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On cyclic characterizations of regular pentagons
and heptagons: Two approaches

Dragutin Svrtan∗, Davor Šterc† and Igor Urbiha‡

Abstract. In this paper we present two different proofs of an al-
gebraic characterization of regular pentagons and regular pentagrams in
terms of two cyclic (complex) algebraic equations on a five–dimensional
torus (Theorem 1 and Theorem 2). The problem arose in functional
analysis (as communicated to one of the authors by A. Björner some
twenty years ago). No published proof has appeared so far. Apparently
a proof was given by L. Lovász (unpublished and not known to the au-
thors). Here we give two different proofs, both somewhat tricky. The
first one relies upon discrete Fourier transform and the second one is
more direct. Also several generalizations to heptagons are presented in-
cluding an explicit description of some new irregular heptagrams. Some
additional conjectures on general polygons are stated.
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1. Preliminaries on discrete Fourier transform

Let ω = e2πi/N denote the N–th root of unity. Then the one–dimensional Fourier
transform of the sequence of complex numbers (u0, u1, . . . , uN−1) is defined to be
the sequence (û0, û1, . . . , ûN−1), where

ûs =
∑

0≤t<N

ωstut, 0 ≤ s < N. (1)

Letting (v̂0, v̂1, . . . , v̂N−1) be defined in the same way as the Fourier transform of
(v0, v1, . . . , vN−1) it is easy to see that (û0v̂0, û1v̂1, . . . , ûN−1v̂N−1) is the transform
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of (w0, w1, . . . , wN−1) where

wr =
∑

uivj .
i + j ≡ r(modN)

(2)

To get the inverse Fourier transform (u0, u1, . . . , uN−1) from the values of (û0, û1,
. . . , ûN−1), we may note that the ”double transform” is

̂̂ur =
∑

0≤s<N

ωrsûs =
∑

0≤s,t<N

ωrsωstut

=
∑

0≤t<N

ut


 ∑

0≤s<N

ωs(t+r)


 = Nu−r(modN),

(3)

since the geometric series
∑

0≤s<N ωsj sums to zero unless j is a multiple of N .
Therefore the inverse transformation can be computed in the same way as the
transform itself except that the final result must be divided by N and shuffled
slightly:

Nur =
∑

0≤s<N

ωrsûs (4)

2. The problem of five points on a circle

Let z0, z1, z2, z3, z4 be five complex numbers lying on the unit circle {|z| = 1}
and satisfying the symmetric conditions z0 + z1 + z2 + z3 + z4 = 0 and z0z1 +
z1z2 + z2z3 + z3z4 + z4z0 + z0z2 + z1z3 + z2z4 + z3z0 + z4z1 = 0. It follows easily,
by conjugating these two equations and then using Vietè’s formulas, that zk’s are
necessarily vertices of a regular pentagon.

In the following theorem we show that the same conclusion follows if we replace
the symmetric conditions by cyclic ones, but the proof is not so immediate.

Theorem 1. Any five complex numbers z0, z1, . . . , z4 lying on the unit circle
{|z| = 1} and satisfying the conditions

(A1) z0 + z1 + z2 + z3 + z4 = 0,

(A2) z0z1 + z1z2 + z2z3 + z3z4 + z4z0 = 0,

are necessarily vertices of a regular pentagon.
Proof. Let (c0, c1, c2, c3, c4) be the Fourier transform of the sequence (z0, z1, z2,

z3, z4) given by (1). Then, by using (4), the conditions (A1) and (A2) can be
expressed in terms of ci’s as follows:

c0 = 0 (A1)

ac1c4 − (1 + a)c2c3 = 0, (A2)
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where a = ω + ω = 2 cos(2π/5), (ω = cos(2π/5) + i sin(2π/5)). By the inverse
Fourier transformation, the conditions |z0| = |z1| = |z2| = |z3| = |z4| = 1 imply two
more equations satisfied by ci’s:

c1c2 + c2c3 + c3c4 = 0, (B1)

c1c3 + c2c4 + c4c1 = 0, (B2)

which can be proved directly as follows. For r = 1, 2 we have:

∑
0≤k<5 ckck+r =

∑
0≤k,s,t<5

ωksωt(k+r)zszt =
∑

0≤s,t<5

ωrt


 ∑

0≤k<5

ωk(s−t)


 zszt

= 5
∑

0≤t<5

ωrt|zt|2 = 5
∑

0≤t<5

ωrt = 0.

Lemma 1. Conditions (A1),(A2), (B1) and (B2) imply that exactly one of the
ci’s is nonzero.

Proof. We first eliminate c1 from (A2) and (B1):

c3
(
a|c4|2 + (1 + a)|c2|2

)
= −ac2c4c3, (5)

and then take absolute values of both sides in (5):

|c3|
(
a|c4|2 − a|c2||c4|+ (1 + a)|c2|2

)
= 0. (6)

Note that the (real) quadratic form ax2 − axy + (1 + a)y2 is positive definite (its
discriminant D = −a(4 + 3a) is negative). Hence (6) implies two cases.

Case 1.: c3 = 0
(B1)
=⇒ c1 = 0 or c2 = 0

(B2)=⇒ (c2 = 0 or c4 = 0) or (c1 = 0 or c4 = 0)

Case 2.: c2 = c4 = 0
(B2)
=⇒ c1 = 0 or c3 = 0. ✷

Finally, (A1) and Lemma1 show that zk’s must be of the form (by (4))

zk = 1
5ω

kjcj (7)

for some j ∈ {1, 2, 3, 4}, so zk (k = 0, 1, . . . , 4) represent vertices of a regular
pentagon or vertices of a regular pentagram. ✷

3. A direct proof

Theorem 2. Let z1, z2, z3, z4, z5 be five distinct points (complex numbers) on a
unit circle S1 = {z : |z| = 1}. Then they are consecutive vertices of either a regular
pentagon or a regular pentagram (i.e. zk = λωk, ω = exp(2πi/5), |λ| = 1) if and
only if the following two equations are satisfied:

i) z1 + z2 + z3 + z4 + z5 = 0,
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ii) z1z2 + z2z3 + z3z4 + z4z5 + z5z1 = 0.

Proof. First we note that the equations (i) and (ii) hold for regular pentagons
and for regular pentagrams.

Let Z be the set of all solutions of (i) and (ii) belonging to S1×S1×S1×S1×S1 =
T 5 (a five-dimensional torus). The set Z is clearly S1–invariant with respect to the
action given by (λ, (z1, z2, z3, z4, z5)) 	→ (λz1, λz2, λz3, λz4, λz5).

We shall now seek for special representatives (z1, z2, z3, z4, z5) of S1–orbits in Z
obeying the additional property

z5 = z1 (equivalently z1z5 = 1). (8)

(Take any orbit representative (z1, z2, z3, z4, z5) and scale it by λ := 1√
z1z5

.)
The following fact is a key observation here: If |z| = 1 and |v| = |w|, v �= −w

then there is a real number µ such that

vz + wz−1 = µ(v + w). (9)

Hence by using this fact we can write the part z1z2 + z4z5 of the sum in (ii) as
follows

z1z2 + z4z5 = z2z1 + z4z
−1
1 by (9)

= µ(z2 + z4)
(10)

where µ is a real number. Here we only need to comment that z2 + z4 is nonzero.
Otherwise, we would have from (i): 0 = z1 + z3 + z5 = z1 + z1 + z3 ⇒ z3 is a real
number, hence z3 = ±1 and z1 = ∓ 1±√

3
2 what contradicts (ii): 0 = z1z2 + z4z5 +

z5z1 = (z1 − z1)z2 + 1 = ±i√3z2 + 1(�= 0, because |z2| = 1).
Now we plug in (10) into (ii):

(µ+ z3)(z2 + z4) + 1 = 0. (11)

From (i), by using (8) we obtain

z2 + z4 = −(z3 + z1 + z1). (12)

Substituting (12) into (11) leads to

(µ+ z3)(z3 + z1 + z1) = 1, (13)

or equivalently

|µ+ z3|2(z3 + z1 + z1) = µ+ z3. (13’)

The imaginary part of (13’) gives

|µ+ z3|2�(z3) = −�(z3) ⇒ �(z3) = 0 ⇒ z3 = ±1. (14)

Now (12) becomes

z2 + z4 = ∓1− z1 − z1, (15)
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implying that �(z4) = −�(z2) and because |z4| = |z2| (= 1) we infer

z4 = z2, (16)

because z2 + z4 �= 0. Now (16) and (8) imply

z4z5 = z1z2 (17)

(This implies z1z2z3z4z5 = ±1.)
Now we substitute z3 = ±1 from (14) into (ii) and use (17) and (8):

0 = z1z2 +
1

z1z2
± (∓1− z1 − z1) + 1

= z1z2 +
1

z1z2
∓ (z1 +

1
z1

)

= (z1 ∓ 1
z1z2

)(z2 ∓ 1).

This implies that (because zk’s are distinct)

z2 = ±z−2
1 . (18)

Now we substitute (18) into (16) and then into (15):

±z−2
1 ± z2

1 = ∓1− z1 − z−1
1 ,

or equivalently

z4
1 ± z3

1 + z2
1 ± z1 + 1 = 0.

Hence

z5
1 = ±1.

Now formulas (18), (14), (16) and (8) can be written as

(z1, z2, z3, z4, z5) = (z1, z3
1 , z

5
1 , z

7
1 , z

9
1) = (z1, z3

1 ,±1,±z2
1,±z4

1)

where z1 is any primitive root of z5 = ±1.
This means that for each choice of sign ±1 we obtain exactly four cyclic arrange-

ments of five points on the unit circle: (1, 2, 3, 4, 5), (5, 4, 3, 2, 1) (regular pentagon),
or (1, 3, 5, 2, 4), (1, 4, 2, 5, 3) (regular pentagram). The theorem is proved. ✷

We state now the general conjecture, mentioned also by A. Björner ([B]):
Conjecture 1. Let N be any odd integer, N = 2n+ 1, n ≥ 1. Let z0, z1, · · · ,

zN−1 be any distinct N points (complex numbers) on a unit circle S1 = {z : |z| = 1}
which satisfy the following n equations :

(As)
∑

0≤k<N zkzk+1 · · · zk+s−1 = 0, 1 ≤ s ≤ n. (zN+k := zk, k ≥ 0)
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Then these N numbers represent vertices of a regular N -gon.
Remark 1. Note that for unit complex numbers the conjugate of the cyclic

equation As(1 ≤ s ≤ n) is just the complementary cyclic equation A2n+1−s(n+1 ≤
2n+ 1− s ≤ 2n).

Now we reformulate this conjecture via the Fourier transform as follows:
Conjecture 2. Let ω = e2πi/N denote the N–th root of unity. Let N(= 2n+1)

complex numbers c0 = 0, c1, c2, . . . , cN satisfy the following equations:

(Âs)
∑

1≤i1,··· ,is<N ;i1+···+is=0(modN)

ωi2+2i3+···+(s−1)isci1 · · · cis = 0, 2 ≤ s ≤ n,

(B̂s)
∑

0≤k<N ckck+s = 0, (1 ≤ s ≤ n), where (cN+k = ck, k ≥ 0, c0 = 0).

Then exactly one of ci’s is nonzero. For example, for N = 7 the conditions in the
Conjecture 2 read as follows:

(Â2) (ω + ω)c1c6 + (ω2 + ω2)c2c5 + (ω3 + ω3)c3c4 = 0,

(Â3) (1 + ω3 + ω3)(c21c5 + c2c
2
6) + (1 + ω2 + ω2)(c1c23 + c24c6) + (1 + ω + ω)(c22c3 +

c4c
2
5)− c1c2c4 − c3c5c6 = 0,

(B̂1) c1c2 + c2c3 + c3c4 + c4c5 + c5c6 = 0,

(B̂2) c1c3 + c2c4 + c3c5 + c4c6 + c6c1 = 0,

(B̂3) c1c4 + c2c5 + c3c6 + c5c1 + c6c2 = 0,

where ω = e2πi/7.
The equations for N = 7 in Conjecture 1 are as follows:

z0 + z1 + z2 + z3 + z4 + z5 + z6 = 0,
z0z1 + z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z0 = 0,
z0z1z2 + z1z2z3 + z2z3z4 + z3z4z5 + z4z5z6 + z5z6z0 + z6z0z1 = 0,

By using |zk| = 1, (k = 0..6) the conjugation gives us three more equations:

1
z0

+ 1
z1

+ 1
z2

+ 1
z3

+ 1
z4

+ 1
z5

+ 1
z6

= 0,
1

z0z1
+ 1

z1z2
+ 1

z2z3
+ 1

z3z4
+ 1

z4z5
+ 1

z5z6
+ 1

z6z0
= 0,

1
z0z1z2

+ 1
z1z2z3

+ 1
z2z3z4

+ 1
z3z4z5

+ 1
z4z5z6

+ 1
z5z6z0

+ 1
z6z0z1

= 0.

If we specialize z0 = 1, z6 = 1
z1
, z5 = 1

z2
, z4 = 1

z3
in the above six equations, we shall

produce (in Section 4. by using Maple) explicit counterexamples to Conjecture 1
in the case N = 7. The only three different (up to complex conjugation) such
counterexamples are depicted (each in two views) in the following figures obtained
by Maple:



Regular pentagons and heptagons 77

In case N = 7 if we add one more quadratic condition z0z2+z1z3+z2z4+z3z5+
z4z6 + z5z7 + z6z1 = 0 and its conjugate, then with weaker symmetry requirement
z4 = 1

z3
we get only regular solutions (i.e. only regular heptagons and regular

heptagrams) as the following commented transcript of a Maple session shows:
> Z[0]:= 1: Z[1]:=a: Z[2]:=b: Z[3]:=c: Z[4]:=1/c:
> Z[5]:=e: Z[6]:=d:
> for j from 0 to 2 do F[j] :=
> sort(add(mul(Z[‘mod‘(k+m,7)],m=0..j),k=0..6)); od;

F0 := a+ b + c+ e+ d+
1
c
+ 1
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F1 := a b+ b c+ e d+ a+ d+
e

c
+ 1

F2 := a b c+ a b+ a d+ e d+ b+
e d

c
+ e

> for j from 2 to 0 by -1 do F[5-j] :=
> add(1/mul(Z[‘mod‘(k+m,7)],m=0..j),k=0..6); od;

F3 :=
1
a b

+
1

a b c
+

1
b
+

1
e
+

c

e d
+

1
e d

+
1
a d

F4 := 1 +
1
a
+

1
a b

+
1
b c

+
c

e
+

1
e d

+
1
d

F5 := 1 +
1
a
+

1
b
+

1
c
+ c+

1
e
+

1
d

> F[6]:= sort(add(mul(Z[‘mod‘(k+2*m,7)],m=0..1),k=0..6));

F6 := a c+ a d+ c e+ b+ e+
b

c
+
d

c
> F[7]:= sort(add(1/mul(Z[‘mod‘(k+2*m,7)],m=0..1),k=0..6));

F7 :=
c

b
+
c

d
+

1
b
+

1
e
+

1
a c

+
1
a d

+
1
c e

> Sols:={solve({seq(F[k]=0,k=0..7)},{a,b,c,d,e})}:
> nops(Sols);

1
> Sols;

{{b = α3, a = α5, d = α2, e = α4, c = α}}
Now we state a theorem whose generalization for N prime (or even squearefree)

could be a more feasible general conjecture.
Theorem 3. Let N = 5 or 7. Let z0, z1, . . . , zN−1 be any N distinct complex

numbers lying on the unit circle {|z| = 1} and satisfying

∑
0≤k<N

zk = 0, (A′
0)

∑
0≤k<N

zkzk+r = 0, (1 ≤ r ≤ n) (A′
r)

(indices modulo N). Then these numbers represent vertices of a regular N–gon.
Proof. As before, let (c0, c1, . . . , cN−1) be the Fourier transform of the sequence

(z0, z1, . . . , zN−1). Then

cs =
∑

0≤t<N

ωstzt ⇐⇒ Nzs =
∑

0≤t<N

ωstct.

Now, the conditions (A′
0) and (A′

r) (1 ≤ r ≤ n) transform into:

c0 = 0,
∑

1≤t≤n

(ωrt + ωrt)ctcN−t = 0, (1 ≤ r ≤ n) (19)



Regular pentagons and heptagons 79

The matrix A = (ars), ars = ωrs + ωrs of the system (19) is nonsingular since its
square A2 =

(
a
(2)
rt

)
given by

a
(2)
rt =

∑
1≤s≤n

arsast =
∑

1≤s≤n

(ωrs + ωrs)(ωst + ωst)

=
∑

1≤s≤n

(ωs(r+t) + ωs(r+t)) = −2 + δrtN,
(20)

is clearly nonsingular. Thus (19) is equivalent to the following much simpler system
of equations:

c0 = 0, c1cN−1 = 0, c2cN−2 = 0, . . . , cncN−n = 0.

Now we take into account the system (B̂s), (s = 1..n) (see p. 76). Then for N = 5
or 7 it is easy to conclude that one of ci’s is nonzero. ✷

In the following section we continue our study of Conjecture 1 in case N = 7 .

4. The problem of seven points on a circle

In the case N = 7 of Conjecture 1 we deal with the basic cyclic polynomial equations
Ak = 0, k = 1..3, where

A1 = z0 + z1 + z2 + z3 + z4 + z5 + z6,
A2 = z0z1 + z1z2 + z2z3 + z3z4 + z4z5 + z5z6 + z6z0,
A3 = z0z1z2 + z1z2z3 + z2z3z4 + z3z4z5 + z4z5z6 + z5z6z0 + z6z0z1,

which on the 7-torus T 7 = {|zk| = 1, k = 0..6} imply also that Ak = 0, k = 4..6
where we set A7−j := z0z1z2z3z4z5z6Aj , j ∈ {1, 2, 3}, i.e.

A4 = z0z1z2z3 + z1z2z3z4 + z2z3z4z5 + z3z4z5z6 + z4z5z6z0 + z5z6z0z1+
+z6z0z1z2,

A5 = z0z1z2z3z4 + z1z2z3z4z5 + z2z3z4z5z6 + z3z4z5z6z0 + z4z5z6z0z1+
+z5z6z0z1z2 + z6z0z1z2z3,

A6 = z0z1z2z3z4z5 + z1z2z3z4z5z6 + z2z3z4z5z6z0 + z3z4z5z6z0z1+
+z4z5z6z0z1z2 + z5z6z0z1z2z3 + z6z0z1z2z3z4.

We shall call A7−k, for k = 1..3, a conjugate of Ak, for an obvious reason. To avoid
infinitely many solutions, we set z0 = 1. Several cases will be considered, all having

{Aj = 0 | j = 1..6} (21)

as the common set of equations.
All calculations and graphics in the sequel are done by Maple 7.

4.1. The easiest case yields irregular solutions

If we substitute z1 = a, z2 = b, z3 = c, z4 = 1
c , z5 = e and z6 = d into the system

(21), then it follows that e = 1
b and d = 1

a , and twelve solutions are obtained,
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with a, b, c distinct. Six regular solutions emerge, with z0, z1, . . . , z6 sitting in the
vertices of a regular heptagon

(zk)(l) = (cos 2klπ
7 + i sin 2klπ

7 ), l = 1..6
(the figure above corresponds to the case l = 1)

and three (up to complex conjugation) irregular solutions given by

z1 = a−3 , z2 = a−1 and z3 = c+2

z1 = a−1 , z2 = a−2 and z3 = c+3
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z1 = a−2 , z2 = a−3 and z3 = c−1 ,

where for k = 1..3 we have:

a±k = ak/2± i
√
1− a2

k/4,

c±k = ck/2± i
√
1− c2k/4;

ak = −1 + (3−√
21)�(α2k),

ck = (5−√
21)/2 + (3−√

21)�(α2k)

and α = cos 2π
7 + i sin 2π

7 .

4.2. How we found irregular solutions for the case N = 7

When we substituted z1 = a, z2 = b, z3 = c, z4 = 1
c , z5 = 1

b and z6 = 1
a

into equations A1, . . . , A3 of the case N = 7 of Conjecture 1 we have obtained the
following equations {Ek = 0 | k = 1..3} where:

E1 := 1 + a+ b+ c+
1
c
+

1
b
+

1
a
,

E2 := a+ ab+ bc+ 1 +
1
cb

+
1
ba

+
1
a
,

E3 := ab+ abc+ b+
1
b
+

1
cba

+
1
ba

+ 1,

Then we have studied various resultants [GKZ]. By a sequence of curious substitu-
tions and factorizations one can do this in Maple as follows.
Define the following algebraic numbers α, µ and λ, using Maple 7 syntax (using its
alias abbreviation), by

α = RootOf(x6 + x5 + x4 + x3 + x2 + x+ 1),

µ = RootOf(−2x6 − 9x5 + x5
√
21 + 12x4 − 4x4

√
21 + 61x3

−15x3
√
21 + 12x2 − 4x2

√
21− 9x+ x

√
21− 2),

λ = RootOf(x12 + 9x11 + 3x10 − 73x9 − 177x8 − 267x7 − 315x6

−267x5 − 177x4 − 73x3 + 3x2 + 9x+ 1).
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The polynomial p12(z) defining λ appears in many places in the long Maple’s output
when it solves the above system. The polynomial q6(z) defining µ is a factor (in
the factorization of p12(z) over the quadratic field Q(

√
21)) having as roots all the

roots of p12(z) of the unit modulus.
Solving the system {Ek = 0 | k = 1..3} for variables a, b and c (using Maple’s

solve command) yields three families of solutions:

{a = 1, c = RootOf(x2 + 5 ∗ x+ 1), b = 1},
{b = α, a = α4, c = α5}

and {a, b, c} where

a = − 232
63 − 764

63 λ− 506
63 λ

2 + 2
7λ

3 + 96
7 λ

4 + 88
3 λ

5 + 88
3 λ

6 + 530
21 λ

7 + 88
7 λ

8

− 5
63λ

9 − 88
63λ

10 − 10
63λ

11,

b = λ,

c = 118
9 + 182

9 λ− 826
9 λ2 − 5518

21 λ3 − 8704
21 λ4 − 517λ5 − 452λ6 − 931

3 λ7

−140λ8 + 20
9 λ

9 + 1063
63 λ10 + 121

63 λ
11.

Since in the solutions we are seeking all a, b, c should be distinct and of unit mod-
ulus, in particular b(= λ), we can make further simplifications in the intermediate
field Q(

√
21, µ). Then e.g. collect(evala(subs(λ=µ, ),µ)) in Maple gives further sim-

plification as follows:

a =
(
3
2
+

13
42

√
21

)
µ5 +

(
2 +

2
7
√
21

)
µ4 +

(
5
2
+

25
42

√
21

)
µ3

+
(
−1
2
+

59
42

√
21

)
µ2 +

(
−4 +

12
7
√
21

)
µ− 1

2
+

29
42

√
21

b = µ,

c =
(
11
6

+
5
42

√
21

)
µ5 +

(
35
6

− 25
42

√
21

)
µ4 +

(
−23

3
+

20
7
√
21

)
µ3

+
(
−227

6
+

391
42

√
21

)
µ2 +

(
−7
3
+

23
21

√
21

)
µ− 11

14
√
21 +

37
6
.

There are six possible values of b given by b±k = µ±
k := βk ± i

√
1− β2

k (k = 1..3)
(these are all solutions of q6(x) = 0) where

βk := −1
2
+

(
3−√

21
) (
α2k + α−2k

)
4

=

(−1 +
(
3−√

21
)
cos 4kπ

7

)
2

(k = 1..3)

we get altogether six irregular (three up to complex conjugation) heptagrams (with
1 as a vertex)

H±
k := (1, a±k , b

±
k , c

±
k ,

1
c±k

,
1
b±k

,
1
a±k

)

inscribed into a unit circle and satisfying the three cyclic equations A1 = 0, A2 = 0,
A3 = 0 (see the Figures in the Section 4.1.).
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4.3. Adding one more quadratic condition (and its conju-
gate)

If we wish to obtain a system having regular solutions only, more equations need
to be added. For example Equation set (21) can be augmented by two equations,
the equation A

(2)
2 = 0 and its conjugate A(2)

5 = 0,

A
(2)
2 = z0z2 + z1z3 + z2z4 + z3z5 + z4z6 + z5z0 + z6z1,

A
(2)
5 = z1z3z4z5z6 + z0z2z4z5z6 + z0z1z3z5z6 + z0z1z2z4z6 + z0z1z2z3z5+

z1z2z3z4z6 + z0z2z3z4z5,

(the second quadratic equation and its conjugate), and we can use the same sub-
stitutions as before, i.e. z1 = a, z2 = b, z3 = c, z4 = 1

c , z5 = e and z6 = d.
With a,b,c distinct there are only (six) regular solutions – corresponding to

regular heptagons and regular heptagrams.
In the next section we present another algebraic characterization of regular hep-

tagons and regular heptagrams.

5. Another algebraic characterization of regular heptagons
and regular heptagrams

Here we present a system for N = 7 on 7–torus consisting of one linear

A1 = 0, where A1 = z0 + z1 + z2 + z3 + z4 + z5 + z6,

and five cubic cyclic equations

A3[j, k] = 0, where A3[j, k] =
∑

0≤i<7

zizi+jzi+k with jk = 12, 24, 15, 13, 14

characterizing regular heptagons and regular heptagrams. The proof uses Fourier
transform.

Here follows a commented (and slightly edited) transcript of a Maple session
where all necessary calculations are performed by Maple 7.

Let α = exp(2πi/7).
> c[0]:=0;

c0 := 0

This condition is equivalent to A1 = 0. Now the conditions that all complex num-
bers zk have equal moduli are equivalent to the following equations Mk (k = 1..3):

> for k to 3 do
> M[k]:=sum(’c[j]*conjugate(c[j+k mod 7])’,j=0..6)=0
> od;

M1 := c1 (c2) + c2 (c3) + c3 (c4) + c4 (c5) + c5 (c6) = 0

M2 := c1 (c3) + c2 (c4) + c3 (c5) + c4 (c6) + c6 (c1) = 0



84 D.Svrtan, D. Šterc and I. Urbiha

M3 := c1 (c4) + c2 (c5) + c3 (c6) + c5 (c1) + c6 (c2) = 0

The following equations E3k (k = 1..5) are the Fourier transforms of the five cubic
cyclic equations A3[j, k] = 0 with increments jk = 12, 24, 15, 13, 14 respectively:

> E3[1] :=
> (1+alpha^3+alpha^4)*(c[1]^2*c[5]+c[2]*c[6]^2)+(1+alpha^2+
> alpha^5)*(c[1]*c[3]^2+c[4]^2*c[6])+(1+alpha^1+alpha^6)*
> (c[2]^2*c[3]+c[4]*c[5]^2)-c[1]*c[2]*c[4]-c[3]*c[5]*c[6]=0;

E3 1 := (1 + α3 + α4) (c12 c5 + c2 c6
2) + (1 + α2 + α5) (c1 c32 + c4

2 c6)
+ (1 + α+ α6) (c22 c3 + c4 c5

2)− c1 c2 c4 − c3 c5 c6 = 0

> E3[2] :=
> (1+alpha^1+alpha^6)*(c[1]^2*c[5]+c[2]*c[6]^2)+(1+alpha^3+
> alpha^4)*(c[1]*c[3]^2+c[4]^2*c[6])+(1+alpha^2+alpha^5)*
> (c[2]^2*c[3]+c[5]^2*c[4])-c[1]*c[2]*c[4]-c[3]*c[5]*c[6]=0;

E3 2 := (1 + α+ α6) (c12 c5 + c2 c6
2) + (1 + α3 + α4) (c1 c32 + c4

2 c6)
+ (1 + α2 + α5) (c22 c3 + c4 c5

2)− c1 c2 c4 − c3 c5 c6 = 0

> E3[3] :=
> (1+alpha^2+alpha^5)*(c[1]^2*c[5]+c[2]*c[6]^2)+(1+alpha+
> alpha^6)*(c[1]*c[3]^2+c[4]^2*c[6])+(1+alpha^3+alpha^4)*
> (c[2]^2*c[3]+c[5]^2*c[4])-c[1]*c[2]*c[4]-c[3]*c[5]*c[6]=0;

E3 3 := (1 + α2 + α5) (c12 c5 + c2 c6
2) + (1 + α+ α6) (c1 c32 + c4

2 c6)
+ (1 + α3 + α4) (c22 c3 + c4 c5

2)− c1 c2 c4 − c3 c5 c6 = 0
> E3[4]
> :=(alpha+alpha^2+alpha^4)*(c[1]^2*c[5]+c[2]^2*c[3]+c[4]^2*
> c[6])+(alpha^3+alpha^5+alpha^6)*(c[1]*c[3]^2+c[4]*c[5]^2+
> c[2]*c[6]^2)+(alpha^3+alpha^5+alpha^6+3)*c[1]*c[2]*c[4]+
> (alpha+alpha^2+alpha^4+3)*c[3]*c[5]*c[6]=0;

E3 4 := (α+ α2 + α4) (c12 c5 + c2
2 c3 + c4

2 c6) + (α3 + α5 + α6) (c1 c32 + c4 c5
2 + c2 c6

2)
+ (α3 + α5 + α6 + 3) c1 c2 c4 + (α+ α2 + α4 + 3) c3 c5 c6 = 0

> E3[5]
> :=(alpha^3+alpha^5+alpha^6)*(c[1]^2*c[5]+c[2]^2*c[3]+
> c[4]^2*c[6])+(alpha+alpha^2+alpha^4)*(c[1]*c[3]^2+
> c[4]*c[5]^2+c[2]*c[6]^2)+(alpha+alpha^2+alpha^4+3)*
> c[1]*c[2]*c[4]+(alpha^3+alpha^5+alpha^6+3)*
> c[3]*c[5]*c[6]=0;

E3 5 := (α3 + α5 + α6) (c12 c5 + c2
2 c3 + c4

2 c6) + (α+ α2 + α4) (c1 c32 + c4 c5
2 + c2 c6

2)
+ (α+ α2 + α4 + 3) c1 c2 c4 + (α3 + α5 + α6 + 3) c3 c5 c6 = 0

This system of equations turns out to be equivalent to a simpler system Fk (k = 1..5)
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which is further reduced to a system Gk (k = 1..6)

> for k to 5 do
> E[k]:=subs(c[1]^2*c[5]+c[2]*c[6]^2=x,
> c[1]*c[3]^2+c[4]^2*c[6]=y,
> c[2]^2*c[3]+c[5]^2*c[4]=z,
> c[1]^2*c[5]+c[2]^2*c[3]+c[4]^2*c[6]=u,
> c[1]*c[3]^2+c[4]*c[5]^2+c[2]*c[6]^2=v,E3[k]) od;

E1 := (1 + α3 + α4)x+ (1 + α2 + α5) y + (1 + α+ α6) z − c1 c2 c4 − c3 c5 c6 = 0

E2 := (1 + α+ α6)x+ (1 + α3 + α4) y + (1 + α2 + α5) z − c1 c2 c4 − c3 c5 c6 = 0

E3 := (1 + α2 + α5)x+ (1 + α+ α6) y + (1 + α3 + α4) z − c1 c2 c4 − c3 c5 c6 = 0

E4 := (α+ α2 + α4)u+ (α3 + α5 + α6) v + (α3 + α5 + α6 + 3) c1 c2 c4
+ (α+ α2 + α4 + 3) c3 c5 c6 = 0

E5 := (α3 + α5 + α6)u+ (α+ α2 + α4) v + (α+ α2 + α4 + 3) c1 c2 c4
+ (α3 + α5 + α6 + 3) c3 c5 c6 = 0

Now let Maple solve the system {Ek | k = 1..5}:

> S1:=solve({seq(E[k],k=1..5)},{x,y,z,u,v});
S1 := {u = 6r + 4s, v = 4r + 6s, x = r + s, y = r + s, z = r + s}
r := 1

2c1 c2 c4, s :=
1
2c3 c5 c6

> for k to 5 do F[k]:=subs(x=c[1]^2*c[5]+c[2]*c[6]^2,
> y=c[1]*c[3]^2+c[4]^2*c[6],z=c[2]^2*c[3]+c[5]^2*c[4],
> u=c[1]^2*c[5]+c[2]^2*c[3]+c[4]^2*c[6],
> v=c[1]*c[3]^2+c[4]*c[5]^2+c[2]*c[6]^2,op(k,S1)) od;

F1 := c2
2 c3 + c4 c5

2 =
1
2
c1 c2 c4 +

1
2
c3 c5 c6

F2 := c1
2 c5 + c2 c6

2 =
1
2
c1 c2 c4 +

1
2
c3 c5 c6

F3 := c1 c3
2 + c4 c5

2 + c2 c6
2 = 2 c1 c2 c4 + 3 c3 c5 c6

F4 := c1
2 c5 + c2

2 c3 + c4
2 c6 = 3 c1 c2 c4 + 2 c3 c5 c6

F5 := c1 c3
2 + c4

2 c6 =
1
2
c1 c2 c4 +

1
2
c3 c5 c6

> G[6]:=(F[3]+F[4]-(F[1]+F[2]+F[5]))*2/7;

G6 := 0 = c1 c2 c4 + c3 c5 c6

> for k to 5 do
> G[k]:=subs(c[3]*c[5]*c[6]=-c[1]*c[2]*c[4],F[k]) od;

G1 := c2
2 c3 + c4 c5

2 = 0
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G2 := c1
2 c5 + c2 c6

2 = 0

G3 := c1 c3
2 + c4 c5

2 + c2 c6
2 = −c1 c2 c4

G4 := c1
2 c5 + c2

2 c3 + c4
2 c6 = c1 c2 c4

G5 := c1 c3
2 + c4

2 c6 = 0

We solve the system Gk (k = 1..6) first in the simpler case by adding a condition
G7; and then in the remaining cases by adding an inequality G8:

> G[7]:=product(’c[l]’,l=1..6)=0;

G7 := c1 c2 c3 c4 c5 c6 = 0 (at least one variable equals 0)

> G[8]:=product(’c[l]’,l=1..6)<>0;

G8 := c1 c2 c3 c4 c5 c6 �= 0 (all variables nonzero)

> S_triv:=solve({seq(G[k],k=1..7)},{seq(c[k],k=1..6)});
S triv := {c1 = c1, c2 = c2, c6 = 0, c4 = 0, c5 = 0, c3 = 0},
{c5 = c5, c2 = c2, c6 = 0, c4 = 0, c1 = 0, c3 = 0},
{c3 = c3, c5 = c5, c6 = 0, c4 = 0, c1 = 0, c2 = 0},
{c3 = c3, c4 = c4, c6 = 0, c5 = 0, c1 = 0, c2 = 0},
{c4 = c4, c1 = c1, c6 = 0, c5 = 0, c3 = 0, c2 = 0},
{c4 = c4, c2 = c2, c6 = 0, c5 = 0, c1 = 0, c3 = 0},
{c3 = c3, c6 = c6, c4 = 0, c5 = 0, c1 = 0, c2 = 0},
{c1 = c1, c6 = c6, c4 = 0, c5 = 0, c3 = 0, c2 = 0},
{c5 = c5, c6 = c6, c4 = 0, c1 = 0, c3 = 0, c2 = 0}

> for k to 9 do evalc(subs(S_triv[k],[M[1],M[2],M[3]])) od;

[c1 c2 = 0, 0 = 0, 0 = 0]

[0 = 0, 0 = 0, c2 c5 = 0]

[0 = 0, c3 c5 = 0, 0 = 0]

[c3 c4 = 0, 0 = 0, 0 = 0]

[0 = 0, 0 = 0, c1 c4 = 0]

[0 = 0, c2 c4 = 0, 0 = 0]

[0 = 0, 0 = 0, c3 c6 = 0]

[0 = 0, c6 c1 = 0, 0 = 0]

[c5 c6 = 0, 0 = 0, 0 = 0]

Now from the system Mk (k = 1..3) in each of nine cases we conclude that exactly
one of ck’s is nonzero.

The discussion of the remaining system with the condition G8 is not so easy.
Its subsystem {G1, G2, G5, G8} has nicely parameterized solution set S1 in terms
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of the seventh root (ζ) of -1:

> alias(zeta=RootOf(x^6-x^5+x^4-x^3+x^2-x+1,label=_L1));

α, ζ

> zeta=-alpha;

ζ = −α
> S1:=solve({G[1],G[2],G[5],G[8]},{seq(c[k],k=1..6)});

S1 := {c2 = −c5, c3 = −c4, c4 = c4, c5 = c5, c6 = c6, c1 = −c6},
{c4 = c4, c5 = c5, c6 = c6, c3 = − c4

ζ4
, c2 = −ζ2 c5, c1 = ζ c6}

> S1[1];

{c2 = −c5, c3 = −c4, c4 = c4, c5 = c5, c6 = c6, c1 = −c6}
> expand(subs(S1[1],[M[1],M[2],M[3]]));

[c6 (c5) + c5 (c4)− c4 (c4) + c4 (c5) + c5 (c6) = 0,

c6 (c4)− c5 (c4)− c4 (c5) + c4 (c6)− c6 (c6) = 0,

−c6 (c4)− c5 (c5)− c4 (c6)− c5 (c6)− c6 (c5) = 0]

> expand(subs(S1[1],-(M[1]+M[2]+M[3])));

c4 (c4) + c6 (c6) + c5 (c5) = 0

This immediately implies that c4 = c5 = c6 = 0 and hence c1 = c2 = c3 = 0 (from
S11) but this is impossible because at least one of the Fourier coefficients should be
nonzero.
Now we consider the second family S12. We substitute it into the system {M1,M2,M3}
and show that the following combination of the equations (see below)

ζN3[1] + ζ5N3[2]− ζ2N3[3]

lead again to a remarkable condition

c4 (c4) + c6 (c6) + c5 (c5) = 0

which directly leads to the conclusion as in the first case.

> S1[2];

{c4 = c4, c5 = c5, c6 = c6, c3 = − c4
ζ4
, c2 = −ζ2 c5, c1 = ζ c6}

> subs(S1[2],[M[1],M[2],M[3]]);
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[ζ c6 (−ζ2 c5)− ζ2 c5 (− c4
ζ4

)− c4 (c4)
ζ4

+ c4 (c5) + c5 (c6) = 0,

ζ c6 (− c4
ζ4

)− ζ2 c5 (c4)− c4 (c5)
ζ4

+ c4 (c6) + c6 (ζ c6) = 0,

ζ c6 (c4)− ζ2 c5 (c5)− c4 (c6)
ζ4

+ c5 (ζ c6) + c6 (−ζ2 c5) = 0]

> N:=(evala(expand(subs(S1[2],conjugate(zeta)^4*
> [M[1],M[2],M[3]]))));

N := [−ζ6
ζ c6 (c5) + ζ2 c5 (c4) + ζ

4
c4 ζ

3 (c4) + ζ
4
c4 (c5) + ζ

4
c5 (c6) = 0,

−ζ c6 (c4)− ζ
4
ζ2 c5 (c4) + ζ

4
c4 ζ

3 (c5) + ζ
4
c4 (c6) + ζ

5
c6 (c6) = 0,

ζ
4
ζ c6 (c4)− ζ

4
ζ2 c5 (c5) + ζ

4
c4 ζ

3 (c6) + ζ
5
c5 (c6)− ζ

6
c6 (c5) = 0]

> N1:=factor((evala(expand(subs(S1[2],conjugate(zeta)^4*
> [M[1],M[2],M[3]])))));

N1 := [−ζ6
ζ c6 (c5) + ζ2 c5 (c4) + ζ

4
c4 ζ

3 (c4) + ζ
4
c4 (c5) + ζ

4
c5 (c6) = 0,

−ζ c6 (c4)− ζ
4
ζ2 c5 (c4) + ζ

4
c4 ζ

3 (c5) + ζ
4
c4 (c6) + ζ

5
c6 (c6) = 0,

ζ
4
(−c6 ζ2

(c5) + c5 ζ (c6) + ζ c6 (c4)− ζ2 c5 (c5) + c4 ζ
3 (c6)) = 0]

> N2:=evala(subs(conjugate(zeta)=zeta^(-1),N1));

N2 := [ζ2 c6 (c5) + ζ2 c5 (c4) + %1 c4 (c4)− c4 ζ
3 (c5)− ζ3 c5 (c6) = 0,

−ζ c6 (c4) + ζ5 c5 (c4) + %1 c4 (c5)− c4 ζ
3 (c6)− ζ2 c6 (c6) = 0,

−ζ3 (c6 ζ5 (c5) + c5 %1 (c6) + ζ c6 (c4)− ζ2 c5 (c5) + c4 ζ
3 (c6)) = 0]

%1 := 1− ζ + ζ2 − ζ3 + ζ4 − ζ5

> N3:=subs(1-zeta+zeta^2-zeta^3+zeta^4-zeta^5=-zeta^6,N2);

N3 := [ζ2 c6 (c5) + ζ2 c5 (c4)− ζ6 c4 (c4)− c4 ζ
3 (c5)− ζ3 c5 (c6) = 0,

−ζ c6 (c4) + ζ5 c5 (c4)− ζ6 c4 (c5)− c4 ζ
3 (c6)− ζ2 c6 (c6) = 0,

−ζ3 (c6 ζ5 (c5)− c5 ζ
6 (c6) + ζ c6 (c4)− ζ2 c5 (c5) + c4 ζ

3 (c6)) = 0]

> evala(expand(zeta*N3[1]+zeta^5*N3[2]-zeta^2*N3[3]));

c4 (c4) + c6 (c6) + c5 (c5) = 0

Thus we have proved a nice joint characterization of regular heptagons and
heptagrams in terms of the set

{A1 = 0, A3[j, k] = 0 with increments jk = 12, 24, 15, 13, 14}
of cyclic invariants, one of degree one and five of degree three.
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Of course one may conjecture a similar set of invariants for p–gon (p any odd prime).

Conjecture: The set {A1 = 0, A(p−1)/2[i1, . . . , i(p−3)/2] = 0, with all incre-
ments 0 < i1 ≤ i2 ≤ . . . ≤ i(p−3)/2 ≤ p− 1} of cyclic invariants (one of degree one
and others of degree (p− 1)/2) characterizes regular p–gons and regular p–grams.
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Added in proof. After this paper was finished we learned (email by G. Björck,
Sep. 2002.) that the topic of this paper is closely related to a conjecture by En-
flo ”There are no bi–unimodular sequences other than the classical ones (found by
Gauss).” (cf. paper by G. Björck et al., Fourier Transform on Zp and ”cyclic p–
roots”, Report, Matematiska Institutionen, Stockholms Universitet, 1989., No 9.,
p. 9; Uffe Haagerup, MSRI–slides: Old and New Results on Spin Models (12/
07/2000)) and U Haagerup, Orthogonal maximal abelian *-subalgebras of the n×n
matrices and cyclic n-roots in S. Doplicher et al., Operator algebras and quantum
field theory, pCambridge, MA: International Press. 296–322 (1997).

Our Theorems 1 and 2 give two different proofs to Enflo’s conjecture (after Lo-
vasz’s) for N = 5. More explicit (compared to Björck’s) counterexamples to the
case N = 7 are given in Section 4.2.
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