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Enantioseparation ability and enantiopreference of chiral stationary phases CSP 1–CSP 3, con-
taining a terminal N-3,5-dinitrobenzoyl (N-DNB) unit, and CSP 4, containing a terminal N-benzoyl
(N-B) unit, are studied. Separation factors (�) for the two sets of test racemates (TR) that struc-
turally match the chiral selector of these CSPs have been determined. The first set consists of
seven N-DNB �-amino acid isopropylesters (TR 1A–TR 7A), and the second one of their N-B
analogues (TR 1–TR 7). The best enantioseparation (�average 1.27) is obtained when �-acceptor
DNB unit is present in both TR and CSP. One �-acceptor unit, either in the analyte or in CSP,
suffices for efficient enantioseparation (�average 1.19). Interaction between �-neutral units in the
CSP and test racemate does not afford effective enantioseparation (�average 1.03). Using (S)-en-
antiomers of all TRs as standards, CD detection has revealed regular preference of the CSPs
for the enantiomers containing amino acid amide of the same absolute configuration. The pos-
sible origin of such enantiopreference is discussed.
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INTRODUCTION

Pirkle-type CSPs have been known to be effective for
the resolution of racemates containing either �-acid or
�-basic groups.1 Our efforts in this area have also re-
sulted in several effective Pirkle-type CSPs.2–4 Particu-
larly effective were the tweezer-type CSPs, with two
strongly �-acid 3,5-dinitrobenzoyl (DNB) groups per one
molecule of chiral selector.4 For these pseudo C2-sym-
metric selectors, with two identical chiral units, an in-
crease of the loading capacity was observed, however no
increase of their chiral recognition ability. Chiral selec-
tors in the Pirkle- or brush-type CSPs incorporate a �-acid
or/and �-basic aromatic unit, for which it is argued that

it provides �-� interaction with complementary aromatic
groups in the analyte.5,6 Besides, these CSPs retain more
strongly DNB-�-amino acid esters of the same absolute
configuration than those of the opposite configuration.
General experience has shown that �-acidic CSPs can be
used with a broad set of racemates, in several cases even
with racemic compounds with �-acidic groups.7 In con-
trast, �-basic stationary phases are only effective in the
separation of racemates with strong �-acidic groups.

Here we report a comparative study of the contribu-
tion of the �-electron donor-acceptor, donor-donor, and
acceptor-acceptor interaction to enantioselection in a set
of new CSPs. To this aim the study of enantioseparation
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ability and enantiopreference of seven N-3,5-dinitro-
benzoyl (N-DNB) and N-benzoyl (N-B) �-amino acid
(�-AA) esters was performed. Four novel CSPs were
prepared, three of them containing a terminal N-DNB
unit and one an N-B unit. All CSPs comprise a linker
unit consisting of 4-(alkyl)amino-3,5-dinitrobenzoyl am-
ide moiety. All CSPs are thus structurally related, in that
they comprise amides of N-DNB-�-AAs or N-B-�-AA.
They also structurally match the test racemates, esters of
the N-DNB and N-B derivatives of �-AAs.

EXPERIMENTAL

Chemicals

Manufacturers of the chemicals used are quoted in the pa-
rentheses after each chemical: 4-chloro-3,5-dinitrobenzoic
acid (Fluka, Buchs, Switzerland), 2-ethoxy-1-ethoxycarbonyl-
1,2-dihydroquinoline (EEDQ; Fluka), L-�-phenylglycine
(Sigma-Aldrich, Aldrich Chimica, Milano, Italy), L-leucine
(Aldrich), L-alanine (Aldrich), ethylenediamine (Aldrich) and
HPLC silica gel Nucleosil 100-5 NH2 (Macherey-Nagel,
Düren, Germany; w(C) = 2.46 %, w(H) = 0.89 % and w(N) =
0.96 %). N-3,5-dinitrobenzoyl derivatives of L-�-phenylgly-
cine, L-leucine and L-alanine were prepared according the
literature procedure.8 Racemic analytes TR 1A–TR 7A were
prepared from the set of D,L-amino acids (Sigma), and enan-
tiomerically pure TR 1–TR 7 were prepared from L-amino
acids (Aldrich). All the solvents used were purchased from
J. T. Baker (Davenport, Holland) and distilled before use.

Apparatus and Chromatography

IR: Perkin Elmer 297 spectrometer for KBr pellets. Ele-
mental analyses were carried out by the Central Analytical
Service (CAS) at the Ru|er Bo{kovi} Institute.

Chromatography was performed with a Knauer Well-
Chrom Maxi-Star K-1000 pump (Knauer GmbH, Berlin,
Germany) using a Knauer HPLC 6-port-valves injector with
a 20 �l loop. Detection was performed at 254 nm with a
Knauer WellChrom K-2500 detector. A Jasco CD-2095 de-
tector was used to determine the elution order of the enan-
tiomers. Integration of the chromatograms was done with
the Knauer Eurochrom 2000 software package. The follow-
ing parameters were measured for the newly prepared col-
umns:

k1': capacity factor of the first eluted enantiomer,
(t1–t0)/t0;

k2': capacity factor of the second eluted enantiomer,
(t2–t0)/t0;

�: selectivity factor, � = k2'/ k1';

RS: resolution factor, RS = 2(t2–t1)/(w1+w2);
w is the baseline bandwidth obtained by drawing
tangents to the inflection points of the chromato-
graphic peak.

Packing of HPLC columns purchased from MsScientific
(Berlin, Germany), 250 mm � 4.6 mm I.D., was performed
by the slurry technique using a Knauer pneumatic HPLC-

pump. n-Hexane, 2-propanol, dichloromethane and acetic
acid used for HPLC chromatography were of analytical
grade (J. T. Baker) and were redistilled before use. Analyte
samples were prepared by dissolving ca 1 mg of the race-
mic compound in 1 ml of 2-propanol. For analytical pur-
poses, 5 �l of freshly prepared solution were used.

Preparation of Chiral Stationary Phases CSP 1–

CSP 4

A mixture of 4-chloro-3,5-dinitrobenzoic acid (2.46 g,
9.96 mmol) and EEDQ (2.47 g, 9.96 mmol) in dry THF
(60 ml) was stirred at ambient temperature for 2 h. To the
obtained solution, silica gel Nucleosil 100-5 NH2 (10.288 g;
N 1.36 % and C 3.49 %) was added and stirred for an addi-
tional 18 h at ambient temperature. The modified silica gel
was collected on G-4 filter, washed with tetrahydrofurane
(2 � 20 ml) and acetone (2 � 20 ml), and dried at 70 °C for
4 h. 11.15 g of stationary phase SP 1 was obtained; IR (KBr)
�/cm–1 3450, 2910, 2840, 1630, 1540, 1340, 1250-1000,
785; Anal. found C 5.62, H 1.19, N 2.90 %. Based on the
percent of C, 1.0 g of stationary phase SP 1 contains ca

0.36 mmol of the bound organic molecule.

SP 1 (11.12 g) was suspended in dichloromethane (60
ml) and ethylenediamine (12 ml) was added. Reaction sus-
pension was stirred for 1 h at ambient temperature and the
product was collected on G-4 filter. The obtained modified
silica was washed with dichloromethane (2 � 20 ml) and
methanol (2 � 20 ml) and dried at 70 °C for 4 h to afford
11.20 g of stationary phase SP 2. A mixture of stationary
phase SP 2 (2.80 g), N-(3,5-dinitrobenzoyl)-L-�-amino acid
(2–4, 1.34 mmol) and EEDQ (0.332 g, 1.34 mmol) in dry
tetrahydrofurane (10 ml) was stirred for 24 h at ambient
temperature. The obtained chiral stationary phase was col-
lected on G-4 filter, washed with tetrahydrofurane (2 � 10
ml) and methanol (2 � 10 ml), and dried at 70 °C for 4 h.

CSP 1: From SP 2 and alanine derivative 2, 2.94 g
of product was obtained; Anal. found: C 8.98, H 2.18, N
1.22 %. Based on the percent of C, 1.0 g of chiral stationary
phase CSP 1 contains ca 0.26 mmol of bound selector.

CSP 2: From SP 2 and leucine derivative 3, 2.94 g
of product was obtained; Anal. found: C 10.30, H 2.04, N
1.51 %. As calculated based on C %, 1.0 g of chiral station-
ary phase CSP 2 contains ca 0.26 mmol of bound selector.

CSP 3: From SP 2 and phenylglycine derivative 4, 2.98 g
of product was obtained; Anal. found: C 11.14, H 1.44, N
2.99 %. As calculated based on C %, 1.0 g of chiral station-
ary phase CSP 3 contains ca 0.28 mmol of bound selector.

CSP 4: From SP 2 and N-benzoylphenylglycine (5),
2.88 g of product was obtained; Anal. found: C 11.05, H 1.71,
N 1.54. As calculated based on C %, 1.0 g of chiral station-
ary phase CSP 4 contains ca 0.25 mmol of bound selector.

RESULTS AND DISCUSSION

Preparation of CSP 1–CSP 4 is outlined in Scheme 1,
and follows previously reported protocols.4,8 Amino
group of aminopropyl silica, Nucleosil 100-5 NH2, was
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acylated by 1 to obtain the stationary phase SP 1. The
next synthetic steps were completed on the solid phase.
Ethylenediamine was first introduced as the second spa-
cer, previously identified as optimal for such a tweezer-
type as CSPs,4 then acylation with N-DNB-�-AAs and
N-B-PheGly afforded CSP 1–CSP 3 and CSP 4, respec-
tively.

CSP 1–CSP 3 are characterised by the terminal
DNB group, known as the very strong �-acidic group,5

and moderately �-acid 4-alkylamino-DNB group as the
branching unit. For the reference terminal unit, the �-ne-
utral N-B group in the CSP 4 was selected. The �-amino
acid amides are the source of chirality in all these CSPs,
which comprise two additional amide groups. Ar-N-H
and DNB-CON-H hydrogen atoms are presumably hy-
drogen bonded to the neighbouring amide carbonyl and
to one of the ortho-nitro groups in para-ethylamino-3,5-
DNB unit, affording a shape-persistent core for these
CSP.

No systemic study of the enantioseparation of �-do-
nor and �-acceptor analytes (test racemates, TR) by the
CSPs possessing high overall structural similarity and
matching or mismatching �-electron density has been re-
ported. Several examples of such separations were pre-
viously mentioned in the literature, but no general con-
clusions have been drown.4,7,9 This study was aimed at
determining the enantioselection ability of CSP 1–CSP 4
for electron-deficient (�-acceptor) vs. electron rich (�-do-
nor) analytes, the relative contribution of the branching

vs. terminal �-unit, and the bias of enantioselection, i.e.,
determination of the preferably bound enantiomer.

All columns filled with CSP 1–CSP 4 were tested in
enantioseparation of the two series of test racemates; iso-
propyl esters of �-amino acids containing either �-acidic
N-DNB group (TR 1A–TR 7A), or �-neutral N-B group
(TR 1–TR 7), Figure 1. Tables I and II present the chro-
matographic parameters obtained for separation of both
series of test racemates with CSP 1–CSP 4 using two
eluting systems. They were selected in order to determine
the contribution of the hydrogen bonding to the enantio-
selection. The first one, n-hexane/2-propanol (90:10),
comprises weak hydrogen bonding alcohol, the second
one contains methanol, known for its strong solvating
and H-donor properties.10

As expected, separations obtained for racemic N-DNB
derivatives TR 1A–TR 7A were more effective than se-
parations for analogous N-B derivatives TR 1–TR 7.
Best separations were registered with CSP 2, prepared
from (S)-leucine, followed by CSP 3 and CSP 1, derived
from (R)-phenylglycine and (S)-alanine, respectively. The
first three chiral selectors in CSP 1–CSP 3 comprise two
DNB units, and CSP 4 only the branching N-DNB. In-
version of the elution order can therefore be expected for
the last one, if the linker �-acceptor N-DNB unit signifi-
cantly contributes to the overall �-� interaction with the
analyte. Combined use of CD-detector and enantiomeri-
cally pure analytes as reference allowed determination
of the elution order for all test racemates on all CSPs;
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some chromatograms are presented in Figure 2. In all
cases, except for the test racemate TR 1 on CSP 4 where
the separation is very poor, the more strongly retained
enantiomer of amino acid ester had the same configura-
tion as the amino acid used for CSPs preparation. Such

relation was repeatedly reported,4,7,11 and its interpreta-
tion was offered by Hyun et al.9,12

For the separation of N-B derivatives TR 1–TR 7 on
CSP 1–CSP3 with the mobile phase hexane/2-propanol
9:1, chromatographic parameters are in some cases close to
the values obtained for N-DNB derivatives TR 1A–TR
7A. However, separations obtained for N-B derivatives
TR 1–TR 7 on CSP 1–CSP 3 were deteriorated by metha-
nol in the solvent mixture (hexane/dichloromethane/metha-
nol 100:30:1), Table II. Samples TR 1A–TR 7A were
not eluted with this mobile phase from column CSP 4
and therefore the results for CSP 4 are not included in
Table III. The methanol molecule is smaller and a much
better H-donor than 2-propanol.10 It can better solvate
the amide bonds in the chiral selector, and presumably
perturbs the approach of the analyte to the chiral hole.
The results with CSP 1–CSP 3 vs. CSP 4 indicate that
solvation does not effect separation of N-DNB analytes;
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Figure 1. Racemic amino acid derivatives used for CSP 1–CSP 4

evaluation.

TABLE I. Separation factors (�) and capacity factors of the first eluted enantiomer (k’1, in parentheses) obtained for racemic analytes
TR 1–TR 7 and TR 1A–TR 7A on columns filled with CSP 1–CSP 4; column dimensions 250 mm � 4.6 mm ID; mobile phase hex-
ane/2-propanol 9:1; flow rate 1.0 ml/min(a)

analyte CSP 1 CSP 2 CSP 3 CSP 4 analyte CSP 1 CSP 2 CSP 3 CSP 4

TR 1 1.12

(4.77)

1.00

(7.25)

1.22

(3.57)

1.02

(3.08)

TR 1A 1.16

(9.06)

1.27

(7.41)

1.19

(9.40)

1.22

(8.02)

TR 2 1.12

(5.03)

1.27

(3.73)

1.25

(3.92)

1.05

(3.05)

TR 2A 1.19

(10.98)

1.40

(7.74)

1.29

(13.03)

1.24

(11.01)

TR 3 1.10

(3.00)

1.23

(2.28)

1.16

(2.11)

1.00

(2.53)

TR 3A 1.20

(6.90)

1.37

(5.12)

1.26

(7.33)

1.00

(2.10)

TR 4 1.18

(3.15)

1.41

(2.34)

1.18

(2.13)

1.06

(2.01)

TR 4A 1.21

(5.58)

1.48

(3.98)

1.21

(5.99)

1.25

(5.21)

TR 5 1.14

(2.64)

1.29

(2.01)

1.22

(1.91)

1.00

(1.61)

TR 5A 1.23

(7.53)

1.45

(4.47)

1.31

(9.32)

1.17

(5.79)

TR 6 1.05

(5.73)

1.11

(4.34)

1.16

(4.48)

1.05

(3.64)

TR 6A 1.12

(12.34)

1.22

(8.82)

1.27

(13.20)

1.16

(10.24)

TR 7 1.16

(6.86)

1.62

(5.08)

1.29

(5.56)

1.04

(4.24)

TR 7A 1.20

(13.92)

1.36

(10.04)

1.24

(15.88)

1.26

(13.55)

(a) (S)-enantiomers are always more retained, except for TR 1 on CSP 4.

TABLE II. Separation factors (�) and capacity factors of the first eluted enantiomer (k’1, in parentheses) obtained for racemic analytes
TR 1–TR 7 and TR 1A–TR 7A on columns filled with CSP 1–CSP 3; column dimensions 250 mm � 4.6 mm ID; mobile phase hex-
ane/dichloromethane/methanol (100:30:1); flow rate 1.0 ml/min(a)

analyte CSP 1 CSP 2 CSP 3 analyte CSP 1 CSP 2 CSP 3

TR 1 1.09 (5.89) 1.00 (7.25) 1.00 (6.34) TR 1A 1.18 (8.37) 1.39 (7.18) 1.24 (9.07)

TR 2 1.06 (2.76) 1.26 (1.72) 1.10 (2.80) TR 2A 1.23 (6.95) 1.49 (5.66) 1.30 (8.38)

TR 3 1.00 (0.97) 1.00 (0.88) 1.00 (1.05) TR 3A 1.21 (4.68) 1.43 (3.92) 1.30 (5.32)

TR 4 1.00 (0.99) 1.00 (0.96) 1.00 (1.00) TR 4A 1.29 (5.28) 1.67 (4.37) 1.26 (6.50)

TR 5 1.00 (0.96) 1.09 (0.91) 1.00 (1.14) TR 5A 1.28 (4.07) 1.54 (3.32) 1.29 (5.04)

TR 6 1.04 (3.12) 1.03 (1.57) 1.10 (2.88) TR 6A 1.13 (7.89) 1.26 (6.40) 1.31 (8.50)

TR 7 1.13 (3.60) 1.24 (2.87) 1.23 (3.40) TR 7A 1.22 (10.10) 1.45 (7.63) 1.31 (12.25)

(a) (S)-enantiomers are always more retained.



their separation is similar with both mobile phases. It can
be concluded that the �-deficient N-DNB group of the
analyte enables strong interactions with the �-deficient
N-DNB group of CSPs 1–3 and disrupts H-bonding with
methanol. These results also suggest that the primary role
of �-� interactions is to enhance attraction of the analy-
tes. This attractive interaction enables the analyte mole-
cule to enter the chiral hole where the analyte enantiomers
are differently oriented, depending on the H-bonding and
van der Waals interactions, and therefore distinguished
by different stability of their complexes.13

As mentioned in the Introduction, the N-DNB-�-AA
unit is present in many chiral stationary phases. Although
the contribution of this �-acid unit to chiral recognition
is repeatedly evidenced,14 its relative contribution, as
compared, e.g., to the N-B-�-AA unit, is not evaluated.
N-DNB-Ala, N-DNB-Leu, and N-DNB-Phgly are pres-

ent in the CSPs formerly prepared by Pirkle,15 Hyun,9,12

and by us.4

Table III gives the �-values in relation to the �-elec-
tron character of the aromatic groups on the chiral selec-
tor and analyte. These results reveal that separation of
the �-acceptor-acceptor pair is most effective, followed
by separation of the �-acceptor and �-neutral aromatic
moieties, either in CSP or in analyte, while the least ef-
fective are separations when both, CSP and analyte, con-
tain �-neutral aromatic moiety. An interesting point are
the similarly efficient separations of N-DNB derivatives
TR 1A–TR 7A on CSP 4 (�average 1.19) and of N-B de-
rivatives TR 1–TR 7 on CSP 1–CSP 3 (�average 1.20). If
the chiral recognition process is exclusively governed by
�-� interactions, e.g., according to the model of the mo-
lecular recognition proposed by Hunter et al.,16,17 the in-
teraction between two �-deficient N-DNB groups will
have a more significant effect on enantioseparation than
the interaction between one N-DNB and one N-B group.
The results obtained for TR 1A–TR 7A on CSP 1–CSP
3 and CSP 4 reveal only a slightly higher enantioselec-
tion capacity of the former three CSPs (�average 1.27) than
the last one (�average 1.19).

It is remarkable that CSP 1–CSP 4, all based on
N-DNB-�-AA amide chiral selector, preferably bind
TR 1A–TR 7A and TR 1–TR 7 of the same absolute
configuration, Tables I and II. We assume that the origin
of the preferred binding of the enantiomers structurally
highly similar to CSP with the same absolute configura-
tion, lies in the »head to tail« orientation of the analyte
in the complex with the chiral selector of CSP 1–CSP 3
and of CSP 4.
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TABLE III. �-Electron character of the aromatic groups in interac-
tions, and their influence on the enantioseparation

�-character of
the interacting
group

CSP TR �min–�max �average

CSP acceptor
TR acceptor

CSP 1 TR 1A–TR 7A 1.12–1.23 1.19

CSP acceptor
TR neutral

CSP 1 TR 1–TR 7 1.05–1.18 1.12

CSP acceptor
TR acceptor

CSP 2 TR 1A–TR 7A 1.22–1.48 1.36

CSP acceptor
TR neutral

CSP 2 TR 1–TR 7 1.00–1.62 1.28

CSP acceptor
TR acceptor

CSP 3 TR 1A–TR 7A 1.19–1.31 1.25

CSP acceptor
TR neutral

CSP 3 TR 1–TR 7 1.16–1.29 1.21

CSP neutral
TR acceptor

CSP 4 TR 1A–TR 7A 1.00–1.26 1.19

CSP neutral
TR neutral

CSP 4 TR 1–TR 7 1.00–1.06 1.03

a)

b)

10
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5

15.525

19.006

8.442

17.593

23.507

9.227

20

25 30

10

Time / min

Time / min

Time / min

c)

Figure 2. Several chromatograms obtained by the column filled
with CSP 2; for TR 2A (a), TR 6 (b) and for TR 6A (c). Upper
frames were obtained by CD detection and lower frames by UV
detection.



Chiral recognition on the Pirkle-type CSPs is taken
to occur through the �-� parallel stacking interactions of
the two aromatic moieties.11,12,18 It is known that only the
electron-deficient, �-acceptor or �-acid, aromatics prefer
to stack in a nearly parallel fashion.17,19–21 On the con-
trary, electron-rich, �-donor or �-basic, aromatic units
do not stack well because of mutual repelling of the aro-
matic �-clouds in any stacked orientation except for the
edge-on geometry. Either of the �-� interactions between
two N-DNB units in the analyte and chiral selector in
CSP 1–CSP 4, offset-stacking or edge-to-face orientation,
allows formation of up to three hydrogen bonds in the
test racemate-chiral selector �TR-CS� complex. Two of
them would suffice to get an effective chiral recognition.
Structural details of the complex �TR-CS�, i.e., the origin
of the preferred binding of the enantiomer possessing
the same absolute configuration as CS, can be deduced
from the combined experimental and computational ap-
proach. Elucidation of the structures of the representa-
tive couple of diastereomeric complexes between enan-
tiomeric N-DNB-�-AA esters such as TR and N-DNB-
�-AA amides in chiral selectors is envisaged.

CONCLUSIONS

In conclusion, the presence of the terminal DNB group
in the CSP 1–CSP 3 and in the analyte, though not the
sole factor important for chiral discrimination, signifi-
cantly contributes to the enantioseparation. Terminal
DNB group in the CSP 1–CSP 3 enables separation of
both �-acid and �-basic analytes, the former with higher
efficacy than the latter. Terminal N-B group in CSP 4
enables effective enantioseparation of TR 1A–TR 7A,
which contain the �-acceptor N-DNB group. The same
elution order of enantiomers on CSP 1–CSP 3 and CSP 4
indicates a limited contribution of the branching N-DNB
unit to the orientation of the analyte. The attractive �-�
interactions presumably allow the entry of both enantio-
mers into the chiral hole, which then orient differently,
governed by H-bonding and van der Waals interactions.
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Studija kromatografske enantioseparacije estera N-dinitrobenzoil (N-DNB) i N-benzoil (N-B)
�-aminokiselina na novim kiralnim nepokretnim fazama ~iji kiralni selektori sadr`e strukturno

sli~ne N-DNB i N-B �-AA amide

Biljana Zafirova, Goran Landek, Darko Kontrec, Vitomir [unji} i Vladimir Vinkovi}

Prou~avane su sklonosti i mogu}nosti odjeljivanja enantiomera na kiralnim nepokretnim fazama CSP
1–CSP 3 koje sadr`e terminalnu N-3,5-dinitrobenzoilnu (N-DNB) jedinicu te na CSP 4 koja sadr`i terminalnu
N-benzoilnu jedinicu. Odre|eni su faktori odjeljivanja (�) za dva skupa test racemata (TR) koji su strukturno
sli~ni kiralnim selektorima ispitivanih kiralnih nepokretnih faza. Prvi se skup sastoji od sedam izopropilnih
estera N-DNB �-aminokiselina (TR 1A–TR 7A), a drugi od njihovih N-B analoga (TR 1–TR 7). Prosje~no
najbolja odjeljivanja enantiomera (�average 1.27) su dobivena kada je �-akceptorska DNB jedinica prisutna i u
TR i u CSP. Jedna �-akceptorska jedinica, ili u analitu ili u CSP, dovoljna je za u~inkovitu enantioseparaciju
(�average 1.19), me|utim, interakcija izme|u �-neutralnih jedinica i u CSP i u TR ne omogu}uje dobru enantio-
separaciju (�average 1.03). Uporabom (S)-enantiomera test racemata kao standarda i CD detekcijom utvr|eno je
da kiralne nepokretne faze ovoga tipa imaju ve}u sklonost prema enantiomerima apsolutne konfiguracije iste
kao kiralni selektor. Razmatran je mogu}i razlog takve sklonosti.
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