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Valence connectivities in hydrogen suppressed graphs are characterized by 10-tuples of quanti-

ties mij where mij is the number of edges that connect vertices of valences i and j. It is shown

which 10-tuples are realizable by monocyclic graphs and this finding is used to compare

discriminative properties of the Zagreb and modified Zagreb indices.
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INTRODUCTION

Connectivity of atoms in the molecule is conveniently

described by the corresponding molecular graph. The at-

oms are represented by vertices and bonds by edges of

graphs. Such approach enables one to relate properties of

molecules to their connectivities and has been a subject

of intensive research in the last few decades.1,2

Molecular graphs can be numerically characterized

in a variety of ways. The simplest numbers ascribed to a

graph are the number of its vertices and its edges. Each

vertex x in a given graph G can be characterized by the

number of its neighboring vertices, dG(x), which is cal-

led a vertex degree and which obviously parallels the

chemical notion of the valence of atoms.

Connectivity of vertices in a graph can be further

characterized by specifying the numbers mij of edges that

connect (adjacent) vertices of degrees i and j. Obviously,

the unique sequence of mijs is ascribed to any graph, but

the opposite generally does not hold, e.g. there is no graph

with m12 = 1 and all other mij being equal to zero.

This nontrivial problem has been recently attacked

in a series of papers. Firstly, the problem of the existence

of graphs with a given sequence of mijs for i, j =1,2,4 was

solved3 and after that it was generalized for i, j =1,2,3,4.4

The algorithms obtained are rather involved, but for spe-

cial classes of graphs one should hope to develop partic-

ular and faster algorithms. Indeed, such an algorithm

was developed for connected acyclic graphs (trees) with

i, j =1,2,3,4.5

In this paper, monocyclic graphs, i.e. connected graphs

having only one cycle and an arbitrary number of trees

attached to it are studied.
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In the second section basic definitions and notations

are introduced and in the third section necessary and suf-

ficient conditions of mijs for the existence of monocyclic

graph(s) are determined. These conditions are summa-

rized in Theorem 5. Based on this theorem and Theo-

rems 6–8, an efficient generating algorithm is developed

that gives all mij sequences corresponding to monocyclic

graphs with a given number of vertices. Finally, in the

fifth section, this algorithm is utilized to test discrimina-

tive properties of the Zagreb and modified Zagreb indi-

ces in monocyclic graphs.

PRELIMINARIES

Here we consider connected graphs with the maximal de-

gree at most 4 and with a finite number of vertices. Fur-

ther, we restrict our attention to monocyclic graphs, i.e. to

the graphs having only one cycle. The set of all mono-

cyclic graphs is denoted by T.

To each graph G�T a unique sequence

(m11, m12, m13, m14, m22, m23, m24, m33, m34, m44)

can be associated in such a way that in graph G there are

exactly mij edges that are adjacent with vertices of de-

grees i and j. In this way, a function �:T�N 0
10 is defined,

where N 0
10 is the set of all 10-tuples of nonnegative inte-

gers (i.e. N0 = N��0�, where N is the set of natural num-

bers). It can be easily seen that this function is not a surjec-

tion (or mapping onto), e.g. there is no graph G�T such

that m11 = 4 and m12 = m13 = m14 = m22 = m23 = m24 = m33 =

m34 = m44 = 0.

Therefore, it is of interest for chemistry to find a nec-

essary and sufficient condition for an arbitrary sequence

(m11, m12, m13, m14, m22, m23, m24, m33, m34, m44) to belong

to the set �(T). In the second section, we find these nec-

essary and sufficient conditions.

The following equation: m11 + m12 + m13 + m14 +

m22 + m23 + m24 + m33 + m34 + m44 = n holds for monocy-

clic graphs with n vertices. In the fourth section, we use the

result of the previous sections to find a fast algorithm that

generates all the sequences (m11, m12, m13, m14, m22, m23,

m24, m33, m34, m44)� � for prescribed n = �mij�N (T).

Note that if we try to derive these sequences (m11,

m12, m13, m14, m22, m23, m24, m33, m34, m44) explicitly, we

would need to construct all trees with maximal degrees

smaller than or equal to 4. It can be easily shown that

this is a nonpolynomial problem. Using our theorems, we

can generate these sequences in polynomial time. This is

a key feature of our algorithm, because one of the most

important goals of theoretical computer science is to re-

place as many nonpolynomial algorithms as possible by

polynomial ones.

This algorithm promises important chemical applica-

tions, e.g. as explained in the fifth section, it enables a

comparison of discriminative properties of the Zagreb and

modified Zagreb indices.

57 years ago, chemists6 noticed that information given

by a graph can be compressed in a single number, the so

called molecular descriptor. Of course, there is an infi-

nite number of ways to do this and only those descriptors

which correlate well with physical, chemical and biologi-

cal properties of molecules are of interest. These indices,

the so called topological inidices, have found enormous

applications in QSPR (Quantitive Structure Property Re-

lationship) and QSAR (Quantitive Structure Activity Re-

lationship) and other studies, and the reader is referred

to recent monographs for an overview.7,8 Many of these

indices are uniquely defined by a sequence (m11, m12, m13,

m14, m22, m23, m24, m33, m34, m44). A well known such in-

dex is the Zagreb index9 defined by

M2(G) =

� �x y E, ( )�
�

G

dG(x) dG(y) =
1 4� � �
�
i j

i � j � �ij(G),

where �ij(G) denotes the number of edges that connect

vertices of degree i and degree j. Properties and applica-

tions of this index and its relationship with other topo-

logical indices have been recently reviewed.10

The following modification of the Zagreb index, the

so called modified Zagreb index, is proposed:10,11

*M2(G) =

� �x y E d x d y, ( ) ( ) ( )�
�

G G G

1
=

1 4� � �
�
i j

ij

ij

m ( )G

Obviously, if two graphs G and G' have equal sequences

�(G) and �(G'), they cannot be discriminated by any of

the two above indices. On the other hand, one or/and the

other of these indices can be the same for nonequal se-

quences. Using the algorithm developed in the fourth

section, in the fifth section we analyze how well these

indices distinguish sequences m,m'��(T).

Herein, we use the standard graph theory terms and

notations. Let G be a graph with vertex set V(G) and edge

set E(G). Let A,B � V(G) where A and B are disjoint sets.

By G	A
 we denote the subgraph of G induced by the vertex

set A, by EG(A) we denote the set of edges of G with both

adjacent vertices in A, by EG(A,B) we denote the set of

edges of G with one adjacent vertex in A and the other in B.

We also put eG(A) =�EG(A)� and eG(A,B) =�EG(A,B)�.

Let G be a graph and S a set of edges in complement of

G. By G + S we denote the graph obtained from G by

adding the set S.

We also define functions �ij: T�N0, for each 1 � i �
j � 4 by �ij(G) = mij if and only if exactly mij edges con-

nect vertices with degrees i and j in graph G. Also by An

we denote the set of all monocyclic graphs with n verti-

ces having the maximal degree at most 4.

The edge connecting vertex with itself is called a loop

and the pair of edges having the same terminal vertices

are called parallel edges. At the end of this section, we

give the following definition:
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Definition 1. – Let p,q,r�N0 and n3,n4�N such that

p+q+r = n3+n4. Set F (n3, n4, p, q, r) is the set of graphs

G such that V(G) = N3 � N4; N3 = �x1,…, xn3
�; N4 = �y1,

y2…, yn4
�; eG(N3) = p; eG(N3, N4) = q; eG(N4) = r; dG(x)

� 3, for each x � N3; and dG(y) � 4, for each y � N4. Fur-

ther, G is a simple graph except in the following cases in

which it has one of the following: a single loop or a sin-

gle pair of parallel edges:

1) (n3 = 1) and (p = 1). There is a single loop adja-

cent to x1.

2) (n4 = 1) and (r = 1). There is a single loop adja-

cent to y1.

3) (n3 = 2) and (p = 2). There is a pair of parallel

edges adjacent to x1 and x2.

4) (n4 = 2) and (r = 2). There is a pair of parallel

edges adjacent to y1 and y2.

5) (n3 = 1) and (p = 0) and (r = 0). There is a pair

of parallel edges adjacent to x1 and y1.

6) (n4 = 1) and (p = 0) and (r = 0). There is a pair

of parallel edges adjacent to x1 and y1.

Set F (n3, n4, p, q, r) is the auxiliary family of

graphs that will be needed to obtain further results.

NECESSARY AND SUFFICIENT CONDITIONS OF
VALENCE CONNECTIVITIES FOR THE EXISTENCE
OF A MONOCYCLIC MOLECULAR GRAPH

In this section, we give a mathematical background of

the algorithm that will be developed in the next section,

i.e. we give the necessary and sufficient conditions of mij

for the existence of a monocyclic molecular graph. We

start with few lemmas:

Lemma 2. – Let k,l � N and let a1,a2,…,ak, b1,…,b1�N0

and let

max �b1,…,b1� – min �b1,…,b1� � 1

q � min � �min , ,a l bi i

i

l

i

k

��
��
�

�

�
�
�11

,

then there is a simple bipartite graph G with q edges and

partition classes A = �x1,…,xk� and B = �y1,…,yl� such

that dG(xi) � ai for each i = 1,…,k and dG(yi) � bi for

each i = 1,…,l.

Proof. We prove the claim by induction on k. If k = 1,

then the claim is trivial. Let us prove the inductive step.

Distinguish three cases:

1) min l d a bk i

i

l

, ( ),G

�
�


�
�

�
�
�1

= l.

In this case, we have q – l � min � �min , ,a l bi i

i

l

i

k

�


�
�

�
�
���

�

�� 1
11

1

,

therefore there is, by inductive hypothesis, a bipartite

graph G' with partition classes �a1,…,ak–1� and B such

that dG(xi) � ai for each i = 1,…,k –1 and dG(yi) � bi – 1

for each i = 1,…,l. Graph G = G' + �akb1,…,akbl� has the

required properties.

2) min l d a bk i

i

l

, ( ),G

�
�


�
�

�
�
�1

= dG (ak).

Without loss of generality, we may assume that b1 � b2 �
… � bl. In this case, we have

max�b1 – 1,…, bdG(xk) – 1, bdG(xk)+1,…,bl� –

min�b1 – 1,…, bdG(xk) – 1, bdG(xk)+1,…,bl� � 1;

q – dG(ak) �min � �min , ,
( )

( )

a l b bi i

i

d x

i d x

l

i

i

k k

k

� �


�
�

��

�

� � ��

�

� �� 1
1 11

1 G

G

�
�

��
,

and therefore there exists, by inductive hypothesis, a bi-

partite graph G' with partition classes �a1,…,ak–1� and B

such that dG(xi) � ai for each i = 1,…,k – 1, and dG(yi) �
bi – 1 for each i = 1,…, dG (xk), and dG(yi) � bi for each i

= dG (xk) + 1,…, l. Graph G = G' + �akb1,…, akbdG(xk)�
has the required properties.

3) min l d a bk i

i

l

, ( ),G

�
�


�
�

�
�
�1

= bi

i

l

�
�

1

.

This case is trivial.

Lemma 3. – Let p,q,r � N0 and n3,n4 � N such that

p+q+r = n3+n4. If

( ) ( ) ( )

( ) (

p n r n p r n n

q n p q

� � � � � �
� � �

3 4 3 4

3

1

3 2

and and

and and 4 24n r�
�

�
�

�

�
�)

,

then F (n3, n4, p, q, r) � �.

Proof. Let us describe a graph G � F (n3, n4, p, q, r). If

n3 = 1 and p = 0, then G	N3
 is a graph with no edges; if

n3 = 1 and p = 1 then G	N3
 is a graph with a single ver-

tex and a loop; if n3 = p and n3 = 2, then G	N3
 is a graph

with two vertices and two parallel edges adjacent to

them; if n3 = p and n3 � 2, then G	N3
 is a cycle; if n3 � 2

and p �
n3

2
, then G	N3
 is a graph such that  (G(N3)) � 1;

if n3 � 2 and
n3

2
! p � n3 – 1, then G	N3
 is an acyclic

graph such that �(G(N3)) � 1 and that  (G(N3)) � 2.

If n4 = 1 and r = 0, then G	N4
 is a graph with no ed-

ges; if n4 = 1 and r = 1, then G	N4
 is a graph with a single

vertex and a loop; if n4 = r and n4 = 2, then G	N4
 is a

graph with two vertices and two parallel edges adjacent to

them; if n4 = r and n4 � 2, then G	N4
 is a cycle; if n4 � 2

and r �
n4

2
, then G	N4
 is a graph such that  (G(N4)) � 1;
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if n4 � 2 and
n4

2
! r � n4 – 1, then G	N4
 is an acyclic

graph such that �(G(N4)) � 1 and that  (G(N4)) � 2.

We distinguish three cases:

1) (n3 = 1) and (p = 0) and (r = 0).

Note that q = n3 + n4 – p – r = n4 + 1 � 3n3 – 2p = 3,

hence 1 � n4 � 2. If n4 = 1, then G is the graph with two

vertices adjacent with two parallel edges; and if n4 = 2,

then G is the graph such that V(G) = �x1, y1, y2� and

E(G) = �x1y1, x1y1, x1y2�.

2) (n4 = 1) and (p = 0) and (r = 0).

This case can be solved analogously as the previous one.

3) 	(n3 � 1) and (n4 � 1)
 or (p � 0) or (r � 0).

Note that max �4 – dG(y1),…, 3 – dG(yn4
)� – min �4 –

dG(y1),…, 4 – dG(yn4
)� � 1. So, from the previous

Lemma, it follows that it is sufficient to prove that

q � min � � " #min ( ), , ( )3 44

11

43

� �


�
�

�
�
���

�� d x n d yi i

i

n

i

n

G G .

Note, that max �3 – dG(x1),…, 3 – dG(xn3
)� – min �3

– dG(x1),…, 3 – dG(xn3
)� � 1. Therefore, the above ex-

pression is equivalent to

q � min � � " #min ( ) , ( ) ,3 4 3 4

11

43

� �


�
�

�
�
���

�� d x d y n ni i

i

n

i

n

G G .

Simple computation shows that this is equivalent to

q � min �3n3 – 2m33, 4n4 – 2m44, n3n4�.

It remains to prove that q � n3n4. Distinguish three

subcases:

3.1) (p � 0) or (r � 0).

Note that (n3 – 1)(n4 – 1) � 0, hence q = n3 + n4 – p – q –

r � n3 + n4 – 1 � n3n4.

3.2) (n3 � 1) and (n4 � 1).

Suppose to the contrary that q > n3n4. Note that q =

n3 + n4 – p – r � n3 + n4. It follows that n3n4 ! n3 + n4.

Now, we have 2n3 ! n3n4 ! n3 + n4 and 2n4 ! n3n4 ! n3 +

n4, which implies n3 ! n4 and n4 ! n3, which is a contra-

diction.

Lemma 4. – Let p,q,r � N0 and n3,n4 � N such that p + q

+ r = n3 + n4. If

( ) ( ) ( )

( ) (

p n r n p r n n

q n p q

� � � � � �
� � �

3 4 3 4

3

1

3 2

and and

and and 4 24n r�
�

�
�

�

�
�)

,

then there is at least one connected graph in F (n3, n4, p,

q, r).

Proof. Let G' be a graph constructed in the previous

Lemma. Let G
�

be a set of graphs G'' � F (n3, n4, p, q, r)

and such that G''	N3
 = G'	N3
 and G''	N4
 = G'	N4
. Note

that G
�

is nonempty, since at least G' is in G
�

. Let G be a

graph in G
�

with the smallest number of connected com-

ponents. It remains to prove that G is connected. Sup-

pose the contrary. Then, there is at least one component

C (in G) and an edge e such that:

a) e is not one of parallel edges;

b) e � EG (N3, N4);

c) e is contained in a cycle.

Denote e = xy, such that x � N3 and y � N4. Let C ' be

any other component. Distinguish three cases:

1) V(C ') � N3.

Let c � V(C ') be an arbitrary vertex. Graph G – xy + yc

is in G
�

and it has a smaller number of components than

G, which is a contradiction.

2) V(C ') � N4.

Let c � V(C ') be an arbitrary vertex. Graph G – xy + xc

is in G
�

and it has a smaller number of components than

G, which is a contradiction.

3) V(C ') $ N3 � � and V(C ') $ N4 � �.

There is an edge x'y' such that x' � N3 and y' � N4 in

C '. Graph G – xy + x'y' + xy' + x'y is in G
�

and it has a

smaller number of components then G, what is a contra-

diction.

We have obtained a contradiction in each case, so

our claim is proved.

Now, we shall prove four theorems that cover four

different cases:

1) m13 + m23 + m33 + m34 � 0 and m14 + m24 + m34

+ m44 � 0;

2) m13 + m23 + m33 + m34 = 0 and m14 + m24 + m34

+ m44 � 0;

3) m13 + m23 + m33 + m34 � 0 and m14 + m24 + m34

+ m44 = 0;

4) m13 + m23 + m33 + m34 = 0 and m14 + m24 + m34

+ m44 = 0.

Theorem 5. – Let m = (m11, m12, m13, m14, m22, m23, m24,

m33, m34, m44) � N such that m13 + m23 + m33 + m34 � 0

and that m14 + m24 + m34 + m44 � 0. There is a molecular
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graph G such that �(G) = m if and only if the following

holds:

( ) ( )
( ) ( , ,
m m m m
m n n n N

11 12 23 24

22 2 3 4

0 0
0

� � � �
� �

and or
and

[
] 0

33 3 33 24 3

44 4

0) ( )

( ) ( )
( )

and

and and and
a

x

m n m x m n
m n

�

� � � �
� nd

and and
(

( )

( )

m x m n

m m m x n n
m +m

44 23 4

33 34 44 3 4

33 4

� � �

� � � � �
4 3 4

33 44 23 3 4

33 44

1

1

� �

� � � � � �
� � �

n +n

m m x m n n
m m x

)

( )
(
and and

m n n

n m n m

24 3 4

3 34 4 33

1

1 0

� � �
� � �

)

(( ) (( ) ( )))

((

and or and

and n m n m

n m n

4 34 3 44

3 33 3

1 0

2

� � �
� !

) (( ) ( )))

(( ) ( ))

or and

and or and or

and or or

(( )
( ))

(( ) ( ) ( )

n
m n

n x m m

4

44 4

3 24 22

2

1 0 1

�
!

� � � � )
(( ) ( ) ( ))

(( ) ( )

and
or or

and or

n x m m

n n

4 23 22

3 4

1 0 1

1 1

� � � �

� � or or
or

( )
( ) ( ))

x m
x m m

� �
� � �

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

23

24 22

0
0 2

�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

,

where

n2 = (m12 + 2m22 + m23 + m24)/2

n3 = (m13 + m23 + 2m33 + m34)/3

n4 = (m14 + m24 + m34 + 2m44)/4

x = (m23 + m24 – m12)/2.

Proof. Let us first prove the necessity. We shall define

graph G with the required properties. Note that: m12 +

2m22 + m23 + m24 % m23 + m24 – m12 (mod 2), therefore

x � N0. By a tedious check of twelve inequalities, it can

be proved that

max �x – m24, 0� �

min

x n n m m
m

n m x m

n n m m

, , , ,3 4 33 44
23

4 44 23

3 4 33 4

1
2

1

� � � � � � �

� � � � 4 23
3 33

2

� �
�




�
�

�
�

�

�
�

�
�x m

n m,

.

Hence, by putting p' = max �x – m24, 0� � N0, we get

max �x – m24, 0� � p' �

min.

x n n m m
m

n m x m

n n m m

, , , ,3 4 33 44
23

4 44 23

3 4 33 4

1
2

1

� � � � � � �

� � � � 4 23
3 33

2

� �
�




�
�

�
�

�

�
�

�
�x m

n m,

.

Again, by a tedious check of eight inequalities, it can be

proved that

max �0, p' + x – m23� �
min �x – p', p' – x + m24, n4 – m44, n3 +

n4 – 1 – m33 – m44 – p'�.

Therefore, by putting r' = max �0, p' + x – m23� � N0,

we get

max �0, p' + x – m23� �
r' � min �x – p', p' – x + m24, n4 – m44, n3 +

n4 – 1 – m33 – m44 – p'�.

Since x � p' + r', it follows that q' = x – p' – r' � N0. Denote

p = m33 + p', q = m34 + q', and r = m44 + r'. Note that

( ) ( ) ( )

( ) (

p n r n p r n n

q n p q

� � � � � �
� � �

3 4 3 4

3

1

3 2

and and

and and 4 24n r�
�

�
�

�

�
�)

,

hence there is a connected graph G' � F (n3, n4, p, q, r)

constructed in the previous lemma. Let us select p' edges

in EG'(N3), q' edges in EG'(N3, N4) and r' edges in EG'(N4)

such that the remaining graph is simple. Note that this is

always possible, because

( ) ( )
( )

(

m n m n
m m m n n

m m

33 3 44 4

33 34 44 3 4

33

� �
� � � �

�

and and

and 44 3 4 3

34 4 33

1 1
0

2

� � � �
� �

n n n
m n m

m

) (( )
(( ) ( )))

(

and or
and

and 33 34 3 34 34 4

3 34 4

2

1

� � � �
� �

m n m m n

n m n

) ( )

(( ) (( )

and

and or and ( )))

(( ) (( ) ( )))

((

m

n m n m

n

33

4 34 4 44

3
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1 0

�
� � �

�
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and 2 2

2

33 3 4

44 4

33 34 3

) ( )) (( )
( ))

( )
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m n n
m n
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! �
!
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�

�

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�

.

Let G'' be a graph obtained by replacing each of the se-

lected edges by a path of length 2, by adding to each

vertex x in N3 exactly 3 – dG'(x) neighbors of degree 1,

and by adding to each y vertex in N4 exactly 4 – dG'(y)

neighbors of degree 1. Note that: 3n3 – 2p – q � m23 –

2p' – q' � 0 and that: 4n4 – 2r – q � m24 – 2r' – q' � 0,

therefore it is possible to select m23 – 2p' – q' edges that

connect vertices of degrees 1 and 3; and to select m24 –

2q' – r' edges that connect vertices of degrees 1 and 3.

Let G''' be a graph obtained by replacing each of these

vertices by a path of length 2. Note that:

�(G''') =

(m11, m12, m13, m14, 0, m23, m24, m33, m34, m44)

Distinguish three cases:

1) G''' is a simple graph.

VALENCE CONNECTIVITIES REALIZABLE BY MONOCYCLIC GRAPHS 485

Croat. Chem. Acta 77 (3) 481–490 (2004)



If m22 = 0, it is sufficient to take G = G'''. Otherwise, de-

note by z an arbitrary vertex of degree 2 and denote

neighbors of z by z' and z''. Graph G is defined by

V(G) = V(G''') � �z0, z1,…, zm22
�\ �z�

E(G) =

E(G''') � �z'z0, z0z1, z1z2,…, zm22–1zm22
, zm22

z''�\

�z'z, z''z�

2) G''' contains no loops and a single pair of paral-

lel edges.

We have one of the following two subcases:

2.1) (n3 = 1) and (x – m24 � 0), and vertices adjacent

to parallel edges have degrees 2 and 3.

2.2) (n4 = 1) and (x – m23 � 0), and vertices adjacent

to parallel edges have degrees 2 and 4.

In both of these subcases denote by z a vertex of degree

2 adjacent to these parallel edges and by z' another ver-

tex adjacent to these edges. Graph G is defined by

V(G) = V(G''') � �z0, z1,…, zm22
�\�z�

E(G) =

E(G''') � �z'z0, z0z1, z1z2,…, zm22–1zm22
, zm22

z'�\

�z'z, z'z�.

3) G''' contains no loops and it has two pairs of

parallel edges.

We have (n3 = 1) and (n4 = 1) and (x – m23 � 0) and (x –

m24 � 0). One pair of parallel edges is adjacent to verti-

ces of degree 2 (denote it by z) and 3 (denote it by z')

and the other is adjacent to vertices of degree 2 (denote

it by w) and 4 (denote it by w'). Note that, in this case,

m22 � 2. Graph G is defined by

V(G) = V(G''') � �w0, w1���z0, z1,…, zm22 – 1�\�z,w�

E(G) =

E(G''') � �z'z0, z0z1, z1z2,…, zm22–2zm22–1z',

w'w0, w0w1 w1w'�\�z'z, z'z, w'w, w'w�

All the cases are exhausted and the necessity is proved.

Now, let us prove sufficiency. Let G be a graph with

the required properties. Note that G has nj vertices of de-

gree j, for each j = 2,3,4, so indeed n2, n3, n4 � N0. Since

G is connected and n3, n4 � 0, it follows that 	(m12 + m23

+ m24 � 0) or (m22 = 0)
 and that m11 = 0. Since G is sim-

ple, it follows that ((n3 � 1) or ((m34 � n3) and (m33 =

0))); and that ((n4 � 1) or ((m34 � n4) and (m44 = 0))); and

that ((n3 � 2) or (m33 ! n3)) and ((n4 � 2) or (m44 ! n4)).

Denote by Ni the set of vertices of degree i (in G) for

each i = 2,3,4. Note that G	N3
 and G	N4
 have at most

one cycle and not both of them contain a cycle. Hence,

m33 � n3, m44 � n4 and m33 + m44 � n3 + n4 – 1. Denote

by P the set of all maximal induced paths in G such that

its all interior vertices have degree 2 (in G). Denote by

Pij, i � j the set of paths in P such that its terminal verti-

ces have degrees i and j. Note that P is partitioned in the

sets P13, P14, P33, P34 and P44. Denote P' = P33 � P34 �
P44. Note that there are exactly x paths in P', so indeed x

� 0. Let G' be a graph obtained by a contraction of all

paths in P' to a single edge. Graph G'	N3 � N4
 is a

monocyclic graph, therefore m33 + m34 + m44 + x = n3 +

n4. Note that G'	N3
 and G'	N4
 have at most one cycle

and not both of them contain a cycle, therefore

n3 + n4 � m33 + &P33& + m44 – 1 � m33 + m44 +

(x – m24) – 1

n3 + n4 � m33 + &P44& + m44 – 1 � m33 + m44 +

(x – m23) – 1

Let G'' be a graph obtained by a contraction of all

paths in P33 to a single edge. Since G''	N3
 has at most

one cycle, it follows that n3 � m33 + &P33& � m33 + (x –

m24). Also if n3 = 1 and m22 = 0, then 0 = &P33& � x – m24,

hence (n3 � 1) or (x – m24 � 0) or (m22 � 1).

Analogously, let G''' be a graph obtained by a con-

traction of all paths in P44 to a single edge. Since G'''	N4

has at most one cycle, it follows that n4 � m44 + &P44& �
m44 + (x – m23). Also, if n4 = 1 and m22 = 0, then 0 = &P44&
� x – m23, hence (n4 � 1) or (x – m23 � 0) or (m22 � 1).

Analogously, it can be proved that

(n3 � 1) or (n4 � 1) (x – m23 � 0) or (x – m24 � 0)

or (m22 � 2).

This proves the theorem.

Let us prove:

Theorem 6. – Let m = (m11, m12, 0, m14, m22, 0, m24, 0, 0,

m44) � N 0
10 such that m14 + m24 + m44 � 0. There is a

monocyclic molecular graph G such that �(G) = m if and

only if

( ) (( ) ( ))
( , ) )

(

m m m m
n n

11 22 12 24

2 4 0

0 0 0� � � �
�

and or and

and

N

x m x n n
m

n

� � � �
!

�

0 2
2

1

44 4 4

44

4

) ( ) (( )
( ))

(( ) (

and and or

and or ( ) ( )))m m22 440 0� �

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

and

where

n2 = (m12 + 2m22 + m24)/2

n4 = (m14 + m24 + 2m44)/4

x = (m24 – m12)/2.
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Proof. First let us prove the necessity. We shall define

graph G with the required properties. Note that m12 +

2m22 + m24 % m24 – m12 (mod 2), hence x � N0. Distin-

guish three cases:

1) n4 = 1.

Let G' be the graph defined by

V(G) = �a, b0, b1,…, bm22
, c1, c2�

E(G) = �ab0, b0b1, b1b2,…, bm22–1bm22
, bm

22
a,

ac1, ac2�

Graph G is obtained from G' by replacing arbitrary m12

edges from the set �ac1, ac2� by paths of length 2.

2) n4 = 2.

We start from graph G' defined by

V(G') =
{ }

{

a a b c c c c m

a a b b c c c

1 2 1 1 2 3 4 44

1 2 1 2 1 2 3

1, , , , , , ,

, , , , , , ,

�
c m4 44 0}, �



�
�

E(G') =

{ }

{

a a a b a b a c a c a c a c m

a b a

1 2 1 1 2 1 1 1 1 2 2 3 2 4 44

1 1 2

1, , , , , , ,

,

�
b a b a b a c a c a c a c m1 1 2 2 2 1 1 1 2 2 3 2 4 44 0, , , , , , ,} �



�
� .

Let graph G'' be obtained from G' by replacing arbitrary

m12 edges from the set �a1c1, a1c2, a2c3, a2c4� by paths

of length 2. If m22 = 0, it is sufficient to take G = G''.

Otherwise, define G by:

V(G) = V(G'') � �d0, d1,…, dm22
� \ �b1�

E(G) = E(G'') � �a1d0, d0d1, d1d2,…, dm22–1dm22
,

dm22
a2� \ �a1b, ba2�.

3) n4 � 3.

Let G' be a cycle with n4 vertices. Let G'' be a graph ob-

tained by replacing arbitrary x edges by paths of length 2

and adding to each vertex in G' two neighbors of degree

1. Let G''' be a graph obtained from G'' by replacing ar-

bitrary x edges adjacent to vertices of degree 1 by paths

of length 2. Note that �(G''') = (m11, m12, 0, m14, 0, 0,

m24, 0, 0, m44). If m22 = 0, it is sufficient to take G = G'''.

Otherwise, let z be a vertex of degree 2 in G''' and let z'

and z'' be its neighbors. Graph G is defined by

V(G) = V(G''') � �z0, z1,…, zm22
� \ �z�

E(G) = E(G''') � � z'z0, z0z1, z1z2,…, zm22–1zm22
, zm22

z'�
\ �zz', zz''�.

All the cases are exhausted and the necessity is proved.

Now, let us prove sufficiency. Let G be the graph

with the required properties. Denote N2, N4, n2, n4, P, P14

and P44 as in the previous theorem. Obviously, n2, n4 �
N 0 and since G is connected, it directly follows that (m11

= 0) and ((m22 = 0) or (m12 + m24 � 0)). Note that x =

&P44&, hence (x � 0) and (m44 + x = n4). If n4 = 2, then m44

! 2. Therefore, we have (n4 � 2) or (m44 ! 2). Also, if n4

= 1, then m22 � 0 and m44 = 0, hence indeed

(n4 � 1) or ((m22 � 0) and (m44 = 0)).

This proves the theorem.

By a complete analogy, it can be proved that:

Theorem 7. – Let m = (m11, m12, m13, 0, m22, m23, 0, m33,

0, 0) � N 0
10 such that m13 + m23 + m33 � 0. There is a

monocyclic molecular graph G such that �(G) = m if and

only if

( ) (( ) ( ))

( , )

(

m m m m

n n

x
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2 3 0
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�

and or and

and
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2

1
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33

3

) ( ) (( )

( ))

(( ) ((

and and or

and or

m x n n

m

n m m22 330 0� �

�

�

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

) ( )))and

where

n2 = (m12 + 2m22 + m23)/2

n3 = (m13 + m23 + 2m33)/3

x = (m23 – m12)/2.

It can be easily proved that:

Theorem 8. – Let m = (m11, m12, 0, 0, m22, 0, 0, 0, 0, 0) �
N 0

10 . There is a monocyclic molecular graph G such that

�(G) = m if and only if 	(m11 = 0) and (m12 = 0) and (m22

� 3
.

ALGORITHM

In this section, we present the main result of our paper.

We present an algorithm that generates the set �(An). We

use Theorem 5 to make function gen1; we use Theorem

6 to make function gen2; Theorem 7 is used to make

function gen3; and Theorem 8 is incorporated within the

code of the function gen. The code is presented in the

programming language C++. The function xx is any user

defined function that utilizes this algorithm.
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DISCRIMINATIVE PROPERTIES OF THE ZAGREB
AND MODIFIED ZAGREB INDICES FOR
MONOCYCLIC GRAPHS

The aim of this section is to utilize the developed algo-

rithm. We compare discriminative properties of the Za-

greb, M2, and modified Zagreb, *M2, indices for mono-

cyclic graphs with the prescribed number of vertices,

Let n be a natural number larger than 5. Define the

following functions (M2)n, (*M2)n : �(An) � R, which

map 10-tuples into real numbers by

(M2)n (�(G)) = M2(G)

(*M2)n (�(G)) = *M2(G)

We also define

Pn = ��m1, m2�: m1, m2 � �(An), m1 � m2�

Dn = ��m1, m2� � Pn : m1, m2 � �(An), (M2)n (m1)

� "M2)n (m2)�

*Dn = ��m1, m2� � Pn : m1, m2 � �(An), (*M2)n (m1)

� (*M2)n (m2)�

In = ��m1, m2� � Pn : m1, m2 � �(An), (M2)n (m1)

= (M2)n (m2)�

*In = ��m1, m2� � Pn : m1, m2 � �(An), (*M2)n (m1)

= (*M2)n (m2)�

The probability that the pair of elements of �(An)

will be discriminated by the Zagreb indices is &Dn&/&Pn&
and probability that they will not be discriminated is

&In&/&Pn&. Analogously, the probability that the pair of ele-

ments of �(An) will be discriminated by modified Zagreb

indices is &D*n&/&Pn& and probability that they will not be

discriminated is &I*n&/&Pn&. Computations for graphs con-

taining up to n = 60 vertices are given (right column).

These results show that both the Zagreb and modified

Zagreb indices have remarkable discriminative proper-

ties with relative discrimination monotonously increas-

ing with n for both indices. (Note that here discrimina-

tion refers to the allowed 10-tuples rather than to the

corresponding graph(s).)

CONCLUSIONS

The edges in the graph connect vertices of various de-

grees, which is characterized by quantities mij. For chemi-

cally interesting molecular graphs (with maximal degrees

at most 4), the mijs can be represented by 10-tuples. In

the present paper, theorems have been proved that show

under which conditions monocyclic graph(s) exist for a

given arbitrary 10-tuple. These theorems have enabled
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n &In&/&Pn& &Dn&/&Pn& &*In&/&Pn& &*Dn&/&Pn& &*In&/&In&
5 0.00000000 1.00000000 0.10000000 0.90000000 Not defined

6 0.02222222 0.97777778 0.04444444 0.95555556 2.00000000

7 0.02857143 0.97142857 0.04285714 0.95714286 1.50000000

8 0.04390244 0.95609756 0.03902439 0.96097561 0.88888889

9 0.03725222 0.96274778 0.02836637 0.97163363 0.76146789

10 0.03954248 0.96045752 0.02407407 0.97592593 0.60881543

11 0.03762765 0.96237235 0.02060826 0.97939174 0.54768928

12 0.03696362 0.96303638 0.01793501 0.98206499 0.48520710

13 0.03513187 0.96486813 0.01555096 0.98444904 0.44264549

14 0.03381267 0.96618733 0.01374751 0.98625249 0.40657877

15 0.03207130 0.96792870 0.01239674 0.98760326 0.38653691

16 0.03077980 0.96922020 0.01128480 0.98871520 0.36663021

17 0.02941603 0.97058397 0.01029388 0.98970612 0.34994106

18 0.02829158 0.97170842 0.00949273 0.99050727 0.33553192

19 0.02717207 0.97282793 0.00883651 0.99116349 0.32520573

20 0.02620563 0.97379437 0.00826711 0.99173289 0.31547076

21 0.02527772 0.97472228 0.00777711 0.99222289 0.30766641

22 0.02446684 0.97553316 0.00735401 0.99264599 0.30057051

23 0.02366843 0.97633157 0.00696909 0.99303091 0.29444672

24 0.02296025 0.97703975 0.00663049 0.99336951 0.28878139

25 0.02226977 0.97773023 0.00632713 0.99367287 0.28411294

26 0.02162345 0.97837655 0.00605249 0.99394751 0.27990382

27 0.02100165 0.97899835 0.00580188 0.99419812 0.27625816

28 0.02041697 0.97958303 0.00557380 0.99442620 0.27299854

29 0.01984925 0.98015075 0.00536252 0.99463748 0.27016263

30 0.01931456 0.98068544 0.00516939 0.99483061 0.26764210

31 0.01879824 0.98120176 0.00499049 0.99500951 0.26547634

32 0.01830773 0.98169227 0.00482385 0.99517615 0.26348684

33 0.01783646 0.98216354 0.00466854 0.99533146 0.26174122

34 0.01738830 0.98261170 0.00452391 0.99547609 0.26016976

35 0.01695699 0.98304301 0.00438799 0.99561201 0.25877184

36 0.01654679 0.98345321 0.00426082 0.99573918 0.25750160

37 0.01615197 0.98384803 0.00414115 0.99585885 0.25638655

38 0.01577537 0.98422463 0.00402826 0.99597174 0.25535145

39 0.01541336 0.98458664 0.00392158 0.99607842 0.25442727

40 0.01506812 0.98493188 0.00382085 0.99617915 0.25357206

41 0.01473576 0.98526424 0.00372521 0.99627479 0.25280048

42 0.01441821 0.98558179 0.00363458 0.99636542 0.25208266

43 0.01411266 0.98588734 0.00354843 0.99645157 0.25143623

44 0.01382003 0.98617997 0.00346640 0.99653360 0.25082409

45 0.01353828 0.98646172 0.00338819 0.99661181 0.25026721

46 0.01326825 0.98673175 0.00331364 0.99668636 0.24974196

47 0.01300792 0.98699208 0.00324232 0.99675768 0.24925759

48 0.01275801 0.98724199 0.00317420 0.99682580 0.24880024

49 0.01251696 0.98748304 0.00310895 0.99689105 0.24837929

50 0.01228519 0.98771481 0.00304642 0.99695358 0.24797473

51 0.01206143 0.98793857 0.00298642 0.99701358 0.24760086

52 0.01184603 0.98815397 0.00292884 0.99707116 0.24724247

53 0.01163783 0.98836217 0.00287346 0.99712654 0.24690727

54 0.01143715 0.98856285 0.00282025 0.99717975 0.24658659

55 0.01124303 0.98875697 0.00276901 0.99723099 0.24628656

56 0.01105566 0.98894434 0.00271965 0.99728035 0.24599606

57 0.01087423 0.98912577 0.00267206 0.99732794 0.24572377

58 0.01069894 0.98930106 0.00262616 0.99737384 0.24546003

59 0.01052904 0.98947096 0.00258184 0.99741816 0.24521104

60 0.01036468 0.98963532 0.00253904 0.99746096 0.24497037



development of the algorithm that was applied to com-

pare discriminative properties of the Zagreb and modi-

fied Zagreb indices.
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SA@ETAK

O egzistenciji monocikli~kih molekula sa zadanim uvjetima na susjedstvo valencija:
generiraju}i algoritam i njegova primjena u testiranju diskriminativnih svojstava Zagreba~koga

i modificiranoga Zagreba~koga indeksa

Damir Vuki~evi} i Ante Graovac

Susjedstva valencija (stupnjeva) u molekularnim grafovima (bez vodikovih atoma) su karakterizirana

desetorkama brojeva mij gdje mij ozna~ava broj grana koje povezuju vrhove stupnjeva i i j. Pokazano je koje su

desetorke kompatibilne s monocikli~kim grafovima i dokazani matemati~ki iskazi su rabljeni za usporedbu

diskriminativnih svojstava Zagreba~koga i modificiranoga Zagreba~koga indeksa.
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