Interrelationship of Major Topological Indices Evidenced by Clustering*

Subhash C. Basak, ${ }^{\text {a,** }}$ Brian D. Gute, ${ }^{\text {a }}$ and Alexandru T. Balaban ${ }^{\text {b }}$
${ }^{a}$ Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN 55811, USA
${ }^{\mathrm{b}}$ Texas A\&M University at Galveston, Department of Marine Sciences, 5007 Avenue U, Galveston, TX 77551, USA

RECEIVED FEBRUARY 24, 2003; REVISED JULY 21, 2003; ACCEPTED OCTOBER 20, 2003

Abstract

This study examines the mutual relatedness of 318 major topological indices (TIs) for three sets of molecules: (i) a set of 139 hydrocarbons, (ii) a diverse set of 1029 compounds and (iii) a diverse set of 2887 compounds. The TIs included in this study are those that have been frequently used in the characterization of structure and QSAR/ QSPR studies. After variable reduction based on the elimination of TIs for which all values were zero and those that were completely correlated with another TI, a variable clustering technique was used to cluster the TIs which resulted in 16,37 and 56 clusters, respectively, for the three data sets mentioned above. Analysis of the correspondence among the clusters derived from the three groups of chemicals has been carried out in an effort to understand the dimensionality of the structure spaces derived for the three different sets of chemicals and the structural aspects characterized by the various TIs.

Key words
topological indices cluster analysis diverse compounds databases

INTRODUCTION

A major trend in mathematical and computational chemistry, drug discovery, predictive toxicology and quantitative structure-activity/property relationship (QSAR/QSPR) studies is the application of topological indices for predicting biomedicinal, toxicological, physicochemical, and technological properties of chemicals from their structure. ${ }^{1-4}$ Both in drug discovery and in the hazard assessment of environmental chemicals one is faced with a large number of candidate chemicals, the majority of which do not have available property data. ${ }^{2-5}$ Therefore, prop-erty-property correlations to estimate complex properties
from simpler experimental properties is not an attractive option in such cases, primarily because experimental properties are not available for the majority of candidate chemicals. The other viable alternative is to estimate necessary properties from parameters that can be calculated directly from molecular structure directly without any input of experimental data. One important class of theoretically derived parameters that are being used more and more frequently in QSAR/QSPR studies are topological indices.

Topological indices are numerical graph invariants derived from different types of weighted molecular graphs. In

[^0]the graph theoretical formalism, a molecule is represented by vertices (atoms) and edges (bonds). Mathematically, a graph $G=V, E$ is an ordered pair where the nonempty set V represents the set of atoms and the E symbolizes the set of bonds. A graph invariant is a graph theoretic property that has the same value for isomorphic graphs. ${ }^{6-8}$ A topological index (TI) is a graph invariant that consists of a single numerical value derived from a molecular graph. Therefore, a TI carries out a numerical characterization of molecular topology and is usually sensitive to such chemically important features of molecular structure as size, shape, branching, cyclicity, heterogeneity of atoms or bonds, and neighborhoods of atoms.

In the following, we shall use interchangeably the terms TI, molecular descriptor, parameter, or variable; TIs have found wide application in QSAR/ QSPR studies. ${ }^{1,2,9-27}$ Different groups have developed novel TIs based on various theoretical reasonings. ${ }^{28-44} \mathrm{~A}$ fairly complete list of older and newer TIs may be found in the introductory chapter of the book cited under Refs. 1 and 6, but among these indices we limited ourselves to those incorporated in three computer programs (POLLY, Triplet, and Molconn-Z). Numerous QSARs/ QSPRs have been developed on mostly congeneric sets of structures with good results. ${ }^{40,45-47}$ Our experience with developing QSARs/ QSPRs on large and heterogeneous data sets indicated that we need a broad range of TIs belonging to the major classes rather than using one TI or one class of TIs at a time in a piecemeal manner. ${ }^{9,10}$ Basak et al. calculated large numbers of TIs belonging to different classes for sets of chemicals ranging from small congeneric sets to heterogeneous subsets of the Toxic Substances Control Act (TSCA) inventory consisting of between one to three thousand chemicals, ${ }^{47}$ as well as for a set of over 248000 psoralen derivatives. ${ }^{5}$ They studied the interrelatedness of such indices in an effort to extract orthogonal information using methods such as principal components analysis (PCA) and variable clustering (VC). One goal of these studies was to use the PCs or minimally correlated TIs derived from VC in QSAR/QSPR studies. ${ }^{1,2,9-15}$ In the 1986-1988 studies, 90 TIs were used by Basak et al. for the creation of structure spaces for a diverse subset of 3692 industrial chemicals by means of PCA. Such principal components (PCs) have been used in defining structural similarity and selection of structural analogs of chemicals. ${ }^{15-27}$ Another related use of PCs/TIs has been in the clustering of large sets of chemicals to bring down the size of the problem in chemical design, drug discovery, and predictive toxicology. 5 ,9,47

Other analyses showing how TIs may be grouped together have been described by Motoc and Balaban, ${ }^{49}$ by Randić, ${ }^{50}$ by Todeschini et al., ${ }^{51}$ by Bertz, ${ }^{52}$ by Ivanciuc et al., ${ }^{53}$ and by Balaban et al. ${ }^{54,55}$ In the last type of analysis, ${ }^{50-55}$ alkanes with up to nine carbon atoms were
found to be ordered differently by various TIs and this fact allowed related TIs to be grouped together.

A perusal of the above and other pertinent literature shows that TIs are being used in many diverse situations such as lead optimization in drug discovery, ${ }^{56}$ QSAR/ QSPR/QSTR, ${ }^{1-6,9-14,35,36,38,48}$ analog selection, ${ }^{15-25,27,48}$ molecular similarity-based estimation of properties, ${ }^{15,18-27,48}$ clustering of large sets of chemicals for molecular and pharmaceutical design,,57 or the investigation of relationships between transfer RNAs of bacteria, providing support for the coevolution theory of the genetic code, ${ }^{58}$ to name just a few. Therefore, we need to know the degree of intercorrelation of the various TIs. Although different TIs are derived from different matrices defined on various types of molecular graphs, and are based on diverse theoretical rationales, many of these TIs are strongly correlated. Practical application of TIs requires that we know which of the several hundred indices are least correlated, i.e., which ones encode relatively independent structural information.

With this end in view, in a previous publication ${ }^{47}$ we studied the mutual relatedness of a set consisting initially of 202 TIs calculated for a group of 139 hydrocarbons and a group of 1029 diverse chemicals taken from the TSCA Inventory. From the set of TIs we selected 162 weakly intercorrelated TIs for the former group, and 176 TIs for the latter group of chemicals. Application of the VARCLUS program allowed the analysis and visual presentation of clustering for these two databases.

The set of TIs studied in our previous paper ${ }^{47}$ did not include some important TIs such as the kappa and electrotopological indices. ${ }^{56}$ Therefore, in this paper we have studied the mutual relatedness of an expanded set of 318 TIs calculated for three groups of molecules, two of which are those examined in the previous study: (i) the same relatively homogeneous group of 139 hydrocarbons, (ii) the same group of 1029 diverse chemicals, and (iii) a new, larger and more diverse group of 2887 molecules taken from the US EPA ASTER System. ${ }^{50}$

The major objectives of this paper are: (i) to determine which of the large number of TIs are minimally correlated with each other so that they can constitute the starting subset of indices for QSAR/QSPR/QSTR studies, analog selection, quantification of structural similarity/dissimilarity, and clustering of large real and virtual libraries of chemicals, and (ii) to analyze the »intrinsic dimensionality < of structure spaces created by TIs for congeneric versus structurally diverse and non-congeneric groups of chemicals.

The chemical classes of structures in the database with 2887 diverse chemicals are presented in Table I. The analogous partitions for the databases with 139 hydrocarbons and with 1037 diverse chemicals pub-

TABLE I. Summary of chemical classes or features in databases analyzed

${ }^{(a)}$ Hydrocarbons. ${ }^{(b)}$ Diverse. ${ }^{(c)}$ Diverse.
lished earlier ${ }^{47}$ are repeated here. The selected topological indices with their abbreviations are indicated in Table II.

METHODS

Chemical Databases

There were three sets of chemicals analyzed in this study: a set of 139 hydrocarbons (for which many physical data were available) to represent a moderately homogeneous set of chemicals and a set of 1037 diverse chemicals. The hydrocarbons consisted of $73 \mathrm{C}_{3}-\mathrm{C}_{9}$ alkanes, 29 alkylbenzenes, and 37 polycyclic aromatic hydrocarbons. ${ }^{60-62}$ The diverse set of 1037 compounds consists of those chemicals from TSCA and the US EPA ASTER system ${ }^{59}$ for which a measured boiling point was available and for which there was no hydrogen bonding potential (as measured by HB1 = 0). The final set of 2887 compounds comprises the full set of boiling point data from the ASTER system for which topological indices could be calculated using all three programs (POLLY 2.3, Triplet and Molconn-Z 3.51). We consider that by adding not only further topological indices but also a
new set of diverse compounds, the present paper consolidates the conclusions of the preceding paper. ${ }^{47}$ It must be noted here that any compounds composed of three or fewer non-hydrogen atoms were removed from the data set due to the nature of the Triplet index calculations.

Calculation of TIs

The TIs calculated for this study include the Wiener number $W,{ }^{28}$ molecular connectivity indices as calculated by Randić ${ }^{30}$ and Kier and Hall, ${ }^{38,39,45}$ frequency of path lengths of varying size, information theoretic indices defined on distance matrices of graphs using the methods of Bonchev and Trinajstić, ${ }^{37}$ Roy et al., ${ }^{42}$ Basak et al. ${ }^{25,26}$ as well as those of Raychaudhury et al., ${ }^{41}$ parameters defined on the neighborhood complexity of vertices in hydrogen-filled molecular graphs, ${ }^{25,} 26,41$ and Balaban's J indices ${ }^{31-34}$ as well as triplet indices. ${ }^{63}$ Ninety-eight of the TIs were calculated using the program POLLY 2.3. ${ }^{64}$ The J indices and triplet indices were calculated using software developed in-house by the authors and the additional 167 indices were calculated using Molconn-Z 3.51 developed by Hall and Associates Consulting. ${ }^{65}$

TABLE II. Symbols and definitions of topological indices

Topostructural indices	
IDW	Information index for the magnitudes of distances between all possible pairs of vertices of a graph
MIDW	Mean information index for the magnitude of distance
W	Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph
ID	Degree complexity
HV	Graph vertex complexity
HD	Graph distance complexity
IC_bar	Information content of the distance matrix partitioned by frequency of occurrences of distance h
M1	A Zagreb group parameter = sum of square of degree over all vertices
M2	A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) vertices
Sh	Path connectivity index of order $h=0-6$
SCh	Cluster connectivity index of order $h=3-6$
SCYh	Chain connectivity index of order $h=3-6$
SPCh	Path-cluster connectivity index of order $h=4-6$
Kh	Number of paths of length $h=0-10$
J	Balaban's J index based on distance
Nrings	Number of rings in a graph
Ncirc	Number of circuits in a graph
DN2Sy	Triplet index from distance matrix, square of graph order (\# of non-H atoms), and distance sum; operation $y=1-5$
DN21y	Triplet index from distance matrix, square of graph order, and number 1 ; operation $y=1-5$
AS1y	Triplet index from adjacency matrix, distance sum, and number 1; operation $y=1-5$
DS1y	Triplet index from distance matrix, distance sum, and number 1; operation $y=1-5$
ASNy	Triplet index from adjacency matrix, distance sum, and graph order; operation $y=1-5$
DSNy	Triplet index from distance matrix, distance sum, and graph order; operation $y=1-5$
DN2Ny	Triplet index from distance matrix, square of graph order, and graph order; operation $y=1-5$
ANS y	Triplet index from adjacency matrix, graph order, and distance sum; operation $y=1-5$
AN1y	Triplet index from adjacency matrix, graph order, and number 1; operation $y=1-5$
ANNy	Triplet index from adjacency matrix, graph order, and graph order again; operation $y=1-5$
ASVy	Triplet index from adjacency matrix, distance sum, and vertex degree; operation $y=1-5$
DSVy	Triplet index from distance matrix, distance sum, and vertex degree; operation $y=1-5$
ANV y	Triplet index from adjacency matrix, graph order, and vertex degree; operation $y=1-5$
Topochemical indices	
I_Orb	Information content or complexity of the hydrogen-suppressed graph at its maximum neighborhood of vertices
Max_IC	Order of neighborhood when IC_{r} reaches its maximum value for the hydrogen-filled graph
Max_Orb	Order of neighborhood when IC_{r} reaches its maximum value for the hydrogen-suppressed graph
ICr	Mean information content or complexity of a graph based on the $r^{\text {th }}(r=0-6)$ order neighborhood of vertices in a hydrogen-filled graph
SICr	Structural information content for $r^{\text {th }}(r=0-6)$ order neighborhood of vertices in a hydrogen-filled graph
CICr	Complementary information content for $r^{\text {th }}(r=0-6)$ order neighborhood of vertices in a hydrogen-filled graph
Bh	Bond path connectivity index of order $h=0-6$
$\mathrm{BC} h$	Bond cluster connectivity index of order $h=3-6$
BCYh	Bond chain connectivity index of order $h=3-6$
BPCh	Bond path-cluster connectivity index of order $h=4-6$
Vh	Valence path connectivity index of order $h=0-6$
VCh	Valence cluster connectivity index of order $h=3-6$
VCYh	Valence chain connectivity index of order $h=3-6$
VPCh	Valence path-cluster connectivity index of order $h=4-6$
JB	Balaban's J index based on bond types
JX	Balaban's J index based on relative electronegativities
JY	Balaban's J index based on relative covalent radii
AZVy	Triplet index from adjacency matrix, atomic number, and vertex degree; operation $y=1-5$
AZSy	Triplet index from adjacency matrix, atomic number, and distance sum; operation $y=1-5$

	(cont.)
ASZy	Triplet index from adjacency matrix, distance sum, and atomic number; operation $y=1-5$
AZNy	Triplet index from adjacency matrix, atomic number, and graph order; operation $y=1-5$
ANZy	Triplet index from adjacency matrix, graph order, and atomic number; operation $y=1-5$
DSZy	Triplet index from distance matrix, distance sum, and atomic number; operation $y=1-5$
DN2Zy	Triplet index from distance matrix, square of graph order, and atomic number; operation $y=1-5$
Nvx	Number of non-hydrogen atoms in a molecule
Nelem	Number of elements in a molecule
Fw	Molecular weight
XPh	Valence path connectivity index of order $h=7-10$
$\mathrm{XCH} h$	Valence chain connectivity index of order $h=7-10$
Si	Shannon information index
Totop	Total Topological Index t
SumI	Sum of the intrinsic state values I
Sumdeli	Sum of delta-I values
Tets2	Total topological state index based on electrotopological state indices
Phia	Flexibility index (kp1* kp2/nvx)
IDCbar	Bonchev-Trinajstić mean information index
IDC	Bonchev-Trinajstić information index
Wp	Wiener p
Pf	Platt f
Wt	Total Wiener number
Knotp	Difference of chi-cluster-3 and path/cluster-4
Knotpv	Valence difference of chi-cluster-3 and path/cluster-4
Nclass	Number of classes of topologically (symmetry) equivalent graph vertices
NumHBd	Number of hydrogen bond donors
NumHBa	Number of hydrogen bond acceptors
SHCsats	E-State of $\mathrm{C} \mathrm{sp}{ }^{3}$ bonded to other saturated C atoms
SHCsatu	E-State of $\mathrm{C} \mathrm{sp}{ }^{3}$ bonded to unsaturated C atoms
Shvin	E-State of C atoms in the vinyl group, = $\mathrm{CH}-$
Shtvin	E-State of C atoms in the terminal vinyl group, $=\mathrm{CH}_{2}$
Shavin	E-State of C atoms in the vinyl group, $=\mathrm{CH}-$, bonded to an aromatic C
Sharom	E-State of $\mathrm{C} \mathrm{sp}{ }^{2}$ which are part of an aromatic system
SHHBd	Hydrogen bond donor index, sum of Hydrogen E-State values for $-\mathrm{OH},=\mathrm{NH}$, -NH2, -NH-, -SH, and \#CH
SHwHBd	Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms on a C to which a F and/or Cl are also bonded
SHHBa	Hydrogen bond acceptor index, sum of the E-State values for $-\mathrm{OH},=\mathrm{NH}$, $-\mathrm{NH} 2,-\mathrm{NH}-,>\mathrm{N}-,-\mathrm{O}-,-\mathrm{S}-$, along with -F and -Cl
Qv	General Polarity descriptor
NHBinty	Count of potential internal hydrogen bonders ($y=2-10$)
SHBinty	E-State descriptors of potential internal hydrogen bond strength ($y=2-10$)
	Electrotopological State index values for atoms types:
	SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, Shother, SHCHnX, Hmax Gmax, Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH,SsssB, SssssBm, SsCH3, SdCH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC, SsNH3p, SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN, SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi, SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl, SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH, SdSe, SssSe, SaaSe SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2, SsssPbH, SssssPb
kp0	Kappa zero
kp1-kp3	Kappa simple indices
ka1-ka3	Kappa alpha indices

Statistical Analysis

The number of TIs calculated via the POLLY, Triplet, and Molconn-Z programs, before deleting those TIs that were completely collinear with other indices and those that had zero values for all chemicals in the data set, was 369. After deletions were carried out, the number of remaining descriptors was between 150 and 300 , depending on the diversity of the data set.

Once the zero value and redundant indices were removed, the computed TIs were transformed by the natural logarithm of the index plus a constant, generally one. This was done since the scale of some indices may be several orders of magnitude greater than that of other indices.

For each set, a technique known as variable clustering was performed using SAS procedure VARCLUS, which presents the advantage that it combines clustering iteratively with principal component analysis (PCA) techniques. ${ }^{66}$ The variable clustering procedure divides the set of indices into disjoint clusters, such that each cluster is essentially unidimensional. This is accomplished by a repeated principal components analysis of the sets of indices. The initial PCA examines all indices and defines two principal components or eigenvectors. If the eigenvalue for the second component is >1.0, the indices are split into separate clusters by correlating the indices with the first and second principal component. Those indices most correlated with the first component form one cluster and those indices most correlated with the second component form another cluster, thus forming two disjoint clusters. A PCA is then performed for each cluster of indices, with the cluster being split if the eigenvalue for the second component is >1.0. The procedure is repeated until the second eigenvalue is <1.0 for all clusters.

RESULTS - COMPARISON
 OF PRESENT AND PREVIOUS CLUSTERING OF TOPOLOGICAL INDICES

139 Hydrocarbons

Analysis of the set of indices for the 139 hydrocarbons showed that 157 of the calculated indices were completely correlated with another index that was retained in the set or had zero values for all compounds. A total of 12 POLLY indices, mainly associated with strained ring systems (3-4 membered rings) were removed since no strained ring compounds were present in the data set. Of the 150 indices calculated by Triplet, 32 were removed. Many of the MolConn-Z parameters new to this study were removed (113) as a wide variety of atom-types were not represented in our hydrocarbon data set, thus the atom-type indices had zero values for all compounds. This left us with a set of 212 TIs for variable clustering. The present clustering of the 212 TIs including TIs from Molconn-Z for the 139 hydrocarbons-database afforded sixteen clusters, denoted by H1 through H16. For the same database, the previous cluster analysis using 162 TIs 47 had yielded fourteen clusters, denoted by A1 through A14. There is a close correspondence between the clusters of variables (TIs) found now and those reported in the previous paper, ${ }^{47}$ as seen by examining Figure 1. The clusters are listed in the order of decreasing numbers of TIs in each cluster, and are ordered vertically on the right and left sides of Figure 1. The numbers of TIs in each cluster are written in brackets close to each cluster. Each line in Fig. 1 connects clusters sharing at least one TI in common and the number of the shared TIs is written close to each line. Num-

Figure 1. Associations between clusters for the hydrocarbon database using the present set of molecular descriptors (H-type clusters) and the previous set ${ }^{47}$ (A-type clusters). The number of descriptors in each cluster is indicated in brackets. Solid lines connect clusters that have common descriptors, and their numbers are indicated on each line. Dashed lateral lines indicate descriptors that have no correspondence for the other type.

TABLE III. Clustering of 139 hydrocarbons ${ }^{(a),}$, (b)

With Molconn-Z (16 clusters, 212 parameters)						Without Molconn Z (14 clusters, 158 parameters)					
\# of TIs in cluster	TI most correlated with cluster		TI least correlated with cluster		Cluster H1	\# of TIs in cluster53	TI most correlated with cluster		TI least correlated with cluster		Cluster A1
62	DN2Z4	0.9995	B4	0.8975			DN2Z4	0.9996	B4	0.9035	
24	XP7	0.9912	JB	0.5893	H2	18	S6	0.9884	JB	0.6325	A2
21	ANS2	0.9800	KA1	0.7837	H3	12	v0	0.9390	ANS 1	0.0670	A3
17	QV	0.9725	SSSSCH	0.3951	H4	-	-		-		-
15	SIC6	0.9820	MAXORB	0.6888	H5	13	SIC6	0.9889	MAXORB	0.6789	A4
12	DSZ3	0.9902	SPC5	0.9346	H6	13		0.9866	ANV2	0.8016	A6
9	SUMDELI	0.9337	SPC4	0.8609	H7	9	DSN3	0.9866	ANS2	0.1385	A7
8	DSV1	0.9488	IC_BAR	0.7931	H8	10	DSZ1	0.9881	DSV5	0.9247	A5
6	DSV2	0.9717	DSN2	0.8158	H9	5	DSZ2	0.9778	ASV2	0.8850	A9
6	PHIA	0.9105	KA2	0.6363	H10	-	-		-		-
6	VC5	0.9456	SC6	0.6750	H11	6	VC5	0.9456	SC6	0.6750	A8
6	SCY5	0.9984	SDSCH	0.0850	H12	3	SCY5	0.9763	AZS1	0.2899	A14
6	BC3	0.9626	SC3	0.6948	H13	4	VC3	0.9860	SC4	0.7994	A12
5	SIC1	0.8910	IC1	0.7815	H14	5	SIC1	0.8365	ASV3	0.6817	A10
5	SIC2	0.9578	CIC2	0.7392	H15	4	SIC3	0.9355	SIC2	0.9092	A13
4	SIC0	0.9706	GMAX	0.8613	H16	4	CIC1	0.9559	CIC2	0.6339	A11

${ }^{(a)}$ Published earlier ${ }^{47}$ without Molconn-Z; the present paper includes Molconn-Z.
${ }^{(b)}$ In Figure 1, clusters H1-H16 (here: left column, top to bottom) are linked to clusters A1-A14 (right column) mainly by sharing descriptors when the clusters are on the same horizontal line in the present table.
bers of TIs that are not shared are listed on the outside of the central part of Figure 1.

A more detailed account of how the TIs computed with or without electrotopological state and other parameters computed by the Molconn-Z program for the hydrocarbon database is presented in Table III, which contains also the TIs with the highest and lowest eigenvalues for each cluster. One can see that often these two TIs with highest and lowest eigenvalues in the two classes of clusters (with/without Molconn-Z indices) coincide, especially when the number of TIs in clusters is not large.

Four clusters in the previous and present papers have a unique counterpart: H5 is paired with A4, H11 with A8, H12 with A12, and H15 with A10; however, clusters H5, H12 and H15 in the present analysis, as well as cluster A10 in the previous one, include a few TIs that do not appear in the other analysis.

In both analyses, the first clusters are the most populated, and the 44 TIs that they share represent 81% of A1's population and 71% of H1's population of TIs.

One can conclude that for hydrocarbons the addition of Molconn-Z parameters does not change appreciably the clustering of molecular descriptors, i.e., the intrinsic dimensionality of the structure space remains practically the same in spite of increasing the number of TIs from 162 to 212. This was to be expected, because the Mol-conn-Z parameters contain considerable information about heteroatoms.

In light of the results presented here and the previous study by Basak et al. on hydrocarbons, ${ }^{47}$ it is proposed that QSAR/QSPR studies and clustering of hydrocarbons could start with the following sixteen indices most correlated with the sixteen clusters (H1-H16) from this study: DN2Z4, XP7, ANS2, QV, DSZ3, SUMDELI, DSV1, DSV2, PHIA, VC5, VCY5, BC3, SIC0-SIC3, SIC6. Of course, when there are fewer atoms than specified for the subgraph, the indices that do not apply should be disregarded.

The above sixteen indices encode the least correlated and most information-rich subset of the 212 TIs analyzed in this study. Some additional information can be gained by supplementing the above group of sixteen TIs with one or more indices least correlated with the individual clusters.

1029 Diverse Compounds

Data reduction on the set of indices calculated for the 1029 set of TSCA chemicals resulted in the removal of 114 indices. In this instance, all of the POLLY indices were retained for clustering while 30 of the Triplet indices were removed. Far fewer of the atom-type parameters had to be removed (84) as the TSCA set shows a greater diversity of atom types than the hydrocarbon database. The present clustering of the 255 TIs including TIs from Molconn-Z for the 1029 diverse compounds afforded 37 clusters, denoted by N1 through N37, whereas the pre-

Figure 2. Same as Figure 1, but with associations between clusters for the diverse compound database using the present set of molecular descriptors (N-type clusters) and the previous set ${ }^{47}$ (B-type clusters).

ceding analysis of nearly idetical database (1037 compounds) with 176 TIs had yielded only 18 clusters denoted by B1 through B18. The clusters are ordered according to the decreasing numbers of TIs in each cluster. The associations between these two sets of clusters are presented in Figure 2, using the same conventions as in Figure 1. Table IV presents part of the N-type clusters in correspondence with all the B-type clusters, indicating as in Table III the TIs with the highest and lowest eigenvalues.

Again, there is a fair degree of similarity between these two clusterings. Cluster N1 is mainly associated with cluster B1. Some clusters are totally interassociated (N7 with B7, N8 with B8, N15 with B10, N16 with B14, N18 with B12, N19 with B13, and N21 with B15). Other N-type clusters are associated with only one B-type cluster, and have, in addition, several Molconn-Z-type indices (N5 with B4, N8 with B8, N11 with B9, N23 with B9). Many N-type indices yield clusters containing only Molconn-Z indices (N13, N14, N20, N22, and N24 through N38), probably because the corresponding heteroatom types in the compound database are better taken into account by the electrotopological state indices.

On the other hand, one can see that clusters N1 through N4 and N9 have several connections with clusters B1 through B5, so that one can conclude that adding Molconn-Z indices for diverse compounds results in much smaller clusters.

2887 Diverse Compounds

In the previous paper, ${ }^{47}$ only one database with diverse chemicals was analyzed, without Molconn-Z parameters. Now we present in Table V and Figure 3 the comparison for two databases with diverse compounds between clustering of TIs that include Molconn-Z parameters in both cases. The partition of 255 TIs grouped into the same 37 clusters denoted by N1 through N37 for the database with 1029 compounds that was discussed in the preceding section is now compared with the clustering of 293 TIs for a larger and more structurally diverse database of 2887 compounds. As is obvious from the previous discussions, even greater atom-type diversity is evident in this data set. The same deletions were made concerning the POLLY and Triplet indices as in the previous set, all POLLY indices were retained and the same 30 Triplet indices were removed. As a result of the greater diversity of the database, only 46 of the Molconn-Z indices were removed from the set of indices and most of those were indices calculated for non-organic atom types such as silicon, germanium, selenium, arsenic and lead. From this set of 293 indices, we obtained 56 clusters (denoted by T1 through T56) instead of the 37 N -type clusters. This difference is no longer due to the inclusion of new TIs as in the preceding two cases, but to the increased diversity of compounds in the database. The
TABLE IV. Clustering of $1000+$ diverse compounds (1029 with Molconn-Z, 1037 without Molconn-Z)(a), (b)

With Molconn-Z (37 clusters, 255 parameters)						Without Molconn Z (18 clusters, 158 parameters)					
Cluster	\# of TIs in cluster	TI most correlated with cluster		TI least correlated with cluster		$\begin{gathered} \hline \text { Cluster } \\ \hline \text { B1 } \end{gathered}$	$\begin{gathered} \hline \text { \# of TIs in cluster } \\ \hline 49 \end{gathered}$	TI most correlated with cluster		TI least correlated with cluster	
N1	46	IDW	0.9970	B3	0.8223			K0	0.9966	V2	0.6255
N2	15	DN2S4	0.9935	SUMI	0.7191	B2	13	ANV1	0.9634	ANV5	0.7927
N3	15	WT	0.9638	SHOTHER	0.6811	B4	12	S6	0.9406	DN2S3	0.3290
N4	14	HV	0.9807	MAXORB	0.6848	B3	13	AS11	0.9902	ASV2	0.7852
N5	14	XP8	0.9213	K7	0.7536	B11	6	IC4	0.9850	IC2	0.7332
N6	11	SIC3	0.9624	IC1	0.5968	B6	10	SIC3	0.9480	IC1	0.5836
N7	9	BPC5	0.9380	VPC4	0.7028	B7	9	BPC5	0.9383	VPC4	0.7051
N8	9	ASZ2	0.9722	SSBR	0.2948	B8	8	ASZ2	0.9687	ANZ1	0.6860
N9	8	DN2N1	0.9513	AZN4	0.3876	B17	4	DN213	0.9715	AZN4	0.4600
N10	8	IC6	0.9749	MAX_IC	0.7312	B5	11	ASN5	0.9745	ASV3	0.5682
N11	8	SC6	0.8958	SSF	0.4726	B9	6	BC5	0.9537	VC6	0.5282
N12	8	V0	0.9702	FW	0.6427	-	-	-	-	-	-
N13	7	KA2	0.9045	SHCSATS	0.6096	-	-	-	-	-	-
N14	7	SHAROM	0.8615	SAASC	0.1325	-	-	-	-	-	-
N15	6	SCY3	0.9030	VCY3	0.8314	B12	6	SCY3	0.9030	VCY3	0.8314
N16	6	BC3	0.9161	vC4	0.6767	B14	6	BC3	0.9160	VC4	0.6765
N17	6	AS12	0.9269	ASV5	0.2629	B16	4	AS12	0.9885	DSV2	0.8905
N18	6	CIC1	0.9708	IC0	0.7613	B12	6	CIC1	0.9602	IC0	0.7348
N19	6	VCY6	0.8980	SCY6	0.7873	B13	6	VCY6	0.8981	SCY6	0.7873
N20	5	SHBBA	0.9414	NELEM	0.6390	-	-	-	-	-	-
N21	4	JB	0.9797	J	0.7727	B15	4	JB	0.9810	J	0.7923

${ }^{(b)}$ Published earlier ${ }^{47}$ without Molconn-Z; the present paper includes Molconn-Z.

Figure 3. Associations between clusters for the two diverse compound databases having 1029 diverse chemicals (N-type clusters) and 2887 diverse chemicals (T-type clusters). In both cases, the present set of molecular descriptors has been used. The remaining explanations are as in Figure 1.
results are presented in Figure 3 for all clusters and in Table V for a limited, overlapping set of clusters.

Again, as in the preceding cases, the first cluster in each class is the most numerous, and again, as seen in Figure 3, the upper horizontal line indicates that these two clusters share most of their TIs. Addition of new compounds in the database increases the number of T-type clusters with only one or two parameters that are not shared by N-type parameters, apparently because such compounds are uniquely associated with Molconn-Z descriptors.

Table V demonstrates that the two databases having 1029 and 2887 diverse chemicals give rise to very similar clusters: 15 out of the first 23 clusters have exactly the same TIs that are most correlated with their own clusters; the 3 other clusters have closely related TIs that are most correlated with their own cluster (CIC1 and SIC1, SCY3 and SCY4, VCY6 and SCY5).

Concerning the third cluster (N3) in Table V, one should note (Appendix 4) that the molecular descriptor S5 in this cluster (the same TI S5 that is most correlated with its own cluster T3) has $R^{2}=0.9299$, a value that is not much lower than the maximal one $\left(R^{2}=0.9638\right)$ for index WT. Thus, the third clusters N3 and T3 can also be considered to share S 5 as a central TI , and therefore the overwhelming majority of clusters (for all the major clusters) have the same »central« molecular descriptors.

In the light of the above findings for structurally diverse compounds, it follows that one could start with the following 18 indices whenever attempting QSAR or OSPR studies for structurally diverse chemicals: IDW, DN2S4, S5, HV, XP8, SIC1, SIC3, BPC5, IC6, SHHBA, DN2N1, ASZ2, SC6, BC3, SCY4, V0, JB, AS12.

It is interesting to see that only a few of these indices (DN2S4, BC3, SCY5, SIC1) coincide with those selected for hydrocarbons. A few other indices selected for
TABLE V. Clustering of 1029 and 2887 diverse compounds (with Molconn-Z) (a), (b)

1029 compounds (37 clusters, 255 parameters) Fig. 3, columns N1-N37						2887 compounds (56 clusters, 293 parameters) Fig. 3, columns T1-T56					
Cluster	\# of TIs in cluster	TI most correlated with cluster		TI least correlated with cluster		Cluster	\# of TIs in cluster	TI most corr	with cluster	TI least corre	with cluster
N1	46	IDW	0.9970	B3	0.8223	T1	48	IDW	0.9975	SUMI	0.6082
N2	15	DN2S4	0.9935	SUMI	0.7191	T2	21	DN2S4	0.9891	TETS2	0.7565
N3	15	WT	0.9638	SHOTHER	0.6811	T3	14	S5	0.9113	SHOTHER	0.6437
N4	14	HV	0.9807	MAXORB	0.6848	T4	12	HV	0.9749	IC_BAR	0.7760
N5	14	XP8	0.9213	K7	0.7536	T5	11	XP8	0.9144	XVP10	0.6820
N18	6	CIC1	0.9708	IC0	0.7613	T6	11	SIC1	0.9444	HMIN	0.3700
N6	11	SIC3	0.9624	IC1	0.5968	T7	10	SIC3	0.9641	IC2	0.5831
N7	9	BPC5	0.9380	VPC4	0.7028	T8	9	BPC5	0.9294	VPC4	0.7267
N10	8	IC6	0.9749	MAX_IC	0.7312	T9	9	IC6	0.9706	MAXORB	0.6145
N20	5	SHBBA	0.9414	NELEM	0.6390	T10	8	SHHBA	0.9335	SSSSCH	0.1061
N9	8	DN2N1	0.9513	AZN4	0.3876	T11	8	DN2N1	0.9543	AZN4	0.5277
N8	9	ASZ2	0.9722	SSBR	0.2948	T12	7	ASZ2	0.9921	ANZ2	0.8701
N11	8	SC6	0.8958	SSF	0.4726	T13	7	SC6	0.9177	SSF	0.4831
N16	6	BC3	0.9161	VC4	0.6767	T14	6	BC3	0.9067	VC4	0.6708
N15	6	SCY3	0.9030	VCY3	0.8314	T15	6	SCY4	0.8808	VCY4	0.8347
N12	8	v0	0.9702	FW	0.6427	T16	6	V0	0.9498	FW	0.6074
-	-	-	-	-	-	T17	5	SHHBD	0.9247	HMAX	0.7304
N21	4	JB	0.9797	J	0.7727	T18	5	JB	0.9802	J	0.7880
N14	7	SHAROM	0.8615	SAASC	0.1325	T19	5	SAACH	0.8709	SAASC	0.1553
N17	6	AS12	0.9269	ASV5	0.2629	T20	5	AS12	0.9635	DSV2	0.8986
N13	7	KA2	0.8525	SHCSATS	0.6096	T21	5	KP3	0.9256	ASV5	0.3190
N19	6	VCY6	0.8980	SCY6	0.7873	T22	4	SCY5	0.9731	SAAS	0.0594
-	-	-	-	-	-	T23	3	BCY6	0.9703	SCY6	0.9234

[^1]hydrocarbons are related to, but do not coincide with selected indices for diverse compounds: XP7 and QV for hydrocarbons are related to XP8 and HV, respectively, for diverse chemicals.

CONCLUSIONS

We have presented a variable cluster analysis of topological indices (including also the Kier-Hall indices available in the Molconn-Z program) for three databases: 139 hydrocarbons, 1029 diverse compounds, and 2887 diverse compounds, resulting in clusters denoted as H1-H16, N1-N37, and T1-T56, respectively. In a preceding paper, ${ }^{47}$ the first two databases were analyzed similarly, but without the Molconn-Z indices, affording clusters A1-A14 and B1-B18. In the first studies of topological index intercorrelation ${ }^{49}$ and clustering, ${ }^{67}$ only a small number of TIs were analyzed, and only hydrocarbons had been taken into account.

We have also presented visual comparisons of connections between clusters (such that clusters sharing the same descriptors become connected by lines indicating how many descriptors are shared) originating with the same databases, but with descriptors augmented by Molconn-Z indices (clusters A with H , and B with N) or between clusters with the same set of descriptors, but with databases of 1029 and 2887 diverse compounds (clusters N with T).

The usefulness of the present data will consist in having at hand (in this text, figures, and in the Supplementary Material) a rich source of data on how various topological indices become associated in clusters when applied to homogeneous or heterogeneous databases.

It is evident that the inclusion of Molconn- Z indices (with specific descriptors for various types of heteroatoms and multiple bonding) practically doubles the number of clusters for the database with 1029 compounds (from 18 to 37), but does not substantially increase the number of clusters for hydrocarbons (from 14 to 16). Also, an increase of the number of compounds in databases with diverse compounds (from 1029 compounds to 2887 compounds, with the same set of descriptors but including also Molconn-Z descriptors) results in a marked increase of the number of clusters (from 37 to 56). These increased numbers are due to small clusters having only 2-4 descriptors.

More details about the clusters in each of the three databases can be found in the Supplementary Material (Appendix 1 through 6)

Supplementary Materials. - For each of the three data bases, one table presents the numbers of descriptors in each cluster, and for each cluster, the variation explained, the proportion explained, and the second eigenvalue; another table indicates all descriptors in each cluster and their correlation factors with the own and next closest cluster, as well as the $\left(1-R^{2}\right)$ ratio.

These data are available via the Web under http://pubwww. srce.hr/ccacaa or may be obtained from the author.

REFERENCES

1. S. C. Basak, B. D. Gute, and G. D. Grunwald, in: J. Devillers and A. T. Balaban (Eds.), Topological Indices and Related Descriptors in QSAR and QSPR, Gordon \& Breach Science Publishers, The Netherlands, 1999, pp. 675-696.
2. S. C. Basak, G. D. Grunwald, and G. J. Niemi, in: A. T. Balaban (Ed.), From Chemical Topology to Three Dimensional Molecular Geometry; Plenum Press, New York, 1997, pp. 73-116.
3. A. R. Katritzky, R. Petrukhin, D. Tatham, S. C. Basak, E. Benfenati, M. Karelson, and U. Maran, J. Chem. Inf. Comput. Sci. 41 (2001) 679-685.
4. A. R. Katritzky, U. Maran, V. S. Lobanov, and M. Karelson, J. Chem. Inf. Comput. Sci. 40 (2000) 1-8.
5. S. C. Basak, D. Mills, B. D. Gute, A. T. Balaban, S. C. Basak, and G. D. Grunwald, in: D. K. Sinha, S. C. Basak, R. K. Mohanty, and I. N. Basumallick (Eds.), Some Aspects of Mathematical Chemistry; Visva-Bharati University: Santiniketan, West Bengal, India, in press.
6. A. T. Balaban and O. Ivanciuc, Topological Indices and Related Descriptors, in: J. Devillers and A. T. Balaban (Eds.), QSAR and QSPR, Gordon \& Breach Science Publishers, The Netherlands, 1999, pp. 21-57.
7. F. Harary, Graph Theory, Addison Wesley Publ., Reading, Massachusetts, 1969.
8. N. Trinajstić, Chemical Graph Theory, $2^{\text {nd }}$ ed., CRC Press, Boca Raton, FL, 1992.
9. S. C. Basak, G. D. Grunwald, B. D. Gute, K. Balasubramanian, and D. Opitz, J. Chem. Inf. Comput. Sci., 40 (2000) 885-890.
10. S. C. Basak, B. D. Gute, and G. D. Grunwald, in: F. Chen and G. Schuurman (Eds.), Quantitative Structure-Activity Relationships in Environmental Sciences, Vol. 7, SETAC Press, Pensacola, FL, 1997, Chapter 17, pp. 245-261.
11. S. C. Basak, B. D. Gute, G. D. Grunwald, D. W. Opitz, and K. Balasubramanian, in: Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools - Papers from the 1999 AAAI Symposium; AAAI Press: Menlo Park, CA, 1999, pp. 108-111.
12. S. C. Basak, D. Mills, A. T. Balaban, and B. D. Gute, J. Chem. Inf. Comput. Sci. 41 (2001) 671-678.
13. B. D. Gute and S. C. Basak, SAR QSAR Environ. Res. 7 (1997) 117-131.
14. B. D. Gute, G. D. Grunwald, and S. C. Basak, SAR QSAR Environ. Res. 10 (1999) 1-15.
15. S. C. Basak, S. Bertelsen, and G. D. Grunwald, J. Chem. Inf. Comput. Sci. 34 (1994) 270-276.
16. S. C. Basak, S. Bertelsen, and G. D. Grunwald, Toxicol. Lett. 79 (1995) 239-250.
17. S. C. Basak and G. D. Grunwald, Math. Model. Sci. Comput. 4 (1994) 464-469.
18. S. C. Basak and G. D. Grunwald, New J. Chem. 19 (1995) 231-237.
19. S. C. Basak and G. D. Grunwald, Chemosphere 31 (1995) 2529-2546.
20. S. C. Basak, G. D. Grunwald, G. E. Host, G. J. Niemi, and S. P. Bradbury, Environ. Toxicol. Chem. 17 (1998) 1056-1064.
21. S. C. Basak and B. D. Gute, in: B. L. Johnson, C. Xintaras, and J. S. Andrews, Jr. (Eds.), Proceedings of the International Congress on Hazardous Waste: Impact on Human and

Ecological Health; Princeton Scientific Publishing Co., Princeton, NJ, 1997 pp. 492-504.
22. S. C. Basak, B. D. Gute, and G. D. Grunwald, in: R. CarboDorca and P. G. Mezey (Eds.), Advances in Molecular Similarity, Vol. 2; JAI Press: Stanford, Connecticut, 1998 pp. 171-185.
23. S. C. Basak, B. D. Gute, and G. D. Grunwald, SAR QSAR Environ. Res. 10 (1999) 117-129.
24. S. C. Basak, B. D. Gute, and G. D. Grunwald, in: P. Hansen, P. Fowler, and M. Zheng (Eds.), Discrete Mathematical Chemistry, DIMACS Series 51, American Mathematical Society, Providence, Rhode Island, 2000 pp. 9-24.
25. S. C. Basak, V. R. Magnuson, G. J. Niemi, and R. R. Regal, Discrete Appl. Math. 19 (1988) 17-44.
26. B. D. Gute, G. D. Grunwald, D. Mills, and S. C. Basak, SAR QSAR Environ. Res. 11 (2001) 363-382.
27. B. D. Gute and S. C. Basak, J. Mol. Graphics Modell. 20 (2001) 95-109.
28. H. Wiener, J. Am. Chem. Soc. 69 (1947) 17-20.
29. H. Hosoya, Bull. Chem. Soc. Jpn. 44 (1971) 2332-2339.
30. M. Randić, J. Am. Chem. Soc. 97 (1975) 6609-6615.
31. A. T. Balaban, Chem. Phys. Lett. 89 (1982) 399-404.
32. A. T. Balaban, Pure Appl. Chem. 55 (1983) 199-206.
33. A. T. Balaban, Math. Chem. (MATCH) 21 (1986) 115-122.
34. O. Ivanciuc, T. Ivanciuc, and A. T. Balaban, J. Chem. Inf. Comput. Sci. 38 (1998) 395-401:
35. S. C. Basak, A. B. Roy, and J. J. Ghosh, in: X. J. R. Avula, R. Bellman, Y. L. Luke, and A. K. Rigler (Eds.), Proceedings of the 2nd International Conference on Mathematical Modelling, University of Missouri-Rolla, Rolla, Missouri, Vol. 2, 1980, pp. 851-856.
36. S. C. Basak and V. R. Magnuson, Arzneim. Forsch. 33 (1983) 501-503.
37. D. Bonchev and N. Trinajstić, J. Chem. Phys. 67 (1977) 45174533.
38. L. B. Kier, W. J. Murray, M. Randić, and L. H. Hall, J. Pharm. Sci. 65 (1975) 1226-1230.
39. L. B. Kier and L. H. Hall, Molecular Connectivity in Struc-ture-Activity Analysis, Research Studies Press, Letchworth, Hertfordshire, U.K., 1986.
40. N. Rashevsky, Bull. Math. Biophys. 17 (1955) 229-235.
41. C. Raychaudhury, S. K. Ray, J. J. Ghosh, A. B. Roy, and S. C. Basak, J. Comput. Chem. 5 (1984) 581-588.
42. A. B. Roy, S. C. Basak, D. K. Harriss, and V. R. Magnuson, in: X. J. R. Avula, R. E. Kalman, A. I. Lipais, and E. I. Rodin (Eds.), Mathematical Modelling in Science and Technology, Pergamon Press, New York, 1984, pp. 745-750.
43. R. Sarkar, A. B. Roy, and R. K. Sarkar, Math. Biosci. 39 (1978) 299-312.
44. C. E. Shannon, Bell Syst. Tech. J. 27 (1948) 379-423.
45. L. B. Kier and L. H. Hall, Molecular Structure Description: The Electrotopological State, Academic Press, San Diego, CA, 1999.
46. M. Randić, X. Guo, and S. Bobst, in: P. Hansen, P. Fowler, and M. Zheng, (Eds.), Discrete Mathematical Chemistry, DIMACS Series 51, American Mathematical Society, Providence, Rhode Island, 2000, pp. 305-322.
47. S. C. Basak, A. T. Balaban, G. D. Grunwald, and B. D. Gute, J. Chem. Inf. Comput. Sci. 40 (2000) 891-898.
48. S. C. Basak, D. Mills, B. D. Gute, G. D. Grunwald, and A. T. Balaban, in: D. H. Rouvray and R. B. King (Eds.), Topology in Chemistry: Discrete Mathematics of Molecules, Horwood Publ., Chichester, 2002, pp. 113-184.
49. I. Motoc and A. T. Balaban, Rev. Roum. Chim. 26 (1981) 593-600.
50. M. Randić, J. Math. Chem. 24 (1998) 345-358.
51. R. Todeschini, R. Cazar, and E. Collina, Chemom. Intell. Lab. Syst. 15 (1992) 51-59.
52. S. H. Bertz, Discrete Appl. Math. 19 (1988) 65-83.
53. O. Ivanciuc, T. Ivanciuc, D. Cabrol-Bass, and A. T. Balaban, Commun. Math. Chem. (MATCH) 42 (2000) 155-180.
54. A. T. Balaban, D. Mills, and S. C. Basak, Commun. Math. Chem. (MATCH) 45 (2002) 5-26.
55. A. T. Balaban, in: D. H. Rouvray and R. B. King (Eds.), Topology in Chemistry: Discrete Mathematics of Molecules, Horwood Publ., Chichester, 2002, pp. 89-112.
56. G. Grassy, B. Calas, A. Yasri, R. Lahana, J. Woo, S. Iyer, M. Kaczorek, R. Floc'h, and R. Buelow, Nature Biotechnol. 16 (1998) 748-752.
57. M. Lajiness, in: D. H. Rouvray (Ed.), Computational Chemical Graph Theory, Nova, New York, 1990, pp. 299-316.
58. C. Bermudez, E. E. Daza, and E. Andrade, J. Theor. Biol. 197 (1999) 193-205.
59. C. L. Russom, E. B. Anderson, B. E. Greenwood, and A. Pilli, Sci. Total Environ. 109/110 (1991) 667-670.
60. D. E. Needham, I. C. Wei, and P. G. Seybold, J. Am. Chem. Soc. 110 (1998) 4186-4194.
61. O. Mekenyan, D. Bonchev, and N. Trinajstic, Int. J. Quantum Chem. 18 (1980) 369-380.
62. W. Karcher, Spectral Atlas of Polycyclic Aromatic Hydrocarbons, Vol. 2. Kluwer, Dordrecht, 1988, pp. 16-19.
63. P. A. Filip, T. S. Balaban, and A. T. Balaban, J. Math. Chem. 1 (1987) 61-83.
64. S. C. Basak, D. K. Harriss, and V. R. Magnuson, POLLY 2.3, copyright of the University of Minnesota, 1988.
65. Molconn-Z v. 3.50, Hall Associates Consulting, Quincy, MA, 2000.
66. The VARCLUS Procedure, in SAS/STAT® User's Guide, Version $6,4^{\text {th }}$ edn. Vol. 2, Cary, NC. SAS Institute Inc., 1989.
67. I. Motoc, A. T. Balaban, O. Mekenyan, and D. Bonchev, Math. Chem. (MATCH), 13 (1982) 369-404.

SAŽETAK

Međuodnos glavnih topologijskih indeksa pokazan pomoću okupljanja u grozdove

Subhash C. Basak, Brian D. Gute i Alexandru T. Balaban

U članku se razmatra međuodnos 318 najčešće rabljenih topologijskih indeksa (TI) za tri skupine molekula: (i) 139 ugljikovodika, (ii) 1029 različitih molekula i (iii) 2887 različitih molekula. Nakon uklanjanja onih TI za koje su sve vrijednosti neke molekule jednake nuli i onih TI koji su potpuno korelirani s nekim drugim TI, metoda koja se temelji na okupljanju u grozdove primijenjena je na preostale TI. Dobiveni su grozdovi od 16, 37 i 56 TI za tri skupine razmatranih molekula. Analiziran je odnos među trima grozdovima s ciljem razumijevanja strukturnih karakteristika različitih TI.

Interrelationship of Major
Topological Indices Evidenced
by Clustering

Subhash C. Basak, Brian D. Gute, and Alexandru T. Balaban

SUPPLEMENT

Appendix 1. Clustering of the 139 hydrocarbons

Cluster	Members	Variation explained	Proportion explained	Second eigenvalue
H1	62	60.5485	0.9766	0.5007
H2	24	22.0955	0.9206	0.7376
H3	21	19.6624	0.9363	0.5491
H4	17	15.0351	0.8844	0.8544
H5	15	13.6322	0.9088	0.5744
H6	12	11.6814	0.9734	0.1297
H7	9	7.6352	0.8484	0.5892
H8	8	7.1152	0.8894	0.3401
H9	6	5.0149	0.8358	0.6081
H10	6	4.7695	0.7949	0.6531
H11	6	5.0076	0.8346	0.7395
H12	6	4.9728	0.8288	0.9371
H13	6	5.0731	0.8455	0.6305
H14	5	4.1217	0.8243	0.5632
H15	5	4.3705	0.8741	0.4453

Appendix 2. Clustering of the 139 hydrocarbons

Cluster	T. I.	R^{2} with own cluster	R^{2} with next closest	$1-R^{2}$ ratio
H1	IDW	0.9831	0.9646	0.4796
	MIDW	0.9504	0.9421	0.8571
	W	0.9863	0.9598	0.3413
	ID	0.9821	0.9291	0.2533
	HD	0.9559	0.9404	0.7407
	M1	0.9838	0.9151	0.1906
	M2	0.9773	0.9227	0.2932
	S0	0.9679	0.9551	0.7125
	S1	0.9936	0.8992	0.0634
	S2	0.9392	0.9055	0.6433
	S3	0.9495	0.8936	0.4741
	S4	0.9365	0.8901	0.5777
	B4	0.8975	0.8501	0.6841
	V4	0.9165	0.8538	0.5712
	K0	0.9979	0.9253	0.0282
	K1	0.9971	0.8833	0.0261
	K2	0.9651	0.9355	0.5431
	K3	0.9486	0.8837	0.4415
	K4	0.9176	0.8595	0.5865
	AZV1	0.9881	0.9052	0.1254
	AZV2	0.9631	0.9185	0.4531
	AZV3	0.9928	0.8821	0.0609
	AZV4	0.9985	0.9166	0.0184
	AZV5	0.9572	0.9076	0.4627
	AZS 1	0.9846	0.9591	0.3764
	AZS2	0.9751	0.9691	0.8081
	ASZ4	0.9954	0.9188	0.0565
	DN2S3	0.9853	0.9545	0.3222
	DN2S4	0.9854	0.9365	0.2293
	DN2Z4	0.9995	0.9181	0.0067
	DSZ4	0.9878	0.9319	0.1789
	ASN3	0.9908	0.9219	0.1185
	ASN4	0.9908	0.9171	0.1112
	DSN3	0.9813	0.9401	0.3117
	DSN4	0.9741	0.9295	0.3689
	DN2N3	0.9975	0.9048	0.0261
	DN2N4	0.9992	0.9131	0.0095
	ANS1	0.9731	0.9715	0.9478
	ANV1	0.9425	0.8948	0.5465
	ANV3	0.9887	0.8828	0.0966
	ANV4	0.9976	0.9085	0.0265
	AZN1	0.9952	0.9247	0.0639
	AZN2	0.9921	0.9193	0.0995
	AZN3	0.9966	0.9261	0.0463
	AZN5	0.9958	0.9235	0.0555
	ANZ2	0.9887	0.9141	0.1311
	ANZ3	0.9951	0.9401	0.0811
	ANZ4	0.9957	0.8923	0.0404
	ANN1	0.9952	0.9328	0.0708
	ANN2	0.9895	0.9314	0.1529

	ANN3	0.9968	0.9305	0.0455		KP0	0.8618	0.8366
ANN4	0.9855	0.9127	0.1666		KP1	0.9608	0.8128	0.2096
ANN5	0.9958	0.9371	0.0662	KA1	0.7837	0.7783	0.9753	
NVX	0.9979	0.9253	0.0282	H4	S5	0.9516	0.9095	0.5348
FW	0.9854	0.9605	0.3705		SCY6	0.9155	0.8719	0.6594
TOTOP	0.9628	0.9133	0.4296		BCY6	0.8536	0.7932	0.7081
SUMI	0.9952	0.8941	0.0457		VCY6	0.8712	0.8462	0.8381
TETS2	0.9451	0.9414	0.9366		K5	0.9306	0.8223	0.3908
IDC	0.9801	0.9637	0.5506		K6	0.9531	0.8654	0.3488
WP	0.9486	0.8837	0.4415		J	0.8641	0.7145	0.4764
PF	0.9613	0.9278	0.5357		ANV5	0.8671	0.8508	0.8906
WT	0.9566	0.9504	0.8743		NRINGS	0.9842	0.8871	0.1401
W6	0.9688	0.9146	0.3655		SHOTHER	0.9375	0.9033	0.6467
S6	0.8811	0.8703	0.9172		HMAX	0.9009	0.6951	0.3251
B5	0.9525	0.8608	0.3414		SSCH3	0.8946	0.8131	0.5638
B6	0.9089	0.8815	0.7688		SAACH	0.9512	0.7141	0.1706
V5	0.9694	0.8658	0.2279		SSSSCH	0.3951	0.2882	0.8498
V6	0.9377	0.9215	0.7928		SHCSATS	0.8215	0.5924	0.4381
K7	0.9614	0.8525	0.2621		SHAROM	0.9709	0.7508	0.1168
K8	0.9695	0.8243	0.1736		SPC4	BV	0.9725	0.7261

Appendix 3. Clustering of 1029 diverse compounds

Cluster	Members	Variation explained	Proportion explained	Second eigenvalue
N1	46	44.2065	0.9611	0.5858
N2	15	13.9663	0.9311	0.4987
N3	15	13.0423	0.8695	0.5795
N4	14	12.5807	0.8986	0.4083
N5	14	11.8714	0.8481	0.8892
N6	11	9.2783	0.8435	0.7222
N7	9	7.7103	0.8567	0.6288
N8	9	7.4488	0.8276	0.9035
N9	8	6.8944	0.8618	0.6881
N10	8	7.0281	0.8785	0.6847
N11	8	5.5782	0.6973	0.9961
N12	8	6.7319	0.8415	0.4523
N13	7	5.6734	0.8105	0.7507
N14	7	4.3811	0.6259	0.9746
N15	6	5.2692	0.8782	0.6882
N16	6	4.9684	0.8281	0.5074
N17	6	4.8336	0.8056	0.8432
N18	6	5.2931	0.8822	0.4115
N19	6	5.2584	0.8764	0.6231
N20	5	3.8355	0.7671	0.5241
N21	4	3.6853	0.9213	0.2889
N22	4	2.4384	0.6096	0.9888
N23	3	2.1977	0.7326	0.7168
N24	3	2.9701	0.9901	0.0268
N25	3	2.9955	0.9985	0.0033
N26	3	1.9115	0.6372	0.9815
N27	3	1.8209	0.6071	0.9315
N28	3	2.0201	0.6733	0.7263
N29	2	1.9316	0.9658	0.0684
N30	2	1.9241	0.9621	0.0759
N31	2	1.9961	0.9981	0.0039
N32	2	1.2113	0.6056	0.7887
N33	2	1.0074	0.5037	0.9926
N34	2	1.5112	0.7556	0.4888
N35	1	1	1	0
N36	1	1	1	0
N37	1	1	1	0

N6	IC1	0.5968	0.4021	0.6742		V0	0.9702	0.8231	0.1685
	IC2	0.6477	0.4705	0.6654		V1	0.9275	0.7851	0.3371
	SIC2	0.8101	0.5231	0.3982		V2	0.8468	0.5532	0.3428
	SIC3	0.9624	0.2533	0.0504		V3	0.7678	0.6721	0.7077
	SIC4	0.9457	0.3867	0.0886		AZV4	0.9098	0.8312	0.5343
	SIC5	0.8971	0.4878	0.2011		FW	0.6427	0.4176	0.6134
	SIC6	0.8376	0.5557	0.3655		KA1	0.8505	0.8304	0.8814
	CIC3	0.8464	0.5498	0.3413	N13	ASN2	0.8973	0.7215	0.3688
	CIC4	0.9221	0.4123	0.1325		KP3	0.8594	0.4992	0.2808
	CIC5	0.9195	0.3469	0.1232		KA2	0.9045	0.8036	0.4863
	CIC6	0.8931	0.3028	0.1535		KA3	0.8525	0.4126	0.2511
N7	SPC4	0.8903	0.7343	0.4129		PHIA	0.9012	0.5871	0.2393
	SPC5	0.9328	0.8089	0.3516		SHCSATS	0.6096	0.4053	0.6564
	SPC6	0.8352	0.7638	0.6976		SSSCH2	0.6489	0.4351	0.6213
	BPC4	0.8317	0.5494	0.3734	N14	NRINGS	0.7372	0.5873	0.6368
	BPC5	0.9381	0.6321	0.1685		NCIRC	0.7031	0.5811	0.7087
	BPC6	0.8862	0.6211	0.3004		HMAX	0.5945	0.2105	0.5136
	VPC4	0.7028	0.4744	0.5654		HMIN	0.5041	0.2304	0.6444
	VPC5	0.8551	0.5971	0.3596		SAACH	0.8481	0.3077	0.2195
	VPC6	0.8382	0.6175	0.4232		SHAROM	0.8615	0.3143	0.2021
N8	ASZ1	0.9113	0.6997	0.2953		SAASC	0.1325	0.0241	0.8889
	ASZ2	0.9722	0.6277	0.0746	N15	SCY3	0.9031	0.1961	0.1207
	ANZ1	0.7325	0.4331	0.4717		SCY4	0.8722	0.4141	0.2181
	ANZ2	0.9353	0.5869	0.1566		BCY3	0.8964	0.1903	0.1279
	DSZ1	0.8633	0.7608	0.5713		BCY4	0.8806	0.4067	0.2012
	DSZ2	0.9258	0.5721	0.1733		VCY3	0.8314	0.1485	0.1981
	DN2Z1	0.9555	0.6687	0.1343		VCY4	0.8855	0.3566	0.1779
	DN2Z2	0.8581	0.5525	0.3174	N16	SC3	0.8518	0.5333	0.3176
	SSBR	0.2948	0.1072	0.7898		SC4	0.8779	0.3644	0.1921
N9	DN213	0.9486	0.6484	0.1462		BC3	0.9161	0.4412	0.1501
	AS13	0.9024	0.7719	0.4279		BC4	0.8758	0.3704	0.1973
	ASN1	0.8956	0.7738	0.4616		VC3	0.7702	0.2949	0.3259
	ASN5	0.9115	0.7742	0.3919		VC4	0.6767	0.0995	0.3591
	DSN1	0.9493	0.7309	0.1886	N17	ASV2	0.9024	0.5901	0.2379
	DN2N1	0.9513	0.6538	0.1407		ASV5	0.2629	0.1304	0.8476
	DN2N5	0.9481	0.6472	0.1471		DSV2	0.9103	0.5471	0.1981
	AZN4	0.3876	0.1913	0.7573		DN212	0.8868	0.5394	0.2457
N10	MAX_IC	0.7312	0.6197	0.7071		AS12	0.9269	0.7243	0.2652
	I_ORB	0.9357	0.4516	0.1173		DS12	0.9443	0.5425	0.1218
	IC3	0.7664	0.5181	0.4848	N18	IC0	0.7613	0.5008	0.4782
	IC4	0.9011	0.3981	0.1643		SIC0	0.9316	0.6659	0.2047
	IC5	0.9544	0.3762	0.0731		SIC1	0.9369	0.4406	0.1128
	IC6	0.9749	0.3844	0.0408		CIC0	0.9055	0.6938	0.3086
	SI	0.9212	0.4974	0.1567		CIC1	0.9708	0.5931	0.0718
	NCLASS	0.8432	0.5736	0.3678		CIC2	0.7871	0.5858	0.5141
N11	SC5	0.8421	0.4769	0.3021	N19	SCY5	0.8927	0.4427	0.1926
	SC6	0.8958	0.2979	0.1484		SCY6	0.7873	0.3603	0.3325
	BC5	0.8801	0.4372	0.2132		BCY5	0.8972	0.4831	0.1989
	BC6	0.8883	0.2881	0.1569		BCY6	0.8972	0.2186	0.1316
	SUMDELI	0.5651	0.5294	0.9242		VCY5	0.8861	0.4442	0.2051
	SSF	0.4726	0.2975	0.7507		VCY6	0.8981	0.1976	0.1271
	GMIN	0.7632	0.4916	0.4657	N20	NELEM	0.6391	0.5323	0.7718
	KNOTP	0.2711	0.0696	0.7834		GMAX	0.7329	0.3766	0.4284
N12	B2	0.8165	0.7636	0.7763		SSCL	0.6396	0.3633	0.5661

N21	NUMHBA	0.8825	0.3623	0.1842	Appendix 5. Clustering of 2887 compounds				
	SHHBA	0.9414	0.3981	0.0973	Cluster	Members	Variation explained	Proportion explained	Second eigenvalue
	J	0.7727	0.3615	0.3561					
	JB	0.9797	0.2158	0.0259	T1	48	45.6682	0.9514	0.7301
N22	JX	0.9574	0.1697	0.0513	T2	21	19.3797	0.9228	0.4927
	JY	0.9755	0.2106	0.0311	T3	14	11.6125	0.8295	0.8171
	SDSCH	0.8785	0.1283	0.1394	T4	12	10.9466	0.9122	0.4211
	SHCSATU	0.4972	0.1058	0.5623	T5	11	9.1359	0.8305	0.9921
	SHVIN	0.8583	0.1282	0.1626	T6	11	7.3647	0.6695	0.9815
N23	SDSSC	0.2044	0.0436	0.8319	T7	10	8.7445	0.8744	0.6178
	XCH10	0.9513	0.2291	0.0632	T8	9	7.6291	0.8477	0.5576
	XVCH10	0.6476	0.1355	0.4077	T9	9	7.7142	0.8571	0.8348
N24	SAAAC	0.5988	0.2374	0.5261	T10	8	7.0956	0.8871	0.5248
	SHCHNX	0.9935	0.2682	0.0088	T11	8	5.4259	0.6782	0.9571
	NUMWHBD	0.9821	0.2735	0.0246	T12	7	6.4366	0.9195	0.3201
N25	SHWHBD	0.9944	0.2671	0.0076	T13	7	4.9436	0.7062	0.9061
	SHSSH	0.9989	0.0107	0.0011	T14	6	4.9361	0.8227	0.5209
	SSSH	0.9978	0.0113	0.0022	T15	6	5.1848	0.8641	0.7213
N26	NUMHBD	0.9988	0.0119	0.0012	T16	6	5.0117	0.8353	0.4615
	XCH8	0.9432	0.0228	0.0581	T17	5	4.2258	0.8452	0.4443
	XVCH8	0.9161	0.0265	0.0862	T18	5	3.7116	0.7423	0.9895
N27	STSC	0.0522	0.0084	0.9558	T19	5	3.5557	0.7111	0.9244
	VC5	0.8379	0.3085	0.2344	T20	5	4.6363	0.9273	0.3136
	VC6	0.8426	0.1987	0.1964	T21	5	3.9021	0.7804	0.7422
N28	KNOTPV	0.1403	0.0158	0.8735	T22	4	2.9563	0.7391	0.9659
	SSCH3	0.7748	0.3068	0.3249	T23	4	3.1266	0.7816	0.6816
	QV	0.8138	0.5158	0.3845	T24	4	3.3631	0.8407	0.6125
N29	SSSSCH	0.4314	0.0922	0.6263	T25	3	2.8434	0.9478	0.1178
	XCH7	0.9658	0.0594	0.0364	T26	3	2.2123	0.7374	0.6833
N30	XVCH7	0.9658	0.0773	0.0371	T27	3	1.9955	0.6652	0.9924
	XCH9	0.9621	0.0391	0.0395	T28	3	1.7525	0.5842	0.8144
N31	XVCH9	0.9621	0.0874	0.0416	T29	3	2.0999	0.7001	0.8568
	SDCH2	0.9981	0.1446	0.0023	T30	2	1.9971	0.9985	0.0029
N32	SHTVIN	0.9981	0.1441	0.0023	T31	2	1.9222	0.9611	0.0778
	SDDC	0.6056	0.0263	0.4051	T32	2	1.7785	0.8892	0.2215
N33	SDS	0.6056	0.0212	0.4029	T33	2	1.9597	0.9799	0.0403
	SSSSB	0.5037	0.0102	0.5014	T34	2	1.8271	0.9136	0.1729
N34	SSSS	0.5037	0.0183	0.5056	T35	2	1.9956	0.9978	0.0044
	SSI	0.7556	0.0951	0.2701	T36	2	1.6507	0.8254	0.3493
	SSSSSC	0.7556	0.3881	0.3993	T37	2	1.9654	0.9827	0.0346
N35	SSSPH	1	0.0036	0	T38	2	1.9991	0.9995	0.0011
N37	SAAS	1	0.0204	0	T39	2	1.9973	0.9986	0.0027
N38	SSSSP	1	0.0083	0	T40	2	1.9766	0.9883	0.0234
					T41	2	1.8534	0.9267	0.1466
					T42	2	1.9438	0.9719	0.0562
					T43	2	1.7366	0.8683	0.2634
					T44	2	1.8033	0.9016	0.1967
					T45	2	1.5357	0.7679	0.4643
					T46	2	1.6881	0.8441	0.3119
					T47	2	1.1454	0.5727	0.8546
					T48	2	1.0056	0.5028	0.9944
					T49	2	1.0007	0.5004	0.9993
					T50	2	1.6205	0.8103	0.3795

T51	1	1	1	0
T52	1	1	1	0
T53	1	1	1	0
T54	1	1	1	0
T55	1	1	1	0
T56	1	1	1	0

Appendix 6. Clustering of 2887 compounds

Cluster	T. I.	R^{2} with Own cluster	R^{2} with	
			Next closest	$1-R^{2}$ ratio
T1	IDW	0.9975	0.8656	0.0182
	MIDW	0.9487	0.9166	0.6158
	W	0.9965	0.8397	0.0221
	ID	0.9718	0.9143	0.3293
	HD	0.9484	0.9239	0.6777
	S0	0.9784	0.8355	0.1311
	S1	0.9831	0.8945	0.1598
	B0	0.9362	0.8262	0.3669
	B1	0.9094	0.8272	0.5241
	K0	0.9941	0.9101	0.0665
	AZV1	0.9454	0.9271	0.7482
	AZV3	0.9611	0.9135	0.4512
	AZV4	0.8831	0.8356	0.7112
	AZS1	0.9832	0.8137	0.0901
	AZS2	0.9719	0.8151	0.1521
	DN2S1	0.9257	0.9031	0.7666
	DN2S3	0.9894	0.8139	0.0571
	DN2S5	0.9296	0.8978	0.6893
	DN211	0.9359	0.8647	0.4734
	DN214	0.9876	0.9337	0.1866
	AS14	0.9921	0.8846	0.0685
	DS11	0.9092	0.8531	0.6185
	ASN4	0.9809	0.8548	0.1317
	DN2N2	0.9348	0.8471	0.4265
	DN2N3	0.9789	0.9396	0.3489
	DN2N4	0.9831	0.9397	0.2811
	ANS1	0.9838	0.8338	0.0973
	ANS2	0.9579	0.8677	0.3184
	ANV3	0.9447	0.9401	0.9238
	ANV4	0.9889	0.9128	0.1273
	AZN1	0.9841	0.8827	0.1362
	AZN2	0.9769	0.8654	0.1714
	AZN3	0.9891	0.8948	0.1051
	AZN5	0.9756	0.8755	0.1961
	AN11	0.8987	0.7058	0.3444
	AN13	0.9962	0.8945	0.0365
	AN14	0.9667	0.9538	0.7201
	AN15	0.9411	0.7692	0.2557
	ANN1	0.9954	0.8934	0.0435
	ANN2	0.9894	0.8705	0.0816
	ANN3	0.9955	0.9026	0.0464
	ANN5	0.9966	0.8972	0.0334
	NVX	0.9442	0.8527	0.3792
	KP0	0.8765	0.7832	0.5697
	KP1	0.9006	0.8226	0.5602
	KA1	0.8124	0.7921	0.9018
	SUMI	0.6082	0.5687	0.9084
	IDC	0.9901	0.8499	0.0657
T2	M1	0.9852	0.8821	0.1258
	M2	0.9842	0.8257	0.0909
	S2	0.9034	0.8526	0.6556

	S3	0.9501	0.7992	0.2483	T6	XVP10	0.6821	0.3031	0.4564
	S4	0.8885	0.8706	0.8619		IC0	0.7402	0.6088	0.6643
	B3	0.8004	0.7781	0.8996		IC1	0.5673	0.4751	0.8243
	K1	0.9718	0.9521	0.5883		SIC0	0.8458	0.4191	0.2654
	K2	0.9619	0.8098	0.2003		SIC1	0.9444	0.4233	0.0964
	K3	0.9433	0.7414	0.2191		CIC0	0.7744	0.5665	0.5203
	K4	0.8691	0.8088	0.6852		CIC1	0.9286	0.4364	0.1267
	AZV2	0.9161	0.8721	0.6565		CIC2	0.7573	0.6121	0.6256
	DN2S4	0.9891	0.8561	0.0759		HMIN	0.3701	0.2194	0.8071
	ASN3	0.9774	0.9065	0.2421		SSCH3	0.3804	0.1269	0.7097
	ANV1	0.9004	0.8362	0.6081		SHCSATS	0.5111	0.3561	0.7591
	AN12	0.9181	0.9014	0.8305		SSSCH2	0.5452	0.3254	0.6742
	ANN4	0.9658	0.9128	0.3924	T7	IC2	0.5831	0.4345	0.7373
	TOTOP	0.8441	0.7181	0.5529		SIC2	0.7714	0.5891	0.5562
	TETS2	0.7565	0.6224	0.6449		SIC3	0.9631	0.3463	0.0564
	WP	0.9428	0.7405	0.2204		SIC4	0.9629	0.3705	0.0591
	PF	0.9574	0.8053	0.2186		SIC5	0.9232	0.4637	0.1431
	WT	0.9544	0.9222	0.5863		SIC6	0.8777	0.5177	0.2535
T3	S5	0.9113	0.7952	0.4331		CIC3	0.8737	0.5735	0.2962
	S6	0.8982	0.7318	0.3797		CIC4	0.9393	0.4604	0.1125
	B4	0.8202	0.7753	0.8002		CIC5	0.9362	0.3981	0.1059
	B5	0.9082	0.7076	0.3141		CIC6	0.9139	0.3554	0.1336
	B6	0.8349	0.6558	0.4796	T8	SPC4	0.8458	0.7284	0.5679
	V4	0.7811	0.7211	0.7851		SPC5	0.9138	0.8123	0.4594
	V5	0.8564	0.6481	0.4081		SPC6	0.8395	0.7782	0.7235
	V6	0.7781	0.6404	0.6171		BPC4	0.8222	0.5503	0.3954
	K5	0.8659	0.7948	0.6532		BPC5	0.9294	0.6275	0.1896
	K6	0.8901	0.7661	0.4701		BPC6	0.8981	0.6269	0.2732
	K7	0.8006	0.6552	0.5782		VPC4	0.7267	0.4752	0.5208
	AZV5	0.8821	0.8407	0.7398		VPC5	0.8387	0.5576	0.3646
	ANV5	0.7417	0.6811	0.8099		VPC6	0.8148	0.5663	0.4271
	SHOTHER	0.6437	0.5289	0.7563	T9	MAX_IC	0.7486	0.4545	0.4608
T4	HV	0.9749	0.7683	0.1083		I_ORB	0.9426	0.4577	0.1058
	IC_BAR	0.7761	0.5433	0.4906		MAX_ORB	0.6145	0.5087	0.7847
	ASV1	0.9193	0.7691	0.3494		IC3	0.7601	0.5049	0.4846
	DSV1	0.9692	0.7915	0.1475		IC4	0.8989	0.4023	0.1691
	DN2S2	0.9052	0.6782	0.2945		IC5	0.9518	0.3913	0.0791
	AS11	0.9382	0.9095	0.6831		IC6	0.9706	0.3979	0.0489
	AS15	0.9402	0.9066	0.6401		SI	0.9369	0.4928	0.1245
	DSN2	0.9115	0.7176	0.3134		NCLASS	0.8903	0.5741	0.2576
	ANV2	0.8845	0.6211	0.3047	T10	DN213	0.9521	0.6528	0.1381
	KP2	0.9241	0.7199	0.2714		AS13	0.9181	0.7743	0.3627
	KA2	0.8472	0.8066	0.7901		ASN1	0.9118	0.7761	0.3938
	IDCBAR	0.9564	0.7941	0.2118		ASN5	0.9261	0.7766	0.3309
T5	K8	0.7734	0.6362	0.6228		DSN1	0.9542	0.7365	0.1737
	K9	0.8634	0.4901	0.2679		DN2N1	0.9543	0.6579	0.1336
	K10	0.8844	0.4191	0.1989		DN2N5	0.9514	0.6517	0.1396
	XP7	0.8037	0.7364	0.7448		AZN4	0.5277	0.2921	0.6672
	XP8	0.9144	0.5584	0.1939	T11	NELEM	0.6339	0.4302	0.6424
	XP9	0.9032	0.4163	0.1658		SUMDELI	0.8232	0.2471	0.2348
	XP10	0.8174	0.3211	0.2689		GMAX	0.8283	0.2056	0.2161
	XVP7	0.8349	0.6082	0.4214		SDO	0.4891	0.0983	0.5666
	XVP8	0.8578	0.4498	0.2585		NUMHBA	0.8497	0.2956	0.2134
	XVP9	0.8013	0.3441	0.3031		SHHBA	0.9335	0.2809	0.0925

S10										S. C. BASAK et al.
T41	NHBINT9	0.9267	0.0161	0.0745		SDSSSP	0.5727	0.0101	0.4316	
	SHBINT9	0.9267	0.0251	0.0752	T48	SAAN	0.5028	0.0502	0.5235	
T42	NHBINT3	0.9719	0.1407	0.0327		SAASN	0.5028	0.0059	0.5002	
	SHBINT3	0.9719	0.1423	0.0328	T49	SSSS	0.5004	0.0151	0.5073	
T43	NHBINT6	0.8683	0.0387	0.1371		SDSSS	0.5004	0.0046	0.5019	
	SHBINT6	0.8683	0.0712	0.1418	T50	ANZ1	0.8103	0.5172	0.3931	
T44	NHBINT4	0.9016	0.1112	0.1107		SSBR	0.8103	0.2062	0.2391	
	SHBINT4	0.9016	0.0821	0.1072	T51	SSSPH	1	0.0028	0	
T45	NHBINT5	0.7679	0.0441	0.2428	T52	SAAO	1	0.0106	0	
	SHBINT5	0.7679	0.0704	0.2497	T53	SSSSN	1	0.0175	0	
T46	NHBINT7	0.8441	0.0625	0.1664	T54	SDDSSS	1	0.0234	0	
	SHBINT7	0.8441	0.1861	0.1916	T55	SSSSP	1	0.0051	0	
T47	SSSO	0.5727	0.1421	0.4981	T56	SAANH	1	0.0062	0	

[^0]: * This paper is dedicated to Professor Nenad Trinajstić's $65^{\text {th }}$ birthday with best wishes for continued success in applications of Chemical Graph Theory.
 ** Author to whom correspondence should be addressed. (E-mail: sbasak@nrri.umn.edu)

[^1]: ${ }^{(a)}$ Only the first 23 clusters are listed, ordered according to the latter database results (clusters T1-T23, right-hand column, top to bottom).

