On Molecular Graphs with Valencies 1, 2 and 4 with Prescribed Numbers of Bonds*

Damir Vukičevića ${ }^{\text {a,** }}$ and Ante Graovaca ${ }^{\text {a,b }}$
${ }^{\text {a }}$ Faculty of Science, University of Split, Nikole Tesle 12, HR-21000 Split, Croatia
${ }^{\mathrm{b}}$ The Ruđer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia

RECEIVED DECEMBER 23, 2002; REVISED JULY 22, 2003; ACCEPTED OCTOBER 3, 2003 In this paper, necessary and sufficient conditions are given for the existence of molecular

Key words molecular graphs prescribed sequence molecules with valencies $1,2,4$ graph(s) with the prescribed sequence $m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}$, where $m_{i j}$ denotes the number of edges (bonds) connecting vertices (atoms) of degree i with vertices of degree j. The main result expressed as Theorem 1 covers the great variety of molecules with valencies 1,2 and 4.

INTRODUCTION

Molecules are conveniently described by graph(s) ${ }^{1-3}$ and there is an intuitive correspondence between chemical and graph-theoretical notions: atoms are represented by vertices and chemical bonds by edges. The ability of atoms to make chemical bonds, i.e., their valencies, are equivalent to the notion of vertex degrees in a graph.

Regarding the vertex degrees, all n vertices of G could be partitioned in n_{1} of those having degree $1, n_{2}$ having degree 2 , etc., and obviously $n=n_{1}+n_{2}+\ldots$. In this way, a unique sequence $n_{1}, n_{2} \ldots$ is ascribed to each graph. The inverse problem, namely whether there are graph(s) with a prescribed $n_{1}, n_{2} \ldots$. sequence is a well known and already solved problem in chemistry and graph theory. ${ }^{4,5}$

Besides the vertex degrees, one could further characterize the connectivity in the graph by specifying how many edges $m_{i j}$ connect vertices of degree i with vertices of degree j. Here again an inverse problem could be posed, namely whether there are graph(s) with a prescribed $m_{i j}$ sequence. Such a question was raised by Gutman ${ }^{6}$ and was declared to be a difficult one. Here, we answer the question, but only for those graphs whose vertex degrees are 1,2 , and 4 , i.e., we offer an answer to whether there are graph(s) with a prescribed sequence m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}. This paper gives the necessary and sufficient conditions for $m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}$ to ensure the existence of graph(s) having that sequence, and it reads as:

Theorem 1.

[^0]\[

$$
\begin{aligned}
& \left\{f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1\right\} \Leftrightarrow
\end{aligned}
$$
\]

THE MAIN RESULT

Let $m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44} \in \mathbb{N}_{0}$. The aim of this paper is to determine if there is a simple connected graph G such that each vertex in G has degree 1,2 or 4 , and such that there are $m_{i j}$ edges that connect vertices of degree i with vertices of degree j.

Formally, the existence could be described by function f defined by:

$$
\begin{equation*}
f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1 \tag{2}
\end{equation*}
$$

if and only if there is a simple connected graph(s) G such that each vertex in G has degree 1,2 or 4 , and such that there are $m_{i j}$ edges that connect vertices of degree i with vertices of degree j. Otherwise, one puts:

$$
\begin{equation*}
f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=0 \tag{3}
\end{equation*}
$$

We need the following notation. Let G be a graph. By $d_{\mathrm{G}}(x)$ we denote the degree of vertex x in G and by $N_{\mathrm{G}}(x)$ the set of neighbors of vertex x in G. Let $V(\mathrm{G})$ denote the set of vertices of G. For $V^{\prime} \subseteq V$ a subgraph of G induced by V^{\prime} is graph G^{\prime} such that $V\left(\mathrm{G}^{\prime}\right)=V^{\prime}$ and edges of G^{\prime} are the edges of G with their both endvertices in V^{\prime}.

Let i, j be any natural numbers such that $i \leq j$. Denote by $\mu_{\mathrm{ij}}(\mathrm{G})$ the number of edges in a given G that connect vertices of degrees i and j. The basic problem to be answered in this paper is to find whether $\mu_{i j}$'s coincide with a prescribed sequence $m_{11}, m_{12}, m_{14}, m_{22}, m_{24}$, m_{44}. The answer is given by Theorem 1.

PROOF OF THEOREM 1

We start with a few Lemmas:

Lemma 1. - Suppose that $m_{11}>0$. Then:

$$
\begin{equation*}
f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1 \tag{4}
\end{equation*}
$$

if and only if $m_{11}=1, m_{12}=0, m_{14}=0, m_{22}=0, m_{24}=0$, $m_{44}=0$.

Proof: The condition that the graph must be connected implies the claim.

Obviously, this Lemma reflects the fact that there is only one connected graph with adjacent vertices of degree 1 , which graph is called the complete graph K_{2} or path P_{2}.

Lemma 2. - Suppose that $m_{22}>0$ and $m_{11}=0$. Then:
$\left\{f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1\right\} \Leftrightarrow$
$\Leftrightarrow\left[\begin{array}{l}\left(\left(m_{12}+m_{24}>0\right) \wedge\left(f\left(m_{11}, m_{12}, m_{14}, 0, m_{24}, m_{44}\right)=1\right)\right) \vee \\ \left(\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right) \wedge\left(m_{22} \geq 3\right)\right)\end{array}\right]$.

Proof: Suppose that we have $m_{12}+m_{24} \in \mathbb{N}$ and

$$
\begin{equation*}
f\left(0, m_{12}, m_{14}, 0, m_{24}, m_{44}\right)=1 \tag{6}
\end{equation*}
$$

Then there is a simple connected graph G such that each vertex in G has one of the following degrees $1,2,4$, and such that $\mu_{11}(\mathrm{G})=m_{11}, \mu_{12}(\mathrm{G})=m_{12}, \mu_{14}(\mathrm{G})=m_{14}$, $\mu_{22}(\mathrm{G})=m_{22}, \mu_{24}(\mathrm{G})=m_{24}, \mu_{44}(\mathrm{G})=m_{44}$. Note that there is a vertex x such that $d_{\mathrm{G}}(x)=2$, because $m_{12}+m_{24}$
$\in \mathbb{N}$. Let denote $N_{\mathrm{G}}(x)=\{y, z\}$ and let G be the following graph:

$$
\begin{array}{r}
V\left(\mathrm{G}^{\prime}\right)=(V(\mathrm{G}) \backslash\{x\}) \cup\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{m_{22}-1}, v_{m_{22}}\right\} \\
E\left(\mathrm{G}^{\prime}\right)=(E(\mathrm{G}) \backslash\{x y, x z\}) \cup\left\{y v_{0}, v_{0} v_{1}, v_{1} v_{2}, \ldots,\right. \\
\left.v_{m_{22}-1} v_{m_{22}}, v_{m_{22}} z\right\} . \tag{7}
\end{array}
$$

Note that the edge with endvertices u and v is denoted by $u v$. Note further that G^{\prime} is obtained from G by replacing the path $y x z$ by path $y v_{0} v_{1} \ldots v_{m_{22}} z$.

Note that each vertex in G has degree 1, 2 or 4. Also, we have $\mu_{11}(\mathrm{G})=m_{11}, \mu_{12}(\mathrm{G})=m_{12}, \mu_{14}(\mathrm{G})=m_{14}$, $\mu_{24}(\mathrm{G})=m_{24}, \mu_{44}(\mathrm{G})=m_{44}$, so:

$$
\begin{equation*}
f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1 \tag{8}
\end{equation*}
$$

If we have $m_{11}=0, m_{12}=0, m_{14}=0, m_{22} \geq 3, m_{24}=0$, $m_{44}=0$, claim is trivial.

Now, let us prove the claim in the opposite direction. Suppose that:

$$
\begin{equation*}
f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1 \tag{9}
\end{equation*}
$$

Then there is a simple connected graph G such that each vertex in G has degree 1,2 or 4 , and such that $\mu_{i j}(\mathrm{G})=m_{i j}$, for each $1 \leq i, j \leq 4, i \neq j$. We distinguish two possibilities:

Case 1. Each vertex has degree 2. In this case, we have $\mu_{11}(\mathrm{G})=0, \mu_{12}(\mathrm{G})=0, \mu_{14}(\mathrm{G})=0, \mu_{24}(\mathrm{G})=0$, and $\mu_{44}(\mathrm{G})=0$.

Case 2. There is a vertex that does not have degree 2. Since G is connected, there is a vertex x of degree 2 that is adjacent to vertex y such that $d_{\mathrm{G}}(y) \neq 2$, so $m_{12}+m_{24}>0$. Let p_{1}, \ldots, p_{k} be the maximal induced paths with all vertices of degree 2 (in G). Denote terminal vertices of p_{i} by x_{i}^{1} and x_{i}^{2}, for each $i=1, \ldots, k$. Denote by y_{i}^{j} the only element of the set $N_{\mathrm{G}}\left(x_{i}^{j}\right) \backslash V\left(p_{i}\right)$. Let G^{\prime} be the graph such that
$V\left(\mathrm{G}^{\prime}\right)=\left(V(G) \backslash\left(\bigcup_{i=1}^{k} V\left(p_{i}\right)\right)\right) \cup\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$
$E\left(\mathrm{G}^{\prime}\right)=$
$\left(E(G) \backslash\left(\bigcup_{i=1}^{k} E\left(p_{i}\right) \cup\left\{x_{i}^{1} y_{i}^{1}, x_{i}^{2} y_{i}^{2}\right\}\right)\right) \cup \bigcup_{i=1}^{k}\left\{y_{i}^{1} z_{i}, y_{i}^{2} z_{i}\right\}$
Note that G^{\prime} is a simple connected graph such that each vertex of G^{\prime} has degree 1,2 or 4 , and $\mu_{11}(\mathrm{G})=m_{11}$, $\mu_{12}(\mathrm{G})=m_{12}, \mu_{14}(\mathrm{G})=m_{14}, \mu_{22}(\mathrm{G})=0, \mu_{24}(\mathrm{G})=m_{24}$, and $\mu_{44}(\mathrm{G})=m_{44}$, so:

$$
\begin{equation*}
f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1 \tag{11}
\end{equation*}
$$

and the claim is proven.
Lemma 3. - We have:
$\left[f\left(0, m_{12}, m_{14}, 0, m_{24}, m_{44}\right)=1\right] \Leftrightarrow$
$\Leftrightarrow\left[\begin{array}{l}{\left[\left(m_{12} \leq 4\right) \wedge\left(f\left(0,0, m_{12}+m_{14}, 0, m_{24}-m_{12}, m_{44}\right)=1\right)\right] \vee} \\ {\left[\left(m_{12}=2\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right]}\end{array}\right]$.

Proof: Suppose that

$$
\begin{equation*}
f\left(0, m_{12}, m_{14}, 0, m_{24}, m_{44}\right)=1, \tag{13}
\end{equation*}
$$

holds and that

$$
\begin{equation*}
\left(m_{12}=2\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right) \tag{14}
\end{equation*}
$$

does not hold.
Then, there is a simple connected graph G such that each vertex in G has degrees 1,2 and 4 , such that $\mu_{11}(\mathrm{G})=$ $0, \mu_{12}(\mathrm{G})=m_{12}, \mu_{14}(\mathrm{G})=m_{14}, \mu_{22}(\mathrm{G})=0, \mu_{24}(\mathrm{G})=m_{24}$, and $\mu_{44}(\mathrm{G})=m_{44}$. Denote by $x_{1}, x_{2}, \ldots, x_{m_{12}}$ vertices of degree 1 , each of which is adjacent with a vertex of degree 2 and denote by $y_{1}, y_{2}, \ldots, y_{m_{12}}$ vertices of degree 2 , each of which is adjacent with a vertex of degree 1 . Also, denote $N_{\mathrm{G}}\left(y_{i}\right)=\left\{x_{i}, z_{i}\right\}$ for each $i=1, \ldots, m_{12}$. Note that $d_{\mathrm{G}}\left(z_{i}\right)=4$ for each $i=1, \ldots, m_{12}$.

Let graph G^{\prime} be the graph such that:

$$
\begin{align*}
V\left(\mathrm{G}^{\prime}\right) & =\left(V(\mathrm{G}) \backslash\left\{y_{1}, y_{2}, \ldots, y_{m_{14}}\right\}\right. \\
E\left(\mathrm{G}^{\prime}\right) & =\left(E (\mathrm { G }) \backslash \left(\left\{x_{1} y_{1}, \ldots, x_{m_{14}} y_{m_{14}}\right\} \cup\right.\right. \\
& \left.\left.\left\{y_{1} z_{1}, \ldots, y_{m_{14}} z_{m_{14}}\right\}\right)\right) \cup\left\{x_{1} y_{1}, \ldots, x_{m_{14}} y_{m_{14}}\right\} . \tag{15}
\end{align*}
$$

Note that G^{\prime} is a simple connected graph such that each vertex G^{\prime} has degree 1,2 , or 4 , and $\mu_{11}(\mathrm{G})=0, \mu_{12}(\mathrm{G})=0$, $\mu_{14}(\mathrm{G})=m_{14}+m_{12}, \mu_{22}(\mathrm{G})=0, \mu_{24}(\mathrm{G})=m_{24}-m_{12}$, and $\mu_{44}(\mathrm{G})=m_{44}$, so

$$
\begin{equation*}
f\left(0,0, m_{14}+m_{12}, 0, m_{24}-m_{12}, m_{44}\right)=1 \tag{16}
\end{equation*}
$$

Let us prove the claim in the opposite direction. If

$$
\begin{equation*}
\left(m_{12}=2\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right) \tag{17}
\end{equation*}
$$

holds, the claim is trivial, so suppose that $m_{12} \leq m_{14}$ and

$$
\begin{equation*}
f\left(0,0, m_{12}+m_{14}, 0, m_{24}-m_{12}, m_{44}\right)=1 . \tag{18}
\end{equation*}
$$

Then there is a simple connected graph such that each vertex in G has degree 1,2 or 4 and such that $\mu_{11}(\mathrm{G})=0$, $\mu_{12}(\mathrm{G})=0, \mu_{14}(\mathrm{G})=m_{14}+m_{12}, \mu_{22}(\mathrm{G})=0, \mu_{24}(\mathrm{G})=m_{24}-$ m_{12}, and $\mu_{44}(\mathrm{G})=m_{44}$. Let pick up arbitrary m_{12} vertices of degree 1 that are adjacent to vertices of degree 4 and denote them by $x_{1}, \ldots, x_{\mathrm{m}_{14}}$. Also, denote $N_{\mathrm{G}}\left(x_{i}\right)=y_{i}, i=$ $1, \ldots, m_{14}$. Let G^{\prime} be a graph such that:

$$
\begin{gather*}
V\left(\mathrm{G}^{\prime}\right)=V(\mathrm{G}) \cup\left\{z_{1}, z_{2}, \ldots, z_{m_{14}}\right\} \\
E\left(\mathrm{G}^{\prime}\right)=\left(E (\mathrm { G }) \cup \left(\left\{y_{1} z_{1}, \ldots, y_{m_{14}} z_{m_{14}}\right\} \cup\right.\right. \\
\left.\left\{x_{1} z_{1}, \ldots, x_{m_{14}} z_{m_{14}}\right\}\right) \backslash\left\{x_{1} y_{1}, \ldots, x_{m_{14}} y_{m_{14}}\right\} . \tag{19}
\end{gather*}
$$

Note that G^{\prime} is a simple connected graph such that each vertex of G^{\prime} has degree 1,2 or 4 , and $\mu_{11}\left(\mathrm{G}^{\prime}\right)=0$, $\mu_{12}\left(\mathrm{G}^{\prime}\right)=m_{12}, \mu_{14}\left(\mathrm{G}^{\prime}\right)=m_{14}, \mu_{22}\left(\mathrm{G}^{\prime}\right)=0, \mu_{24}\left(\mathrm{G}^{\prime}\right)=m_{24}$, and $\mu_{44}\left(\mathrm{G}^{\prime}\right)=m_{44}$, so:

$$
\begin{equation*}
f\left(0, m_{12}, m_{14}, 0, m_{24}-m_{12}, m_{44}\right)=1 \tag{20}
\end{equation*}
$$

Lemma 4. - Let $k \geq 2$ and let $p_{1}, \ldots, p_{k} \in\{0,1,2,3,4\}$, such that $p_{1} \leq p_{2} \leq \ldots p_{k}$. Let $q \in \mathbb{N}$ such that $2 q \leq \sum_{i=1}^{k}\left(4-p_{i}\right)$. If $p_{1}-p_{2} \leq 1$, then there are numbers $i_{1}, i_{2}, \ldots, i_{\mathrm{q}}, j_{1}, j_{2}, \ldots$, $j_{\mathrm{q}} \in\{1, \ldots, k\}$, such that $i_{l} \neq j_{l}, l=1, \ldots, q$, and

$$
\begin{align*}
& p_{i}+\operatorname{card}\left\{l_{0}: 1 \leq l_{0} \leq q, i_{l_{0}}=i\right\} \\
& \quad+\operatorname{card}\left\{l_{0}: 1 \leq l_{0} \leq q, j_{l_{0}}=i\right\} \leq 4,1 \leq i \leq k \tag{21}
\end{align*}
$$

Note that card X stands for the number of elements in set X.

Proof: We prove the claim by induction on q. Suppose that $q=1$. Note that $p_{1}, p_{2} \leq 3$, so it is sufficient to take $i_{1}=1$ and $j_{1}=2$. Now, suppose that the claim holds for q and let us prove it for $q+1$ Take $i_{q+1}=1$ and $j_{q+1}=2$. Denote $p_{1}{ }^{\prime}$ $=p_{1}-1, p_{2}^{\prime}=p_{2}-1$ and $p_{i}^{\prime}=p_{i}$ for each $3 \leq i \leq k$. Denote by $p_{1}{ }^{\prime \prime}, \ldots, p_{k}{ }^{\prime \prime}$ numbers $p_{1}{ }^{\prime}, \ldots, p_{k}{ }^{\prime}$ sorted in the ascending order. More formally, collections $\left\{p_{1}{ }^{\prime}, p_{2}{ }^{\prime}, \ldots, p_{k}{ }^{\prime}\right\}$ and $\left\{p_{1}{ }^{\prime \prime}, p_{2}{ }^{\prime}, \ldots, p_{k}{ }^{\prime \prime}\right\}$ are equal and $p_{1}{ }^{\prime \prime} \leq p_{2}{ }^{\prime \prime} \leq \ldots \leq p_{k}{ }^{\prime \prime}$. Denote by ϕ a bijection such that

$$
\begin{equation*}
p_{k}^{\prime}=p_{\phi(k)}^{\prime \prime} \tag{22}
\end{equation*}
$$

Note that $p_{1}{ }^{\prime \prime}-p_{2}{ }^{\prime \prime} \leq 1$. So, by the inductive hypothesis, there are numbers $i_{1}{ }^{\prime}, i_{2}{ }^{\prime}, \ldots, i_{\mathrm{q}}{ }^{\prime}, j_{1}{ }^{\prime}, j_{2}{ }^{\prime}, \ldots, j_{\mathrm{q}}{ }^{\prime} \in\{1, \ldots, k\}$ such that $i_{l}{ }^{\prime} \neq j_{l}{ }^{\prime}, l=1, \ldots, \mathrm{k}$, and

$$
\begin{align*}
p_{i}^{\prime \prime}+ & \operatorname{card}\left\{l_{0}^{\prime}: 1 \leq l_{0} \leq q, i_{l_{0}}{ }^{\prime}=i\right\}+ \\
& \operatorname{card}\left\{j_{0}^{\prime}: 1 \leq l_{0} \leq q, j_{l_{0}}{ }^{\prime}=i\right\} \leq 4,1 \leq l \leq k \tag{23}
\end{align*}
$$

So, it is sufficient to take numbers

$$
\begin{align*}
& i_{l}=\phi\left(i_{l}^{\prime}\right), 1 \leq l \leq q \tag{24}\\
& j_{l}=\phi\left(j_{l}^{\prime}\right), 1 \leq l \leq q \tag{25}
\end{align*}
$$

and i_{q+1} and j_{q+1}.

Lemma 5. - We have

$\left[f\left(0,0, m_{14}, 0, m_{24}, m_{44}\right)=1\right] \Leftrightarrow$
$\Leftrightarrow\left\{\begin{array}{l}{\left[\begin{array}{l}\left(n_{4} \mathbb{N} \equiv \mathbb{N}\right) \wedge\left(\frac{m_{2}}{2} \mathbb{N} \leq \mathbb{N}\right) \wedge \\ \left(n_{4}-1-\frac{n_{24}}{2} \leq m_{44} \leq\binom{ n_{4}}{2}\right) \wedge\left(n_{4} \geq 2\right)\end{array}\right] \vee} \\ {\left[\left(n_{4}=1\right) \wedge\left(m_{14}=4\right)\right]}\end{array}\right\}$
where $n_{4}=\frac{1}{4}\left(m_{14}+m_{24}+2 m_{44}\right)$.
Proof: First, let us prove

$$
\left\{\begin{array}{c}
{\left[\begin{array}{l}
\left(n_{4} \in \mathbb{N}\right) \wedge\left(\frac{m_{24}}{2} \in \mathbb{N}\right) \wedge \\
\left(\begin{array}{l}
\left.n_{4}-1-\frac{n_{24}}{2} \leq m_{44} \leq\binom{ n_{4}}{2}\right) \wedge\left(n_{4} \geq 2\right)
\end{array}\right] \vee \\
{\left[\left(n_{4}=1\right) \wedge\left(m_{14}=4\right)\right]}
\end{array}\right\} \Rightarrow} \\
\Rightarrow\left[f\left(0,0, m_{14}, 0, m_{24}, m_{44}\right)=1\right] \tag{27}
\end{array}\right.
$$

If $n_{4}=1$ and $m_{14}=4$, the claim is trivial, so it remains to prove

$$
\begin{align*}
& \left\{\begin{array}{l}
\left(n_{4} \in \mathbb{N}\right) \wedge\left(\frac{m_{24}}{2} \in \mathbb{N}\right) \wedge \\
\left(\begin{array}{l}
\left.n_{4}-1-\frac{n_{24}}{2} \leq m_{44} \leq\binom{ n_{4}}{2}\right) \wedge\left(n_{4} \geq 2\right)
\end{array}\right\} \Rightarrow \\
\quad \Rightarrow\left[f\left(0,0, m_{14}, 0, m_{24}, m_{44}\right)=1\right]
\end{array} .\right.
\end{align*}
$$

It follows from the previous Lemma that it is sufficient to construct graph G_{0} with n_{4} vertices and m_{44} edges such that its maximal degree $\Delta\left(\mathrm{G}_{0}\right)$ is less or equal to 4 and that there are vertices x and y such that the minimal degree $\delta\left(\mathrm{G}_{0}\right)$ equals $d_{\mathrm{G}_{0}}(x)$ and $d_{\mathrm{G}_{0}}(y)-d_{\mathrm{G}_{0}}(x) \leq 1$.

If $n_{4}=2$, the claim is trivial, so suppose that $n_{4}>2$. Denote vertices of G_{0} by $x, y, z_{1}, z_{2}, \ldots, z_{n_{4-2}}$. Distinguish two cases:
Case 1: $m_{44} \geq n_{4}-1$
Let $E\left(\mathrm{G}_{0}\right) \supseteq\left\{x z_{1}, z_{1} z_{2}, \ldots, z_{n_{4}-3} z_{n_{4}-2}, z_{n_{4}-2} y\right\}$. Since $m_{44} \geq$ $n_{4}-1, \mathrm{G}_{0}$ can consist of these edges. If $m_{44} \leq\binom{ n_{4}-2}{2}+2$, then form arbitrary $m_{44}-\left(n_{4}-1\right)$ edges between vertices $z_{1}, z_{2}, \ldots, z_{n_{4}-2}$ and we are done. Otherwise, let $\mathrm{G}_{0}\left[z_{1}, z_{2}, \ldots\right.$, $z_{n_{4}-2}$] be a complete graph. Add
$\left\lfloor\frac{m_{44}-\left(\binom{n_{4}-2}{2}+2\right)}{2}\right\rfloor$ vertices of the form $x z_{i}$ and $\left[\frac{m_{44}-\left(\binom{n_{4}-2}{2}+2\right)}{2}\right]$ vertices of the form $y z_{i}$ and the claim is proven in this case. Note that $\lfloor x\rfloor$ and $\lceil x\rceil$ stand for lower and upper integer parts of x, respectively.

Case 2: $m_{44} \leq n_{4}-1$
By using the construction of the previous case, we can construct graph $\mathrm{G}_{0}{ }^{\prime}$ such that $\mu_{11}\left(\mathrm{G}_{0}{ }^{\prime}\right)=0, \mu_{12}\left(\mathrm{G}_{0}{ }^{\prime}\right)=0$, $\mu_{14}\left(\mathrm{G}_{0}{ }^{\prime}\right)=m_{14}, \mu_{22}\left(\mathrm{G}_{0}{ }^{\prime}\right)=0, \mu_{24}\left(\mathrm{G}_{0}{ }^{\prime}\right)=m_{24}-2\left(n_{4}-1-\right.$ $\left.m_{44}\right)$. Let us take $n_{4}-1-m_{44}$ edges that connect vertices
of degree 4 and replace each of them by the path of length 2. This proves Case 2. Let us illustrate this for the case $m_{14}=8, m_{24}=2$ and $m_{44}=1$.

Let us prove the claim in the opposite direction. Suppose that:

$$
\begin{equation*}
f\left(0,0, m_{14}, 0, m_{24}, m_{44}\right)=1 \tag{29}
\end{equation*}
$$

Then there is a simple connected graph G such that each vertex in G has degree 1,2 or 4 and such that $\mu_{11}(\mathrm{G})=0, \mu_{12}(\mathrm{G})=0, \mu_{14}(\mathrm{G})=m_{14}, \mu_{22}(\mathrm{G})=0$, $\mu_{24}(\mathrm{G})=m_{24}$ and $\mu_{44}(\mathrm{G})=m_{44}$. If there is only one vertex of degree 4 in G, it can be easily checked that $m_{14}=$ $4, m_{24}=0$, and that $m_{44}=4$ or equivalently $n_{4}=4$ and $m_{14}=4$.

Thus, it remains to prove the claim when there are at least two vertices of degree 4 in G. Note that the number of vertices of degree 4 in G is:

$$
\begin{equation*}
\left(m_{14}+m_{24}+2 m_{44}\right) / 4=n_{4} . \tag{30}
\end{equation*}
$$

So, indeed $n_{4} \in \mathbb{N}$ and $n_{4} \geq 2$. Also, note that the number of vertices of degree 2 in G is $m_{24} / 2$ and so this has to be a natural number or zero.

Since G is connected, it follows that:

$$
\begin{equation*}
n_{4}-1-m_{24} / 2 \leq m_{44}, \tag{31}
\end{equation*}
$$

and since G is simple, it follows that

$$
\begin{equation*}
m_{44} \leq\binom{ n_{4}}{2} \tag{32}
\end{equation*}
$$

Thus, the Lemma is proven.
By combining the results of Lemmas $1-5$, one obtains:

$$
\begin{aligned}
& \left\{f\left(m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1\right\} \\
& \Leftrightarrow\left\{\begin{array}{l}
{\left[\left(m_{11}=1\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(f\left(0, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}\right)=1\right)\right]}
\end{array}\right\} \\
& \Leftrightarrow\left\{\begin{array}{l}
{\left[\left(m_{11}=1\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22} \geq 3\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
\left\{\left[\left(m_{11}=0\right) \wedge\left[\left(m_{22}=0\right) \vee\left[\left(m_{12}+m_{24}>0\right)\right]\right] \wedge f\left(0, m_{12}, m_{14}, 0, m_{24}, m_{44}\right)=1\right]\right\}
\end{array}\right\} \\
& \Leftrightarrow\left\{\begin{array}{l}
{\left[\left(m_{11}=1\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22} \geq 3\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
\left\{\left[\left(m_{11}=0\right) \wedge\left[\left(m_{22}=0\right) \vee\left[\left(m_{12}+m_{24}>0\right)\right]\right] \wedge f\left(0, m_{12}, m_{14}, 0, m_{24}, m_{44}\right)=1\right]\right\}
\end{array}\right\} \\
& \Leftrightarrow\left\{\begin{array}{l}
{\left[\left(m_{11}=1\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22} \geq 3\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(m_{12}=2\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee}
\end{array}\right\}\left\{\begin{array}{l}
\left\{\begin{array}{l}
\left(m_{11}=0\right) \wedge\left[\left(m_{22}=0\right) \vee\left[\left(m_{12}+m_{24}>0\right)\right]\right] \wedge\left(m_{12} \leq m_{24}\right) \wedge \\
\left.\left\{\begin{array}{l}
{\left[\left(m_{14}+m_{12}=4\right) \wedge\left(m_{24}-m_{12}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
\left.\left.\left[\begin{array}{l}
\left(\frac{m_{14}+m_{24}+2 m_{44}}{4} \in N\right) \wedge\left(\frac{m_{24}-m_{12}}{2} \in N_{0}\right) \wedge \\
\binom{\left(\frac{m_{14}+m_{24}+2 m_{44}}{4}-1-\frac{m_{24}-m_{12}}{2} \leq m_{44} \leq\left(\frac{m_{14}+m_{24}+2 m_{44}}{4}\right)\right.}{2} \\
\wedge\left(\frac{m_{14}+m_{24}+2 m_{44}}{4} \geq 2\right)
\end{array}\right]\right\}\right\}
\end{array}\right\}\right\}
\end{array}\right\}
\end{array}\right.
\end{aligned}
$$

(cont.)
(cont.)

$$
\begin{align*}
& \Leftrightarrow\left\{\begin{array}{l}
{\left[\left(m_{11}=1\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22} \geq 3\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(m_{12}=2\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee}
\end{array}\right\}\left\{\begin{array}{l}
\left\{\begin{array}{l}
\left(m_{11}=0\right) \wedge\left[\left(m_{22}=0\right) \vee\left[\left(m_{12}+m_{24}>0\right)\right]\right] \wedge\left(m_{12} \leq m_{24}\right) \wedge \\
\left(m_{14}+m_{12}=4\right) \wedge\left(m_{24}-m_{12}=0\right) \wedge\left(m_{44}=0\right)
\end{array}\right\} \vee \\
\left.\left.\left\{\begin{array}{l}
\left(m_{11}=0\right) \wedge\left[\left(m_{22}=0\right) \vee\left[\left(m_{12}+m_{24}>0\right)\right]\right] \wedge\left(m_{12} \leq m_{24}\right) \wedge \\
{\left[\left(\begin{array}{l}
\left(\frac{m_{14}+m_{24}+2 m_{44}}{4} \in N\right) \wedge\left(\frac{m_{24}-m_{12}}{2} \in N_{0}\right) \wedge \wedge \\
\binom{\frac{m_{14}+m_{24}+2 m_{44}}{4}-1-\frac{m_{24}-m_{12}}{2} \leq m_{44} \leq\left(\frac{m_{14}+m_{24}+2 m_{44}}{4}\right)}{2} \\
\wedge\left(\frac{m_{14}+m_{24}+2 m_{44}}{4} \geq 2\right)
\end{array}\right]\right\}}
\end{array}\right]\right\}\right\}
\end{array}\right\} \\
& \left\{\begin{array}{l}
{\left[\left(m_{11}=1\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
{\left[\left(m_{11}=0\right) \wedge\left(m_{12}=0\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{22} \geq 3\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee}
\end{array}\right. \\
& {\left[\left(m_{11}=0\right) \wedge\left(m_{12}=2\right) \wedge\left(m_{14}=0\right) \wedge\left(m_{24}=0\right) \wedge\left(m_{44}=0\right)\right] \vee} \\
& \Leftrightarrow\left\{\left\{\left\{\begin{array}{l}
\left.\left.\left\{\begin{array}{l}
\left\{\left(m_{11}=0\right) \wedge\left[\left(m_{22}=0\right) \vee\left(m_{12}>0\right)\right] \wedge\left(m_{14}+m_{12}=4\right) \wedge\left(m_{12}=m_{24}\right) \wedge\left(m_{44}=0\right)\right\} \vee \\
\left\{\begin{array}{l}
\left(m_{11}=0\right) \wedge\left[\left(m_{22}=0\right) \vee\left[\left(m_{12}+m_{24}>0\right)\right]\right] \wedge\left(m_{12} \leq m_{24}\right) \wedge \\
{\left[\begin{array}{l}
\left(\frac{m_{14}+m_{24}+2 m_{44}}{4} \in N\right) \wedge\left(\frac{m_{24}-m_{12}}{2} \in N_{0}\right) \wedge \\
\left(\frac{m_{14}+m_{24}+2 m_{44}-1-\frac{m_{24}-m_{12}}{2} \leq m_{44} \leq\left(\frac{m_{14}+m_{24}+2 m_{44}}{4}\right)}{2}\right)
\end{array}\right)} \\
\wedge\left(\frac{m_{14}+m_{24}+2 m_{44}}{4} \geq 2\right)
\end{array}\right\}
\end{array}\right\}\right\}\right\}
\end{array}\right\}\right.\right. \tag{33}
\end{align*}
$$

and this finally proves Theorem 1.

CONCLUSIONS

The difficult problem of determining whether there are graph(s) with a prescribed $m_{i j}$ sequence, where $m_{i j}$ denotes how many edges connect vertices of degree i with vertices of degree j, is tackled in this paper. We have been able to solve the problem for the case of graphs with degrees 1,2 and 4 and the findings are given by Theorem 1, which gives the necessary and sufficient conditions for the existence of graph(s) with the prescribed sequence $m_{11}, m_{12}, m_{14}, m_{22}, m_{24}, m_{44}$. Although there is a multitude of chemical moieties covered by our special consideration, it will be of the outmost importance for chemistry to allow also vertices of degree 3 , i.e., to consider the existence of molecular graph(s) with prescribed sequences of $m_{i j}{ }^{\prime} \mathrm{s}, i, j=1,2,3,4$.

Acknowledgements.- Partial support of the Ministry of Science and Technology of the Republic of Croatia (Grant No. 0037117 and Grant No. 009839) is gratefully acknowledged.

REFERENCES

1. A. Graovac, I. Gutman, and N. Trinajstić, Topological Approach to the Chemistry of Conjugated Molecules, Sprin-ger-Verlag, Berlin, 1977.
2. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1983; 2nd revised ed. 1992.
3. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
4. D. Veljan, Kombinatorna i diskretna matematika [Combinatorial and Discrete Mathematics], in Croat., Algoritam, Zagreb, 2001.
5. B. Bollobás, Graph Theory, Springer-Verlag, New York, 1979.
6. I. Gutman, Croat. Chem. Acta 75 (2002) 357-369.

SAŽETAK

O molekularnim grafovima valencije 1, 2 i 4 sa zadanim brojevima veza

Damir Vukičević i Ante Graovac

U radu su dani nužni i dovoljni uvjeti za egzistenciju molekularnoga grafa(ova) sa zadanim slijedom m_{11}, $m_{12}, m_{14}, m_{22}, m_{24}, m_{44}$, gdje $m_{i j}$ označava broj bridova (veza) što povezuju vrhove (atome) stupnjeva $i \mathrm{i} j$. Osnovni rezultat iskazan je Teoremom 1 koji je primjenljiv na vrlo široku klasu molekula sa valencijama 1, 2 i 4.

[^0]: * Dedicated to Academician Nenad Trinajstić on the happy occasion of his $65^{\text {th }}$ birthday.
 ** Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)

