obtain an MT. First all codes representing MTs of all
structures (acyclic trees) composed of N vertices were
generated in a systematic way, and then we deleted all
codes representing non-canonically labeled structures. In
fact even this procedure could be simplified, since many

MTs not representing LDFs were excluded from the gene-
ration procedure a priori. Details are given elsewhere.15

Systematic generation of codes of MTs may start
with code C = (1,1,1,1,…,1), which represents a star, the
next code being equal to C = (1,1,1,1,…,2), etc. The last
code to be generated is C = (1,2,3,…,N–1) representing
an N-chain. In fact the procedure does not start with code
C = (1,1,1,1,…,1), but with C = (1,2,2,2,…,2), since there
is no LDF with a CAM less than C = (1,2,2,2,…,2).
There are still other rules, which can be used to exclude
several codes greater than C = (1,2,2,2,…,2) from the
process without further processing them.15 Only those
codes (structures) were generated in which the number-
ing starts at an endpoint.

Basically there are two rules, which are sufficient to
determine whether a code (related to a MT) is canonical
(i.e. it is an LDF code) or not. Both have been proved
earlier,15,21 but the proof given in this work is much eas-
ier and simpler than earlier arguments. In order to pre-
pare these arguments we have to introduce the concept
of the valence code and the path code.

A valence code V is a vector containing N entries,
and Vi = di, where di denotes the degree of vertex i. The
valence code of structure c (Figure 1) is equal to V =
(1,2,3,2,3,1,1,2,1). It is clear that at least in the case of
physical trees (therefore also for MTs and LDF trees), V

can be obtained from C by, first, obtaining the adjacency
matrix A from C, and then determining V by calculating
the sum of entries of each row (or column) of matrix A.
On the other hand we can obtain (at least in the case of
MTs in which the numbering starts with an endpoint)
vector C directly from vector V by using the following
procedure.

1. Set C1 equal to 1.

2. If d2 = 1, go to next point, otherwise write down
number 2 d2–1 times.

3. If d3 = 1, go to next point, otherwise write down
number 3 d3–1 times.

4. Continue until vertex N–1 has been processed. Ver-
tex N can not appear in C, since it must be an endpoint.

As an example let us consider the valence code of
structure c (Figure 1) V = (1,2,3,2,3,1,1,2,1), and convert
it into vector C. By executing steps 1–4, we readily ob-
tain C = (1,2,3,3,4,5,5,8), which is identical with C' ob-
tained by direct inspection of structure c (see previous
chapter).

Of all MTs related to the same structure G, the LDF
tree will have the lowest possible valence code by defi-
nition. Therefore because of the transformation algo-
rithm delineated above, the corresponding CAM will be
maximal, and this completes the proof of Theorem 1.

Theorem 1. – Of all possible MTs related to the same tree,
T, the LDF (or canonically numbered) tree will have the
minimal valence code and the maximal CAM.
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As an example compare structures c and d (Figure 1).
The respective valence codes are Vc = (1,2,3,2,3,1,1,2,1),
Vd = (1,2,3,1,3,2,2,1,1), and Cc = (1,2,3,3,4,5,5,8), Cd =
(1,2,3,3,5,5,6,7). In fact Vc > Vd and because of this, Cc

< Cd.

The valence code rule can be used to determine
whether branches t1, t2, and t3 attached to carbon atom,
m, have been ordered correctly, or not.15 By »correct«
order we mean that CAMs of t1, t2, and t3 increase in
that order. To obtain CAMs for branches ti (i = 1, 2, 3) is
a relatively easy procedure. Select the vertex with the
lowest label in ti and replace it by the new label 1. The
select the next lowest label, and replace it by the new la-
bel 2, etc. This step can always be accomplished since
the lowest labels in t1, t2, and t3 will all be greater than
m. The same »renumbering« procedure can not be ap-
plied for t0, because t0 contains the endpoint at which the
numbering starts and vertex j which is adjacent to m has
a label being less than m. In the former cases, however,
Vt (Vt denotes the valence code of any branch) can also
be obtained for t1, t2, and t3. Note that valence codes can
also be used to determine whether t1, t2, and t3 are all
different, which property will be used in selecting all
codes (structures) that represent chiral alkanes.

In order to compare also t0 with t1, t2, and t3, respec-
tively, the technique based on the path code, P, was pro-
posed.20 P is a matrix containing e–1 rows (e denotes the
number of endpoints) and d columns, where d denotes
the length of the longest path of all paths starting at ver-
tex 1. Pi,j is equal to the valence of the j-th vertex placed
on path i. If the particular paths are ordered lexicograph-
ically, we obtain the path code (i.e. matrix) P. As an ex-
ample consider structure c (Figure 1). It can be seen by
inspection that matrix P is equal to

1-2-3-2-1-0

1-2-3-3-1-0

1-2-3-3-2-1

The zero entries have been added in order to obtain
rows of equal length. Dashes have been inserted to sepa-
rate the entries. The path code of structure d (Figure 1)
is equal to

1-2-3-1-0-0

1-2-3-3-2-1

1-2-3-3-2-1

Note that the rows of these matrices are already or-
dered lexicographically, meaning that if m < n, then
rowm � rown. Let’s assume that P and P' are ordered lex-
icographically. If rowi (1 � i � m–1) in P is equal to rowi’
in P', and rowm < rowm’, then P < P'. The ordering is
similar to the ordering of CAMs (section 2).

Next we want to show that if, and only if, P < P'

then V < V'. First, we show that if V < V', then P < P'.
Let’s introduce instead of subscripts i and j a combined
subscript, o; where o = (e–1)(j–1) + i. If i = 1 and j = 1,

then o = 1, if i = e–1 and j = 1, then o = e–1, if i = 5 and
j = 3, then o = 2(e–1) + 5, etc. Relation V < V' means
that there is a pair of entries such that Vi < Vi’ and Vk =
Vk’ (1 � k � i–1). Both Vi and Vi’ appear first in the same
position m of P and P', respectively, meaning that Po =
Po' for 1 � o < m. Therefore, if V < V', then P < P'.

Conversely, let’s assume that P < P', with rowi < rowi’
(1 � i � e–1), and rowk = rowk’ and k < i. Then rowi(k) <
rowi’(k), and rowi(m) = rowi’(m), with 1 � m < k, where
rowi(k) denotes the k-th entry in row i. But then rowi(k) =
Vn and rowi’(k) = Vn’, with Vp = Vp’ and 1 � p < n. There-
fore, if P < P', then V < V', which completes this proof.

Theorem 2. – If P < P' then V < V'.

It can be seen, that already the first row of the path
code of structure d is less than the corresponding row re-
lated to structure c, so in accordance with valence code,
structure d has a greater CAM than structure c (Figure 1).
The CAM of structure d is the LDF (i.e. maximal) code.

Since path codes can also be derived for substruc-
tures, i.e. branches, the question whether t0 is identical
with t1, t2, or t3 can easily be decided, provided that all
rows of the respective matrices P1, P2, and P3, are or-
dered lexicographically. Let’s assume that vertex m’ in t0
is adjacent to vertex m (which is under consideration) in
T. The (lexicographically ordered) path code P0 related
to side chain t0 can easily be obtained with respect to m’
as starting vertex (or vertex 1’ in the new labeling) and so
the question whether t0 precedes t1, or whether t0 is iden-
tical with t1, t2, and t3, respectively, can be settled.15,18

APPLICATION: GENERATION OF ALL CHIRAL
ISOMERS OF ALKANES

The computer program performing the generation proce-
dure, starts the calculations by generating the LDF codes
of all N-vertex alkane isomers,15,18,20 and then picks out
all chiral derivatives. In order to determine whether the
code represents a chiral structure, all vertices of degree 3
or 4 have to be inspected. Let’s denote the carbon atom
under consideration by index m. The next task is to de-
termine whether the alkyl-groups t0, t1, t2, and (in case of
dm = 4) t3 attached to m are all different, or not. Compar-
ison of t1 with t2 or t1 with t3, or t2 with t3 (if dm = 4) are
done by using Theorem 1, since if the tree is an LDF
tree than its branches are also optimally numbered and
their respective valence codes will be minimal. There-
fore the valence codes of all branches have to be com-
pared. Two valence codes are identical if all entries are
identical. If the computer program detects a pair of iden-
tical branches, then the procedure continues with the in-
spection of the next vertex. If no vertex with three or
four different branches are detected, then the code (and
the underlying structure) will be discarded.
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As was indicated in the previous section, compari-
son of branch t0 with branches t1, t2, and t3 (the latter
only in case of a quaternary carbon atom) by using the
valence codes does not work at all, and we have to com-
pare the path codes.

Theorem 2 can be applied to determine whether t0 is
identical with any of the other substituents t1, t2, and t3.
In chiral structures there must be at least one carbon
atom, which four different substituents t0, t1, t2, and t3
are attached to. The codes representing chiral structures
were transformed into the corresponding formulas. Fig-
ure 2 lists the two optical isomers of heptane (with la-
beled vertices), while Figure 3 lists all five optical iso-
mers of octane. The structures of chiral nonanes are
shown in Figure 4. Each asymmetric carbon has been la-
beled by an asterisk. The number of isomers is therefore
equal (2 � 12) + (4 � 2) + (1 � 3) = 35, because structures
1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 15 and 5, have to be taken
into account two times, structures 5 and 11 have to be
taken into account four times, and structure 7 represents
three stereoisomers (i.e. RR, LL and RL). This result
seems to be in contradiction with the result by Bytautas
and Klein,1 who claim that only 34 stereoisomers of
nonanes exist. In fact there is no disagreement: Bytautas
and Klein denote by »chiral« only optically active mole-
cules, while the RL variant of structure 7 (Figure 4) is
clearly optically inactive. The LDF codes of 40 chiral
decane isomers are listed in Figure 5. For example the
first code (1,2,2,4,4,6,6,8) represents 2,3,4-trimethyl-hex-
ane, which has two asymmetric carbon atoms. The total
number of structural isomers in the heptane–decane se-
ries of alkanes is 9, 18, 35, and 75, respectively, mean-

ing that in terms of N the ratio of chiral structures to the
total number of structures increases monotonously. This
result is in accordance with the conclusion by Bytautas
and Klein.1

The selection procedure (based on theorems 1 and 2)
of codes representing the chiral structures can be per-
formed in polynomial time. The same theorems and a set
of additional, and simpler rules, which can be accom-
plished in linear time, were used to generate the list of
codes representing all isomers of N-alkanes.15 It has been
noted earlier, that only a small fraction of MTs had to be
inspected, and a great portion of MTs was excluded from
the screening procedure.18 On the other hand the number
of N-alkane isomers increases exponentially in terms of
N. This rule always holds if exhaustive generation of
structures is attempted, even if an ideal »zero-time« proce-
dure would be available, since in such cases the time
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Figure 2. Heptanes possessing at least one chiral atom.

Figure 3. All octanes possessing at least one chiral atom.
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Figure 4. All nonanes possessing at least one chiral atom. The
asymmetric carbons were labeled by an asterisk.



needed for printing of results would still increase expo-
nentially in terms of N. In cases where not all isomers
have to be generated, linear time procedures are available.
A particular example for such methods is the random gen-
eration of N-alkane isomers.17,21,22
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SA@ETAK

Konstruktivno prebrojavanje kiralnih izomera alkana

István Lukovits

Prikazan je postupak jednozna~noga generiranja formula kiralnih izomera alkana. Postupak zapo~inje ge-
neriranjem optimalnih kodova za alkane s odre|enim brojem ugljikovih atoma. Nakon toga se ispituje je li
razmatrani alkan posjeduje bar jedan ugljikov atom, koji ima ~etiri supstituenta. Da bi se taj postupak mogao
izvesti autor je dao dva jednostavna pravila pomo}u kojih se uklanjaju suvi{ne strukture i odre|uje jesu li dvije
alkilne grane identi~ne ili ne.

300 I. LUKOVITS

Croat. Chem. Acta 77 (1–2) 295¿300 (2004)

1 2 2 4 4 6 6 8 8
1 2 2 4 4 6 7 7 7
1 2 2 4 5 5 7 7 7
1 2 2 4 5 6 6 8 8
1 2 3 3 3 6 6 8 8
1 2 3 3 4 4 5 5 5
1 2 3 3 4 5 5 6 6
1 2 3 3 4 5 5 8 8
1 2 3 3 5 5 5 7 8
1 2 3 3 5 5 5 8 8
1 2 3 3 5 5 6 7 7
1 2 3 3 5 5 7 7 7
1 2 3 3 5 5 7 7 9
1 2 3 3 5 5 7 8 8
1 2 3 3 5 6 6 6 9
1 2 3 3 5 6 6 7 8
1 2 3 3 5 6 6 8 8
1 2 3 3 5 6 7 7 7
1 2 3 3 5 6 7 7 9
1 2 3 3 5 6 7 8 8
1 2 3 4 4 4 6 7 7
1 2 3 4 4 4 7 7 9
1 2 3 4 4 5 6 6 6
1 2 3 4 4 5 6 6 9
1 2 3 4 4 5 6 8 8
1 2 3 4 4 6 6 6 9
1 2 3 4 4 6 6 7 8
1 2 3 4 4 6 6 8 8
1 2 3 4 4 6 6 8 9
1 2 3 4 4 6 7 7 7
1 2 3 4 4 6 7 7 9
1 2 3 4 4 6 7 8 8
1 2 3 4 5 5 6 7 7
1 2 3 4 5 5 6 7 9
1 2 3 4 5 5 7 7 7
1 2 3 4 5 5 7 7 9
1 2 3 4 5 5 7 8 8
1 2 3 4 5 6 6 8 8
1 2 3 4 5 6 6 8 9
1 2 3 4 5 6 7 7 9

Figure 5. LDF codes of all 40 decanes possessing at least one
chiral atom.


