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INTRODUCTION

Connectivity of atoms in the molecule is conveniently
described by the corresponding molecular graph. The at-
oms are represented by vertices and bonds by edges of
graphs. Such approach enables one to relate properties of
molecules to their connectivities and has been a subject
of intensive research in the last few decades.!?

Molecular graphs can be numerically characterized
in a variety of ways. The simplest numbers ascribed to a
graph are the number of its vertices and its edges. Each
vertex x in a given graph G can be characterized by the
number of its neighboring vertices, dg(x), which is cal-
led a vertex degree and which obviously parallels the
chemical notion of the valence of atoms.

Connectivity of vertices in a graph can be further
characterized by specifying the numbers m;; of edges that
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Valence connectivities in hydrogen suppressed graphs are characterized by 10-tuples of quanti-
is the number of edges that connect vertices of valences i/ and j. It is shown
which 10-tuples are realizable by monocyclic graphs and this finding is used to compare
discriminative properties of the Zagreb and modified Zagreb indices.

connect (adjacent) vertices of degrees i and j. Obviously,
the unique sequence of ms is ascribed to any graph, but
the opposite generally does not hold, e.g. there is no graph
with m;, = 1 and all other m;; being equal to zero.

This nontrivial problem has been recently attacked
in a series of papers. Firstly, the problem of the existence
of graphs with a given sequence of mys for i, j =1,2,4 was
solved? and after that it was generalized for i, j =1,2,3,4.4
The algorithms obtained are rather involved, but for spe-
cial classes of graphs one should hope to develop partic-
ular and faster algorithms. Indeed, such an algorithm
was developed for connected acyclic graphs (trees) with
i,j =1,23,45

In this paper, monocyclic graphs, i.e. connected graphs
having only one cycle and an arbitrary number of trees
attached to it are studied.

* Author to whom correspondence should be addressed. (E-mail: vukicevi@pmfst.hr)
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In the second section basic definitions and notations
are introduced and in the third section necessary and suf-
ficient conditions of ms for the existence of monocyclic
graph(s) are determined. These conditions are summa-
rized in Theorem 5. Based on this theorem and Theo-
rems 6-8, an efficient generating algorithm is developed
that gives all m;; sequences corresponding to monocyclic
graphs with a given number of vertices. Finally, in the
fifth section, this algorithm is utilized to test discrimina-
tive properties of the Zagreb and modified Zagreb indi-
ces in monocyclic graphs.

PRELIMINARIES

Here we consider connected graphs with the maximal de-
gree at most 4 and with a finite number of vertices. Fur-
ther, we restrict our attention to monocyclic graphs, i.e. to
the graphs having only one cycle. The set of all mono-
cyclic graphs is denoted by T.

To each graph GeT a unique sequence
(myy, myp, Moz, Mg, Moy, Mo3, Moy, M33, M3y, Mag)

can be associated in such a way that in graph G there are
exactly m;; edges that are adjacent with vertices of de-
grees i and j. In this way, a function p:T—>N %)O is defined,
where N })0 is the set of all 10-tuples of nonnegative inte-
gers (i.e. Ny = NU {0}, where N is the set of natural num-
bers). It can be easily seen that this function is not a surjec-
tion (or mapping onto), e.g. there is no graph GeT such
that my; =4 and myy = my3 = myy = My = my3 =My, = ms3 =
M3y = myy = 0.

Therefore, it is of interest for chemistry to find a nec-
essary and sufficient condition for an arbitrary sequence
(myy, myp, my3, Myg, Mya, Moz, Moy, M3z, M3y, Myg) o belong
to the set (T). In the second section, we find these nec-
essary and sufficient conditions.

The following equation: my; + my, + myz + myy +
Myy + Myz + Moy + Mizz + M3y + Mgy =N holds for monocy-
clic graphs with n vertices. In the fourth section, we use the
result of the previous sections to find a fast algorithm that
generates all the sequences (my;, My, M3, M4, My, Mo3,
Moy, M3z, M3y, Myy) € p for prescribed n = 2m;e N (T).

Note that if we try to derive these sequences (m,
Myg, My3, Mg, Mya, M3, Moy, M33, M3y, Myy) explicitly, we
would need to construct all trees with maximal degrees
smaller than or equal to 4. It can be easily shown that
this is a nonpolynomial problem. Using our theorems, we
can generate these sequences in polynomial time. This is
a key feature of our algorithm, because one of the most
important goals of theoretical computer science is to re-
place as many nonpolynomial algorithms as possible by
polynomial ones.

This algorithm promises important chemical applica-
tions, e.g. as explained in the fifth section, it enables a
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comparison of discriminative properties of the Zagreb and
modified Zagreb indices.

57 years ago, chemists® noticed that information given
by a graph can be compressed in a single number, the so
called molecular descriptor. Of course, there is an infi-
nite number of ways to do this and only those descriptors
which correlate well with physical, chemical and biologi-
cal properties of molecules are of interest. These indices,
the so called topological inidices, have found enormous
applications in QSPR (Quantitive Structure Property Re-
lationship) and QSAR (Quantitive Structure Activity Re-
lationship) and other studies, and the reader is referred
to recent monographs for an overview.”# Many of these
indices are uniquely defined by a sequence (myy, my,, my3,
M4, Moo, Moz, Moy, M33, M3g, Myy). A well known such in-
dex is the Zagreb index® defined by

MyG) = > dg() de() = . i j uyG)
{xy}€E(G) 1<i<j<4
where 1,(G) denotes the number of edges that connect
vertices of degree i and degree j. Properties and applica-
tions of this index and its relationship with other topo-
logical indices have been recently reviewed.!”

The following modification of the Zagreb index, the
so called modified Zagreb index, is proposed:!%-11

1 u; (G)
Y = 2 —

*M»(G) = = —
{x,y}eE(G)dG(x)dG(y) 1<i<j<a Y

Obviously, if two graphs G and G' have equal sequences
1(G) and p(G'"), they cannot be discriminated by any of
the two above indices. On the other hand, one or/and the
other of these indices can be the same for nonequal se-
quences. Using the algorithm developed in the fourth
section, in the fifth section we analyze how well these
indices distinguish sequences m,m' € u(T).

Herein, we use the standard graph theory terms and
notations. Let G be a graph with vertex set V(G) and edge
set E(G). Let A,B < V(G) where A and B are disjoint sets.
By G[A] we denote the subgraph of G induced by the vertex
set A, by Eg(A) we denote the set of edges of G with both
adjacent vertices in A, by Eg(A,B) we denote the set of
edges of G with one adjacent vertex in A and the other in B.
We also put eg(A) =| Eq(A) | and eg(A,B) =| Eq(A,B)|.
Let G be a graph and S a set of edges in complement of
G. By G+ S we denote the graph obtained from G by
adding the set S.

We also define functions u ii» T=>No, foreach1 <i<
J <4 by pi(G) = my if and only if exactly m;; edges con-
nect vertices with degrees i and j in graph G. Also by A,
we denote the set of all monocyclic graphs with n verti-
ces having the maximal degree at most 4.

The edge connecting vertex with itself is called a loop
and the pair of edges having the same terminal vertices
are called parallel edges. At the end of this section, we
give the following definition:
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Definition 1. — Let p,q,r€ Ny and ns3,nyeN such that
p+q+r=n3+ny. SetF (ns3, ny, p, g, ) is the set of graphs
G such that V(G) = N3 U Ny; N3 = {xq,..., X35 Ny = {y1,
Y205 Yng}s €6(N3) = p; eG(N3, Ny) = q; eg(Ny) = r; dg(x)
< 3, for each x € N3; and dg(y) £ 4, for each y € N,. Fur-
ther, G is a simple graph except in the following cases in
which it has one of the following: a single loop or a sin-
gle pair of parallel edges:
1) (n3=1)and (p = 1). There is a single loop adja-
cent to xj.
2) (ngy=1)and (r = 1). There is a single loop adja-
cent to y.
3) (n3=2)and (p = 2). There is a pair of parallel
edges adjacent to x; and x,.
4) (ny =2) and (r = 2). There is a pair of parallel
edges adjacent to y; and y;.
5) (n3=1) and (p = 0) and (r = 0). There is a pair
of parallel edges adjacent to x; and y;.
6) (ny=1)and (p =0) and (r = 0). There is a pair
of parallel edges adjacent to x; and y;.

Set F (n3, nyg, p, g, r) is the auxiliary family of
graphs that will be needed to obtain further results.

NECESSARY AND SUFFICIENT CONDITIONS OF
VALENCE CONNECTIVITIES FOR THE EXISTENCE
OF A MONOCYCLIC MOLECULAR GRAPH

In this section, we give a mathematical background of
the algorithm that will be developed in the next section,
i.e. we give the necessary and sufficient conditions of m;;
for the existence of a monocyclic molecular graph. We
start with few lemmas:

Lemma 2. — Let kI € N and let ay,a,,...,a4, by,...,b;€EN,
and let

max {by,...,b;} — min {by,....b;} <1
k I
g < min {Z min{ai ,l},z bl},
i=1 i=1

then there is a simple bipartite graph G with ¢ edges and
partition classes A = {xy,....x;} and B = {yy,...,);} such
that dg(x;) < a; for each i = 1,....,k and dg(y;) < b; for
eachi=1,...,0L

Proof. We prove the claim by induction on k. If k = 1,
then the claim is trivial. Let us prove the inductive step.
Distinguish three cases:

l
1) min {l,dG @),y b,} =1

i=1

k=1 !
In this case, we have ¢ — [ < min {Z min{a, ,l},Z b; - 1},

i=1 i=1

therefore there is, by inductive hypothesis, a bipartite
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graph G' with partition classes {ay,...,a;_;} and B such
that dg(x;) < @; foreach i =1,....,k -1 and dg(y;) < b; — 1
foreachi=1,...,I. Graph G=G' + {a;b,...,a;b;} has the
required properties.

l
2) min {l,dG @)y, b,} = dg (@)

i=1

Without loss of generality, we may assume that b; > b, >
... 2 b;. In this case, we have

maX{bl — 1,..., bdG(Xk) — 1, bdG(xk)+l""’bl} —
mln{bl - 1,..., bdG(Xk) - 1, bdG(xk)+l""7bl} < 1,

k-1 de (x;) !
q—dG(ak)Smin{Zmin{ai,l}, b-1+ Y b,},

i=1 i=1 i=dg (x, )+1

and therefore there exists, by inductive hypothesis, a bi-
partite graph G' with partition classes {aj,...,a;_1} and B
such that dg(x;) < a; foreachi=1,....,k - 1, and dg(y;) <
b;— 1 foreachi=1,..., dg (x}), and dg(y;) < b; for each i
=dg (x) + 1,...,I. Graph G = G' + {@by,..., abygy}
has the required properties.

[ [
3) min {l,dG @)y, b,} = b,

i=1 i=1

This case is trivial.

Lemma 3. — Let p,q,r € Ny and n3,ngy € N such that
p+qg+r=nz+ny If

(p<n3) and (r<ny) and (p+r<ny+n, -1
and (g <3ny-2p) and (g <4n, —2r) ’

then F (ns3, ny, p, q, 1) # &.

Proof. Let us describe a graph G € F (n3, ny, p, g, r). If
ny =1 and p = 0, then G[N;] is a graph with no edges; if
n3 =1 and p = 1 then G[Ns] is a graph with a single ver-
tex and a loop; if n3 = p and n3 = 2, then G[N3] is a graph
with two vertices and two parallel edges adjacent to
them; if 3 = p and n3 > 2, then G[N;] is a cycle; if ny > 2

and p < n—;, then G[Ns] is a graph such that A(G(N3)) < 1;

if n3 > 2 and n—; < p < n3y — 1, then G[NVs] is an acyclic

graph such that 5(G(N3)) > 1 and that A(G(N3)) < 2.

If ny =1 and r = 0, then G[NV,] is a graph with no ed-
ges; if ny =1 and r = 1, then G[N,] is a graph with a single
vertex and a loop; if ny = r and ny = 2, then G[N,] is a
graph with two vertices and two parallel edges adjacent to
them; if n, = r and ny > 2, then G[N,] is a cycle; if ny > 2

and r < %, then G[N,] is a graph such that A(G(N,)) < 1;
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if ny 22 and %‘< r < ny — 1, then G[N,] is an acyclic

graph such that 6(G(V,)) > 1 and that A(G(V,)) < 2.

We distinguish three cases:

1) (n3 =1) and (p = 0) and (r = 0).
Note that q =n3 +ngy—p—r=ng+ 1 <3n3 —2p =3,
hence 1 <ny <2.1If ny =1, then G is the graph with two
vertices adjacent with two parallel edges; and if ny = 2,

then G is the graph such that V(G) = {x;, y;, y»} and
E(G) = {x1y1, X1y1, X1y2}-

2) (ny = 1) and (p = 0) and (r = 0).
This case can be solved analogously as the previous one.
3) [(n3 > 1) and (ny > 1)] or (p > 0) or (r > 0).
Note that max {4 — dg(y1),..., 3 = dg(y,,)} — min {4 -

dc(p),..., 4 = dg(y,)} < 1. So, from the previous
Lemma, it follows that it is sufficient to prove that

g < min {2 min{3-dg (xi),n4},2(4—do (Y[))}~
i1 i1

Note, that max {3 — dg(xy),..., 3 — dg(x,;)} — min {3

= dg(x1),..., 3 = dg(x,;)} < 1. Therefore, the above ex-
pression is equivalent to

¢ < min {2 min{3—d (x; )},2(4—(16 i )),n3n4}.
i=1 i=1

Simple computation shows that this is equivalent to
q < min {3n3 — 2mys, 4ny — 2myy, nyny}.

It remains to prove that g < nsny. Distinguish three
subcases:

3.1) (p > 0) or (r > 0).

Note that (ny — 1)(ny— 1) >0, hence g = ny+ny—p—q —
r<ny +ny,— 1< ngny.

3.2) (n3 > 1) and (ny > 1).

Suppose to the contrary that g > nsny. Note that g =
ny + ny — p — r < ny + ny. It follows that nyny < ny + ny.
Now, we have 2n3 < n3ng < ny + ng and 2ny < n3ng < nz +
ny, which implies n3 < ny and ny < n3, which is a contra-
diction.

Lemma 4. — Let p,q,r € Ny and n3,ny € N such thatp + ¢
+ r=n3+n If
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(p<ny) and (r<n,) and (p+r<ny+n,—1)
and (g <3ny-2p) and (g <4n, —2r) ’

then there is at least one connected graph in F (n3, ny, p,
q, 7).

Proof. Let G' be a graph constructed in the previous
Lemma. Let G be a set of graphs G" € F (ns3, ny, p, q, 1)
and such that G"[N3] = G'[N3] and G"[N,] = G'[V,]. Note
that G is nonempty, since at least G' is in G.Let G be a
graph in G with the smallest number of connected com-
ponents. It remains to prove that G is connected. Sup-
pose the contrary. Then, there is at least one component
C (in G) and an edge e such that:

a) e is not one of parallel edges;

b) e € Eg (N3, Ny);

c) e is contained in a cycle.
Denote e = xy, such that x € Ny and y € N,. Let C' be
any other component. Distinguish three cases:

1) V(C") C N;.

Let ¢ € V(C") be an arbitrary vertex. Graph G — xy + yc
is in G and it has a smaller number of components than
G, which is a contradiction.

2) V(CY) < N,

Let ¢ € V(C") be an arbitrary vertex. Graph G — xy + xc
is in G and it has a smaller number of components than
G, which is a contradiction.

3) V(C') N N3 # @ and V(C") N N, # @.

There is an edge x'y' such that x' € Ny and y' € N, in
C'. Graph G — xy + x'y' + xy' + x'y is in G and it has a
smaller number of components then G, what is a contra-
diction.
We have obtained a contradiction in each case, so
our claim is proved.
Now, we shall prove four theorems that cover four
different cases:
1) mi3 + Moz + mMsz + Mzy > 0 and myy + Moy + M3y
+ Myy > O,
2) myz + Mmy3 + mz3z + mzy = 0 and myy + NMypy + Nizy
+ Mmyy > O,
3) m13+m23+m33+m34>0and m]4+m24+m34
+ myy =03
4) myz + Mp3 + mz3z + mzy = 0 and myy + Myy + Nizy
+ Myy = 0

Theorem 5. — Let m = (myy, myp, my3, My, Moy, Ma3, Moy,
mss, Mszy, m44) e (N such that myz + Mmy3z + msz + Mmay > 0
and that m4 + myy + m3y + myy > 0. There is a molecular
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graph G such that y(G) = m if and only if the following
holds:

[Gny, =0) and [(m,, +mys +m,, >0) or
(m22 :O)] and (I’lz RUZRU ENO) and (x ZO)

and (m33 <ny) and (my3+x—m,, <ny) and
(myy <ny) and (myy +x—my; <ny)

and (ms3+msy +myy +x =n5+n,) and
(msz+myy <ns+n, —1)

and (m33+my, +x—my; <ns+n, —1) and
(msz +myy +x—my, <ny+ny—1)

and ((n3>1) or ((m3y <ny) and (m3; =0))) ’
and ((ny >1) or ((m3y <nz) and (my, =0)))
and ((ny >2) or (ms; <ny)) and ((ny, >2) or
(myy <ny))

and ((ny3 >1) or (x—my,, <0) or (my >1)) and
((ny >1) or (x—=my3 <0) or (m,, 21)

and ((n3 >1) or (ny >1) or (x—my; <0) or
(x—myy <0) or (m,y, 22))

where

ny = (m12 + 2m22 + my3 + m24)/2

n3y = (m13 + my3 + 27’}133 + m34)/3

ny = (Mg + Moy + Mg + 2myy)/4

x = (moz + myy — mypp)/2.
Proof. Let us first prove the necessity. We shall define
graph G with the required properties. Note that: m, +
2m22 + Moz + Moy = Moy + My — My (mOd 2), therefore
x € Ny. By a tedious check of twelve inequalities, it can
be proved that
max {x — myy, 0} <
M3
X, N3+ny—myy—myy =1, —=, ny—My, —x+m,;,
min 2
N3y+ny —l=my3—my, —x+my;
2

13 =33

Hence, by putting p' = max {x — myy, 0} € N,, we get
max {x - my, 0} < p' <

1123
X3 +hy =T33 =My = Ty MM X+,
min.
Ny+ny —1=my3—myy —x+moy;
2

»1i3 =133

Again, by a tedious check of eight inequalities, it can be
proved that
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max {0, p' + x — my} <
min {x — p', p' — X + Moy, Ny — Mya, N3 +
ny— 1 —ms3 —myy —p'}.

Therefore, by putting ' = max {0, p' + x — my3} € N,
we get

max {0, p' + x — my} <
r<min {x — p', p' — X + myy, Ny — Mgy, N3 +
ng— 1 —ms3 —myy —p'}.

Since x > p' + 1, it follows that ¢' = x — p' — ' € N,,. Denote
p=my+p,q=my+dq,and r = my + . Note that

(p<n3) and (r<ny) and (p+r<ny+n, -1
and (¢<3n;-2p) and (g <4n, —2r) ’

hence there is a connected graph G' € F (n3, ny, p, ¢, 1)
constructed in the previous lemma. Let us select p' edges
in Eg(N3), ¢' edges in Eg(N5, Ny) and r' edges in Eg(N,)
such that the remaining graph is simple. Note that this is
always possible, because

[(ms3 <n3) and (myy <n,) and
(M3 +msy +my, <ns+ny)

and (my3+myy <ny+ny—1) and ((ny >1) or
((m34 <ny) and (m33 =0)))

and (2ms3+msyy <ny) and 2msy +myy <ny)
and ((ny;>1) or ((msy <ny) and (ms3 =0)))
and ((ny >1) or ((m3y <n,) and (my, =0)))

and ((n3 >2) or (m33 <ny)) and ((ny, >2) or
(myy <ny))

Land (2my3 +msy <nz) and 2msy +myy <ny)

Let G" be a graph obtained by replacing each of the se-
lected edges by a path of length 2, by adding to each
vertex x in N3 exactly 3 — dg(x) neighbors of degree 1,
and by adding to each y vertex in N, exactly 4 — dg(y)
neighbors of degree 1. Note that: 3ny — 2p — g > my; —
2p' — ¢ >0 and that: 4ny — 2r — g > myy — 2r' — ¢' 2 0,
therefore it is possible to select m,; — 2p' — ¢' edges that
connect vertices of degrees 1 and 3; and to select m,, —
2qg' — r' edges that connect vertices of degrees 1 and 3.
Let G" be a graph obtained by replacing each of these
vertices by a path of length 2. Note that:

w(G") =
(my1, myg, my3, My, 0, Moz, Moy, M33, M3y, Myy)

Distinguish three cases:

1) G" is a simple graph.

Croat. Chem. Acta 77 (3) 481-490 (2004)
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If m,y, = 0, it is sufficient to take G = G"'. Otherwise, de-
note by z an arbitrary vertex of degree 2 and denote
neighbors of z by 7' and 7". Graph G is defined by

V(G) = V(G™) U {20, Z1seees Zmpy )\ {2}

EG) =
E(Gm) U {Z'ZO, 20315 31825+ ++5 Zmzz—lzmzz’ ZmZZZ”}\
{7z, 7"z

2) G™ contains no loops and a single pair of paral-
lel edges.

We have one of the following two subcases:
2.1) (n3 = 1) and (x — my4 > 0), and vertices adjacent
to parallel edges have degrees 2 and 3.
2.2) (ny = 1) and (x — my3 > 0), and vertices adjacent
to parallel edges have degrees 2 and 4.
In both of these subcases denote by z a vertex of degree
2 adjacent to these parallel edges and by z' another ver-
tex adjacent to these edges. Graph G is defined by

V(G) = V(G") U {20, Z1sees Ty M2}

EG) =
E(Gm) U {Z‘ZO9 20315 21325+ 45 Zmzz—lzmzz’ ZmZZZ'}\
{z'z, 2'7}.

3) G" contains no loops and it has two pairs of
parallel edges.

We have (n3 = 1) and (ny = 1) and (x — myp3 > 0) and (x —
my, > 0). One pair of parallel edges is adjacent to verti-
ces of degree 2 (denote it by z) and 3 (denote it by z')
and the other is adjacent to vertices of degree 2 (denote
it by w) and 4 (denote it by w'). Note that, in this case,
My, > 2. Graph G is defined by

V(G) = V(G™) U {wo, w1} {20, 215 Ty, — 1)\ 2w}

E(G) =
E(G"™) U {220, 2021, 21225+ +> Zmyp-2Zmyp-125
w'wg, wow; wiw'1\{z'z, 2'z, w'w, w'w}

All the cases are exhausted and the necessity is proved.

Now, let us prove sufficiency. Let G be a graph with
the required properties. Note that G has n; vertices of de-
gree j, for each j = 2,3.4, so indeed n,, ns, ny € N,. Since
G is connected and n3, ny > 0, it follows that [(m, + mos
+ myy > 0) or (my, = 0)] and that m;; = 0. Since G is sim-
ple, it follows that ((n3 > 1) or ((m34 < n3) and (m33 =
0))); and that ((n4 > 1) or ((ms4 < ny) and (my, = 0))); and
that ((n3 > 2) or (m33 < nz)) and ((ny > 2) or (myy < ny)).
Denote by N; the set of vertices of degree i (in G) for
each i = 2,3,4. Note that G[N3] and G[N,] have at most

one cycle and not both of them contain a cycle. Hence,
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msz < n3, myy < ny and may + myy < ny + ny — 1. Denote
by P the set of all maximal induced paths in G such that
its all interior vertices have degree 2 (in G). Denote by
Py, i <j the set of paths in P such that its terminal verti-
ces have degrees i and j. Note that P is partitioned in the
sets P13, P14, P33, P34 and P44. Denote P' = P33 Y P34 o
P4, Note that there are exactly x paths in P', so indeed x
> 0. Let G' be a graph obtained by a contraction of all
paths in P' to a single edge. Graph G'[N; U N4 is a
monocyclic graph, therefore ms3 + msy + myy + x = n3 +
ny. Note that G'[N3] and G'[N4] have at most one cycle
and not both of them contain a cycle, therefore

n3+n42m33+|P33|+m44—12m33+m44+
(x —myy) — 1

n3+n42m33+|P44|+m44—12m33+m44+
(x = my3) - 1

Let G" be a graph obtained by a contraction of all
paths in P33 to a single edge. Since G"[N;] has at most
one cycle, it follows that n3 > mjy3 + |Pa3| = m3y3 + (x —
m24). Also if n3 = 1 and myy = 0, then 0 = |P33| >X— Mmyy,
hence (n3 > 1) or (x — myy < 0) or (my, 2 1).

Analogously, let G" be a graph obtained by a con-
traction of all paths in Py, to a single edge. Since G"'[N,]
has at most one cycle, it follows that ny > mgy + [Pyl >
Mgy + (x — my3). Also, if ny =1 and my, = 0, then 0 = |Pyy|
> X — my3, hence (ny > 1) or (x — my3 < 0) or (my, > 1).

Analogously, it can be proved that

(n3 > 1) or (ng>1) (x —myz £0) or (x —my, <0)
or (my, > 2).

This proves the theorem.
Let us prove:

Theorem 6. — Let m = (myy, mys, 0, myy, My, 0, moy, 0, 0,
Myy) € f\/':)o such that m4 + myy + myy > 0. There is a
monocyclic molecular graph G such that 4(G) = m if and
only if
(m;; =0) and ((m,, =0) or (my, +m,, >0)) and
(ny.,ny) €Ny)

and (x>0) and (my, +x=n,) and ((n, #2) or
(myy <2))
and ((ny #1) or ((my, >0) and (my, =0)))

where
ny, = (m12 + 2m22 + m24)/2
ng = (myy + myy + 2my,)l4

x = (myy — myp)/2.



VALENCE CONNECTIVITIES REALIZABLE BY MONOCYCLIC GRAPHS

Proof. First let us prove the necessity. We shall define
graph G with the required properties. Note that m, +
2myy + Moy = Moy — My (mod 2), hence x € V. Distin-
guish three cases:

1) ng = 1.
Let G' be the graph defined by

V(G) = {a, bo, bl,..., bm22’ Cy, C2}

E(G) = {Clbo, bOblv blbz,..., b lb bmzza,

acy, acy}

map-1rm2’

Graph G is obtained from G' by replacing arbitrary m,,
edges from the set {ac;, ac,} by paths of length 2.

2) ny = 2.
We start from graph G' defined by

V(G) = {{CH 2ay by ey ,ey,05,04 my, =1

{a, ,a5 by by e 05 ,05,¢4},myy =0

EG) =

{{alaz a1 by ,as by ,ay¢y,a,05,a5¢5,a5¢4%, My =1

{a\by a3by ,a1by a3, 0,6y ,a,¢5,a5¢5,a5¢4}, myy=0.

Let graph G" be obtained from G' by replacing arbitrary
my, edges from the set {a;cy, a;c,, arc3, a,c,} by paths
of length 2. If m,, = 0, it is sufficient to take G = G".
Otherwise, define G by:

V(G) = V(G") U {dy, dys-..y dypyy} \ (b1}

E(G) = E(G”) & {Clldo, dOdlv dldz,..., dmZZ*IdmZZ’
dm22a2} \ {albs b(l2}.

Let G' be a cycle with ny vertices. Let G" be a graph ob-
tained by replacing arbitrary x edges by paths of length 2
and adding to each vertex in G' two neighbors of degree
1. Let G" be a graph obtained from G" by replacing ar-
bitrary x edges adjacent to vertices of degree 1 by paths
of length 2. Note that u(G") = (myy, myy, 0, myy, 0, 0,
Moy, 0, 0, myy). If myy, =0, it is sufficient to take G = G"".
Otherwise, let z be a vertex of degree 2 in G™ and let 7'
and 7" be its neighbors. Graph G is defined by

V(G) = V(G™) U {20, Zpseees Ty} \ {2}
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E(G) = E(G") U { 220, 20215 21225+ ++> Zmyy-1Zmyr> TmypZ )
\ {zz', z7"}.

All the cases are exhausted and the necessity is proved.

Now, let us prove sufficiency. Let G be the graph
with the required properties. Denote N,, Ny, 1y, ny, P, P14
and Py, as in the previous theorem. Obviously, n,, ny €
N and since G is connected, it directly follows that (i,
= 0) and ((my, = 0) or (m, + my, > 0)). Note that x =
|P44], hence (x > 0) and (myy + x = ny). If ny = 2, then myy
< 2. Therefore, we have (ny # 2) or (myy < 2). Also, if ny
= 1, then my, > 0 and my, = 0, hence indeed

(ng # 1) or ((my, > 0) and (myy = 0)).

This proves the theorem.

By a complete analogy, it can be proved that:

Theorem 7. — Let m = (myy, myy, my3, 0, My, mys, 0, ms3,
0,0 NBO such that m3 + my3 + mz3 > 0. There is a
monocyclic molecular graph G such that 4(G) = m if and
only if

(m;; =0) and ((my, =0) or (m, +m,; >0)) and
(ny,n3 €Vy)

and (x 20) and (m3;+x=n3) and ((n3 #2) or
(ms3 <2))

and ((ny #1) or ((my, >0) and (ms, =0)))

where
Ny = (Myy + 2myy + my3)/2
ny = (my3 + mo3y + 2ms3)/3
x = (myz — myp)/2.
It can be easily proved that:

Theorem 8. — Let m = (my;, myy, 0, 0, my,, 0,0,0,0,0) €
N %)0. There is a monocyclic molecular graph G such that
H1(G) = m if and only if [(m, = 0) and (m;, = 0) and (my,
> 3].

ALGORITHM

In this section, we present the main result of our paper.
We present an algorithm that generates the set ((A,,). We
use Theorem 5 to make function genl; we use Theorem
6 to make function gen2; Theorem 7 is used to make
function gen3; and Theorem 8 is incorporated within the
code of the function gen. The code is presented in the
programming language C++. The function xx is any user
defined function that utilizes this algorithm.
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{00000 U000 0) xx
(g=<u)pt
{(u) guad
‘(u)zued
f(u) qued }
( ujur ) uag proa
1
{
{
{

{00 “ggw ‘0 ‘gTw fTzw ‘o ‘gIW ZIW g ) XX
(
(((0=cew) 2w (0 <zzw) || (1 =i gu))
¥ (7> cew) || (z =i gw)
% (U ==X+ ¢gw) % ((0 < cqw+zIw) || (0 == zzw)) )t
‘T/(ETW - ZIw - TU 4 T) = TgW
T/(ZIm-gguw)=x}
(I + W =< TU . 7) 9% 0 = (T % (1w + ggwr) ) 9% (T1w =< gzw) ) ;1
SEIW - EEW 4 T- €U 4 €= €TW }
(++EEW igTW - €U, € => CEW , T 10 = gEW ) 10)
(1-€uyg=>gru)y
‘ZIm- u=gu}
(++grw S guu ) unu = gw i = gjut ) Ioj
gU-quU-u=gu
‘gu=qu}
(++Eu g /u=>gu ] =gu)ioj
(u=>7) 3
X ‘ggw ‘gz ‘gz ‘gl ‘g W ‘gu ‘gu ‘jujur }
(ujur ) guad proa
1
{

(P 0 ‘0 “prw ‘o ‘Trw ‘prw ‘o ‘gIw ‘g ) XX i
(((0 = trw) 2% (0 < zzW)) || (1 =i vu) )
%% (2> vyw) || (T =i pu))
9% (PU =X + pp) % ((0 < pzwW + Z1W) || (0 = zzw)) ) 3t
T/ (pTw-gIW - qU , 7) = g
7/ (1w - pzu) = x }
((ZI1W+pTW =< TU 4 ) % 0 = (T % (T1W + p7w) ) 9% (T1W =< pgw) ) j1
PIW - ppll o T - pU 4 = pTW }
(+HppW SpIW - pU 4 p => Pl 4 T {0 = ppll ) 10§
(1-pU b =>plw)J
‘g u=pyu}
(++gTu( Zu u ) un => Zjuw i = g{w ) 10§

pu-qu-u=gu
WULZ=1u}
(++pU g jU=>pUu i = U ) 10]
(g/u=>1)n
X ‘ppll 7 T HIW gIW pu gu Tu gt }
( uur ) zuad proa
1

{( PP ‘pEW ‘EEUW “pTW ‘EZW ‘TZW ‘p[UW ‘g W ‘7 W °Q umg
(
(1=<zzw) || (0 => pzw - X)
[(0=>¢czw-x) [ (1<) (1 <pu))
9% ((1=<zzw) || (0 => ggw - %) | (1 < pu) )
2% ((1=<zzw) || (0 =>pzw-%) || (1 < gu))
%% ((yu> ppw) || (z < pu) )
2% ((gu>ggw) || (T<€w))
2% (((0 = t¥w) 2% (gu=>pgws)) || (1 <u))
2% (((0 == ggw) 2% (pu=> pgw)) || (1 < gu) )
%979 (1 - U+ £U=>pTW - X + pplll 4 W )
979 ([ - pU+ EU=> ETW - X + ppWll 4 gEW )
9% ([ - pU+ gU=>ppWl + gEW )
2979 (PU+ U ==X + ppll + pEU + £EW )
9% ((0 < pgw + gzgw + Z1w) || (0 = zgw) )
% (pU=> ppW + CTW - X) 979 (U => CEW + pTW - X)
2% (ppwl => 0) 2% (pu => ppw) 9 (0 =<X) ) JI
7/ (71w - gZW + pTw) = X
2/ (pEW - pTW - pIUW - pU 4 § ) = ppW
SEEUL , 7 - €W - CIW - €U 4 € = pgul}
(++ggw f(gu 7/ (ETW - €W - EU , §) ) UIW => EEW ) = EEU ) 10F
(pU 4 => pTUW + pIW ) J1
SETW - TTW 4 T - TIW - TU 4 T = pgui}
(4+E7W S W - €U 4 € ‘TTW 4 T - T[W - TU 4 T) UMW => EZW () = £TW ) 10J
(++T7W (TU 4 T=> TTW 4 T+ TIW i = ZTW ) 10j}
(PUsb=>1+pIW)H
fgqwr- Zw - [u=pu}
(4T (U, € “ZIW - [U) UMW => g[W ) =g [ ) 10j
(++71W QU 4 T U ) Ui => 7] 50 = g[W ) 10
pU-gu-[U-u=7u
U+ pU 4 T = [U}
(4+EUU=>EU 4 T+ U 4 €] = €U ) 10}
(++pu g/ (T - w)=>pu '] = pu ) 10§}
(u=>¢)j
X ‘PPl ‘pE ‘EEW ‘T ‘CTW ‘TTW HW ‘ETUW ‘TW pU ‘gu ‘Tu [uut )
( ujur ) [uad proa
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DISCRIMINATIVE PROPERTIES OF THE ZAGREB
AND MODIFIED ZAGREB INDICES FOR
MONOCYCLIC GRAPHS

The aim of this section is to utilize the developed algo-
rithm. We compare discriminative properties of the Za-
greb, M,, and modified Zagreb, *M,, indices for mono-
cyclic graphs with the prescribed number of vertices,

Let n be a natural number larger than 5. Define the
following functions (M,),, (*M,), : n(A,) — R, which
map 10-tuples into real numbers by

(M), u(G)) = My(G)
(*M>), (u(G)) = *M,(G)
We also define
Py = {{my, myj: my, my € u(Ay), my # my}

Dn = {{ml’ mZ} € Pn Lmy, my € ;u(An)9 (MZ)n (ml)
# (M), (my)}

>an = {{ml’ mZ} € Pn L my, ny € ,Ll(An), (*MZ)n (ml)
# (M), (my)}

[n = {{ml’ mZ} € Pn Ly, My € ,U(An), (M2)n (ml)
= (My), (my)}

L, = {{my, my} € P, my, my € p(Ay), (*"M), (my)
= (*MZ)n (mZ)}

The probability that the pair of elements of u(A,)
will be discriminated by the Zagreb indices is |D,|/|P,]
and probability that they will not be discriminated is
|L,|/|P,|. Analogously, the probability that the pair of ele-
ments of 11(A,) will be discriminated by modified Zagreb
indices is |D*,|/|P,| and probability that they will not be
discriminated is |I*,|/|P,|. Computations for graphs con-
taining up to n = 60 vertices are given (right column).

These results show that both the Zagreb and modified
Zagreb indices have remarkable discriminative proper-
ties with relative discrimination monotonously increas-
ing with n for both indices. (Note that here discrimina-
tion refers to the allowed 10-tuples rather than to the
corresponding graph(s).)

CONCLUSIONS

The edges in the graph connect vertices of various de-
grees, which is characterized by quantities m;;. For chemi-
cally interesting molecular graphs (with maximal degrees
at most 4), the mys can be represented by 10-tuples. In
the present paper, theorems have been proved that show
under which conditions monocyclic graph(s) exist for a
given arbitrary 10-tuple. These theorems have enabled

V1P|
0.00000000
0.02222222
0.02857143
0.04390244
0.03725222
0.03954248
0.03762765
0.03696362
0.03513187
0.03381267
0.03207130
0.03077980
0.02941603
0.02829158
0.02717207
0.02620563
0.02527772
0.02446684
0.02366843
0.02296025
0.02226977
0.02162345
0.02100165
0.02041697
0.01984925
0.01931456
0.01879824
0.01830773
0.01783646
0.01738830
0.01695699
0.01654679
0.01615197
0.01577537
0.01541336
0.01506812
0.01473576
0.01441821
0.01411266
0.01382003
0.01353828
0.01326825
0.01300792
0.01275801
0.01251696
0.01228519
0.01206143
0.01184603
0.01163783
0.01143715
0.01124303
0.01105566
0.01087423
0.01069894
0.01052904
0.01036468

DAlP [FLYIP,|
1.00000000 0.10000000
0.97777778 0.04444444
0.97142857 0.04285714
0.95609756 0.03902439
0.96274778 0.02836637
0.96045752 0.02407407
0.96237235 0.02060826
0.96303638 0.01793501
0.96486813 0.01555096
0.96618733 0.01374751
0.96792870 0.01239674
0.96922020 0.01128480
0.97058397 0.01029388
0.97170842 0.00949273
0.97282793 0.00883651
0.97379437 0.00826711
0.97472228 0.00777711
0.97553316 0.00735401
0.97633157 0.00696909
0.97703975 0.00663049
0.97773023 0.00632713
0.97837655 0.00605249
0.97899835 0.00580188
0.97958303 0.00557380
0.98015075 0.00536252
0.98068544 0.00516939
0.98120176 0.00499049
0.98169227 0.00482385
0.98216354 0.00466854
0.98261170 0.00452391
0.98304301 0.00438799
0.98345321 0.00426082
0.98384803 0.00414115
0.98422463 0.00402826
0.98458664 0.00392158
0.98493188 0.00382085
0.98526424 0.00372521
0.98558179 0.00363458
0.98588734 0.00354843
0.98617997 0.00346640
0.98646172 0.00338819
0.98673175 0.00331364
0.98699208 0.00324232
0.98724199 0.00317420
0.98748304 0.00310895
0.98771481 0.00304642
0.98793857 0.00298642
0.98815397 0.00292884
0.98836217 0.00287346
0.98856285 0.00282025
0.98875697 0.00276901
0.98894434 0.00271965
0.98912577 0.00267206
0.98930106 0.00262616
0.98947096 0.00258184
0.98963532 0.00253904
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FDMP L
0.90000000 Not defined
0.95555556 2.00000000
0.95714286 1.50000000
0.96097561 0.88888889
0.97163363 0.76146789
0.97592593 0.60881543
0.97939174 0.54768928
0.98206499 0.48520710
0.98444904 0.44264549
0.98625249 0.40657877
0.98760326 0.38653691
0.98871520 0.36663021
0.98970612 0.34994106
0.99050727 0.33553192
0.99116349 0.32520573
0.99173289 0.31547076
0.99222289 0.30766641
0.99264599 0.30057051
0.99303091 0.29444672
0.99336951 0.28878139
0.99367287 0.28411294
0.99394751 0.27990382
0.99419812 0.27625816
0.99442620 0.27299854
0.99463748 0.27016263
0.99483061 0.26764210
0.99500951 0.26547634
0.99517615 0.26348684
0.99533146 0.26174122
0.99547609 0.26016976
0.99561201 0.25877184
0.99573918 0.25750160
0.99585885 0.25638655
0.99597174 0.25535145
0.99607842 0.25442727
0.99617915 0.25357206
0.99627479 0.25280048
0.99636542 0.25208266
0.99645157 0.25143623
0.99653360 0.25082409
0.99661181 0.25026721
0.99668636 0.24974196
0.99675768 0.24925759
0.99682580 0.24880024
0.99689105 0.24837929
0.99695358 0.24797473
0.99701358 0.24760086
0.99707116 0.24724247
0.99712654 0.24690727
0.99717975 0.24658659
0.99723099 0.24628656
0.99728035 0.24599606
0.99732794 0.24572377
0.99737384 0.24546003
0.99741816 0.24521104
0.99746096 0.24497037
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SAZETAK

O egzistenciji monociklickih molekula sa zadanim uvjetima na susjedstvo valencija:
generirajuéi algoritam i njegova primjena u testiranju diskriminativnih svojstava Zagrebackoga
i modificiranoga Zagrebackoga indeksa

Damir Vukicevi¢ i Ante Graovac

Susjedstva valencija (stupnjeva) u molekularnim grafovima (bez vodikovih atoma) su karakterizirana
desetorkama brojeva m;; gdje m;; oznaCava broj grana koje povezuju vrhove stupnjeva i i j. Pokazano je koje su
desetorke kompatibilne s monociklickim grafovima i dokazani matematicki iskazi su rabljeni za usporedbu
diskriminativnih svojstava Zagrebackoga i modificiranoga Zagrebackoga indeksa.
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