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The Wiener number (W) and its cubic root (W1/3) were correlated with molecular radii (radius
of gyration, s, and the mean molecular radius, rm) of 14 homologous sets of straight-chain and
branched alkanes, with 1–21 carbon atoms. From the linear regression equations of s, s2 and s3

on W, it can be concluded that the best results in terms of the correlation coefficient (r2 =
0.9906–1.0000), as well as in terms of other regression parameters, were obtained with the re-
sponse variable s3. This means that the Wiener number is most appropriately interpreted as mo-
lecular volume. Linear regression of s on W1/3 gave similar results (r2 = 0.9885–0.9994), sug-
gesting W1/3 should be interpreted as a molecular radius. The differences between the
regression coefficient and regression parameters are more pronounced for less branched mole-
cules. Analogous linear regressions of the mean molecular radius, rm, differ little from the re-
gressions of s.
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INTRODUCTION

Since the appearance of Wiener’s »path number« in
1947,1 a curious fact that this simple topological index,
based solely on molecular connectivity, can be success-
fully correlated with a great number of physical, chemi-
cal and biological parameters (from boiling points1–3 and
gas-chromatographic retention data4 to stability con-
stants of coordination compounds5–7 and biological
activities8–10) has led many scientists to a quest for its
real physical meaning. The Wiener number (W) was
claimed to reflect the size and shape of a molecule,11 to
be the measure of surface-to-volume ratio,12 or to be in-
timately related to intermolecular forces.7,12,13 But, sys-
tematic analysis showed that the Wiener number is best
correlated to the molecular surface area, and that it could
be therefore most properly interpreted as a measure of
this molecular quantity.14 Moreover, the authors plainly
stated: »W is only weakly correlated to molecular vol-
ume of saturated hydrocarbons and does not reflect at all
their surface-to-volume ratio. By this a long-existing

controversy concerning the physico-chemical interpreta-
tion of W is resolved.«14 This rather optimistic statement
is based on the fact that the best correlation coefficients
(r = 0.858–0.996) were obtained for the function SW =
aW0.4 + b, where SW denotes the van der Waals surface
of the molecule.

The impetus that moved me to question this state-
ment was the observation that the Wiener number can be
calculated from a mean (topological) square radius of a
molecule15,16 and, on the other hand, that the Wiener
number is fairly well correlated with its tridimensional
counterpart (3-D Wiener number).17 Also, J. R. Platt
found from the thermodynamic arguments that W1/3

should be »a sort of a mean molecular diameter« or »a
sort of mean distance between the carbon atoms«.18

Along these lines is also the definition of the mean
(shortest-path) distance between vertices of an n-vertex
graph, W / P (where P = n(n–1) / 2 is the number of
pairs of distinct sites in the graph), which makes W �

n2+1/d (d is a dimension, possibly fractal), and therefore
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the Wiener number should be interpreted as some sort of
measure of linear extension.19–21 As the radius of
gyration22 may be defined both as a kind of molecular
radius (Eq. 2) and the root-mean-square distance be-
tween atoms (Eq. 3), in this paper I intend to find a cor-
relation between this quantity (obtained by molecu-
lar-mechanics calculations) and the Wiener number.

METHODS

The Wiener number,2,23 W = W(G), of a molecular graph
G is defined as the half-sum of the elements of the dis-
tance matrix D of G:

W = (1/2)
ji

�� (D)ij (1)

where (D)ij represents the topological distance between
vertices i and j in G.

The radius of gyration (s) is defined as the root-mean-
-square distance of atoms in a molecule from their com-
mon center of gravity:

s = �(n + 1)–1 � s i
2 �1/2 (2)

where si denotes the distance of atom i from the center
of gravity of the molecule in a specified conformation,
and n is the number of atoms in the molecule. According
to Lagrange’s theorem, the radius of gyration can also be
calculated from the Euclidean distance, rij, between all
pairs i and j of atoms in a molecule:22

s = �(n + 1)–2

ji

�� rij
2�1/2 (3)

The mean molecular radius (rm) was calculated ac-
cording to the formula:

rm = n–1

i

� ri (4)

where ri stands for the distance of the i-th atom from the
geometrical center of the molecule. The geometrical
center of the molecule is defined with Cartesian coordi-
nates, xi

c:

xi
c = n–1

j

� xji i = 1, 2, 3 (5)

where xji denotes the i-th coordinate of the j-th atom.

The conformations of alkanes were generated by the
computer program for molecular mechanics, developed
by Kj. Rasmussen and co-workers,24–26 using the func-
tions and parameters presented systematically else-
where.27 Radius of gyration (Eq. 3) and the mean molec-
ular radius (Eq. 4) were calculated with a small com-
puter programs, which I wrote specially for this purpose.

RESULTS

In order to find a correlation between the Wiener num-
ber and radii of a molecule, I generated 14 sets of struc-
turally related alkanes, with 1–21 carbon atoms (Table
I). The first three sets (Sets 1–3) consist of straight-chain
alkane molecules in three general conformations (all-t,
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TABLE I. Sets of alkanes. N is the number of molecules in the set

Set N Number of
atoms (Cn)

Number of atoms
in the longest chain
(Cm), conformation

Substituents W B(G)(a)

1 13 C1–C13 C1–C13, t – 0–364 0

2 9 C5–C13 C5–C13, tg – 20–364 0

3 10 C4–C13 C4–C13, g – 10–364 0

4 10 C4–C14 C3–C13, t 2-Me 9–444 2

5 11 C5–C15 C3–C13, t 2,2-diMe 16–526 3

6 10 C7–C16 C4–C13, t 2,2,3-triMe 42–603 5

7 10 C8–C17 C4–C13, t 2,2,3,3-tetraMe 58–674 6

8 10 C8–C17 C4–C13, t (m/2)- or ((m+1)/2)-tert-Bu 42–632 6

9 9 C9–C17 C4–C12, t 2-Me-(m-1)-tert-Bu 170–886 8

10 11 C4–C14 C3–C13, t (m/2)- or ((m + 1)/2)-Me 9–419 2

11 10 C6–C16 C4–C14, t (m/2)- or ((m +1)/2)-diMe 34–476 3

12 9 C13–C21 C7–C15, t 2,2-diMe-(m/2+1)- or ((m+3)/2)-tert-Bu 253–1192 9

13 10 C9–C18 C4–C13, t (m/2)- or ((m+1)/2)-Me and tert-Bu 82–698 7

14 10 C6–C15 C4–C13, t 2,(m-1)-diMe 29–538 4

(a) Extent of branching B(G) is defined as the sum of the number of branching points and the number of side chains in the graph of the molecule
(Ref. 31).



all-g, tgt...), and the rest of the sets considered (3–14)
consist of alkanes with various degrees of branching. All
structures of branched alkanes were obtained by substi-
tution of one to four hydrogen atoms in the parent
straight-chain alkane molecule with methyl and/or
tert-butyl group(s). In order to make a homologous se-
ries, the alkyl groups were substituted at the 2 and/or
(m–1) position, or at the central position, m/2 or
(m+1)/2, of the parent straight-chain alkane, CmH2m+2.
Branched alkanes were generated from Set 1 of
straight-chain alkanes, i.e., they all had the same, all-t,
conformation of the longest chain.

The calculated values of molecular radii s and rm

(Eqs. 3 and 4) for the molecules considered were corre-
lated with the their Wiener number (W) and its cube root
(W1/3). Also, I made linear regressions of the square and
cube of the molecular radii (s2, s3, rm

2, rm
3). Altogether

168 regression lines were obtained (see Supplement).
All of them have a positive slope, and correlation coeffi-
cients vary between r2 = 0.8514 and 1.0000.

DISCUSSION

By inspection of all 168 linear regressions (Table II) it is
evident that the best regression coefficients, in terms of
the mean value as well as their range, were obtained by
the linear regression of s3 (or rm

3) on W and s (or rm) on
W1/3. Thus, the Wiener number should be interpreted as
a molecular volume (� s3), and – accordingly – W1/3 as a
molecular radius. This is even more evident from the re-
gression plots (Figures 1–3), which show that the low
correlation is not caused by random scattering of data
points, but rather by their curvilinear arrangement.

The notion that the Wiener number corresponds to
the volume, and W1/3 to the radius of the molecule is

even more evident from the analysis of the intercept and
slope of the regression lines. Only the intercept values
for regressions of s3 (rm

3) and s (rm) on W and W1/3, re-
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TABLE II. Comparison of linear regressions from Tables S.I–S.VI (Supplement)

Variable r2 Slope Intercept(a)

Dp. Ind. Mean Range max / min Mean Range Ideal value(b)

s W 0.9574 0.8619...0.9954 4.25 2.200 1.815...2.580 0.815

s2 W 0.9895 0.9649...0.9990 3.13 3.866 3.224...4.572 0.664

s3 W 0.9972 0.9906...1.0000 2.49 0.130 –9.304...6.161 0.541

s W1/3 0.9962 0.9885...0.9994 1.54 0.214 –0.376...0.839 0.815

s2 W1/3 0.9717 0.9427...0.9827 2.03 –10.059 –20.568...–2.631 0.664

s3 W1/3 0.9295 0.8591...0.9493 2.98 –75.94 –169.47...–21.38 0.541

rm W 0.9535 0.8514...0.9962 4.27 2.199 1.835...2.580 0.874

rm
2 W 0.9866 0.9549...0.9991 3.15 4.123 3.355...4.950 0.764

rm
3 W 0.9977 0.9937...0.9999 2.61 3.360 –3.463...7.874 0.668

rm W1/3 0.9961 0.9857...0.9995 1.57 0.482 –0.416...1.064 0.874

rm
2 W1/3 0.9772 0.9551...0.9922 1.96 –7.211 –15.117...–1.254 0.764

rm
3 W1/3 0.9405 0.8798...0.9810 2.84 –55.05 –122.29...–14.63 0.668

(a) All intercept values are given in the system of Ångstrom units (1 Å = 0.1 nm).
(b) Values of s, s2, s3, rm, rm

2, or rm
3 for methane (W = 0).

Figure 1. Plot of the radius of gyration, s, vs. the Wiener number,
W, for 13 straight-chain alkanes in all-t conformation (Set 1, Table
S.I, Supplement).

Figure 2. Plot of the square of the radius of gyration, s2, vs. the
Wiener number, W, for 13 straight-chain alkanes in all-t confor-
mation (Set 1, Table S.II, Supplement).



spectively, cover their ideal value (presented in Table II).
Also, these regression lines have the smallest ratio of
maximal and minimal slope values (1.54–2.61, Table II).
Regressions on W1/3 and W gave equally good results,
but regressions on W seem to be slightly more success-
ful. This stems from the mean values of r2 (0.9962 vs.
0.9972 for s, 0.9961 vs. 0.9977 for rm), mean intercept to
its ideal value (0.214–0.815 vs. 0.130–0.541 for s,
0.482–0.874 vs. 3.360–0.668 for rm) and the ratio of
maximal and minimal slopes (1.54 vs. 2.49 for s, 1.57 vs.
2.61 for rm). W is better correlated to rm

3 than to s3, but
the difference seems to be non-significant.

From the results presented it is evident that the cor-
relation coefficients for regressions of s3 on W (r2 =
0.9906–1.0000) and s on W1/3 (r2 = 0.9885–0.9994) ex-
ceed fairly well the range of the best correlation coeffi-
cients of molecular surface (Sw) on W,, as referred to in
Gutman’s paper14 (r2 = 0.736–0.992). Therefore, as the
most safe conclusion, W corresponds to the volume and
W1/3 to the length, but it is hardly possible to ascribe an
intuitively clear meaning to this volume and length. In
any case, s3 is not a free or excluded molecular volume,

i.e., the quantities usually known as molecular vol-
umes.28–30

The thesis derived from the discussion that W1/3 is a
measure of molecular radius is not, however, without its
shortcomings. First, the slope, as well as the intercept, of
regression lines differs by even more than 10 of their
standard errors, and depends not only on the constitution
(slope = 4.964–6.367, Sets 1, 4–14, variable s, Table S.IV,
Supplement) but also on the conformation of molecules
(slope = 4.140–6.025, Sets 1–3, variable s, Table S.IV,
Supplement). Therefore, W1/3 is fairly well correlated
with the molecular radius, but only for structurally and
conformationally related molecules.

Analysis of the r2 values shows that the interpreta-
tion of W as the molecular radius, area, or volume is also
dependent on molecular constitution (Figure 4). For the
straight-chain alkanes, the differences between r2 values
are prominent, but as the branching of chain progresses,
linear regressions of s, s2 and s3 on W show virtually the
same (very high) r2 value. This means that, for very
branched molecules, the Wiener number should also be
interpreted as the molecular radius, molecular surface
area, or molecular volume.

At the end of this discussion, I want to point to the
fact that the Wiener number can be successfully corre-
lated with many molecular properties; hence, neither the
Wiener number, nor any quantity derived from it, should
be identified with any molecular property. This is the
first reason for the »mysterious« nature of the Wiener
number and the other related topological indices.

Supplementary Materials. – Linear regression equations of
molecular radii, the square of molecular radii and the cube of
molecular radii on the Wiener number, W (Tables S.I–S.III) and
on W

1/3 (Tables S.IV–S.VI) are prepared as the Supplement. These
data are available via the Web under http://pubwww.srce.hr/ccacaa
or may be obtained from the author.
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Srednji molekularni radijus i Wienerov broj: u potrazi za zna~enjem

Nenad Raos

Wienerov broj (W) i njegov kubni korijen (W1/3) korelirani su s molekularnim radijusima (radijusom vrte-
nja, s, i srednjim molekularnim radijusom, rm) 14 homolognih skupova ravnih i razgrananih alkana s jednim do
21 ugljikovim atomom. Iz linearnih regresija s, s2 i s3 prema W mo`e se zaklju~iti da se najbolji rezultati s
obzirom na korelacijski koeficijent (r2 = 0,9906–1,0000) i regresijske parametre dobivaju s varijablom s3. To
zna~i da se Wienerov broj mo`e najprikladnije interpretirati kao molekularni volumen. Linearna regresija s pre-
ma W1/3 dala je sli~ne rezultate (r2 = 0,9885–0,9994), {to navodi na to da bi W1/3 trebalo shvatiti kao moleku-
larni radijus. Razlike izme|u regresijskog koeficijenta i regresijskih parametara to su izra`enije {to je molekula
manje razgranana. Analogne linearne regresije prema srednjem molekularnom radijusu, rm, malo se razlikuju
od regresija prema s.
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MEAN MOLECULAR RADIUS AND THE WIENER NUMBER S1

TABLE S.I. Linear regression equations of the molecular radii (s and
rm) on the Wiener number (W); S.E. is the standard error

Set Dependent
variable

104 Slope (S.E.)
nm

101 Intercept (S.E.)
nm

r2

1 s 10.409 (1.256) 1.815 (0.196) 0.8619
1 rm 8.940 (1.126) 1.835 (0.176) 0.8514
2 s 6.368 (0.508) 2.267 (0.095) 0.9573
2 rm 5.400 (0.440) 2.263 (0.083) 0.9555
3 s 5.573 (0.498) 2.007 (0.089) 0.9399
3 rm 4.714 (0.423) 2.053 (0.075) 0.9394
4 s 7.644 (0.676) 2.142 (0.143) 0.9342
4 rm 6.509 (0.564) 2.159 (0.119) 0.9367
5 s 6.521 (0.480) 2.146 (0.123) 0.9534
5 rm 5.620 (0.414) 2.157 (0.106) 0.9535
6 s 5.423 (0.365) 2.230 (0.112) 0.9651
6 rm 4.650 (0.298) 2.241 (0.092) 0.9682
7 s 4.779 (0.236) 2.173 (0.084) 0.9808
7 rm 4.079 (0.183) 2.200 (0.065) 0.9841
8 s 4.123 (0.229) 2.228 (0.077) 0.9759
8 rm 3.429 (0.192) 2.259 (0.065) 0.9754
9 s 2.920 (0.075) 2.455 (0.039) 0.9954
9 rm 2.911 (0.263) 2.168 (0.137) 0.9461
10 s 7.496 (0.623) 2.089 (0.124) 0.9415
10 rm 6.257 (0.532) 2.119 (0.106) 0.9389
11 s 6.029 (0.433) 2.170 (0.105) 0.9604
11 rm 4.965 (0.360) 2.183 (0.087) 0.9596
12 s 2.450 (0.075) 2.580 (0.054) 0.9936
12 rm 2.094 (0.049) 2.580 (0.035) 0.9962
13 s 3.642 (0.154) 2.210 (0.059) 0.9859
13 rm 2.936 (0.127) 2.267 (0.048) 0.9853
14 s 6.135 (0.455) 2.294 (0.125) 0.9578
14 rm 5.292 (0.392) 2.296 (0.107) 0.9581

TABLE S.II. Linear regression equations of the square of molecular ra-
dii (s2 and rm2) on the Wiener number (W); S.E. is the standard error

Set Dependent
variable

104 Slope (S.E.)
nm2

102 Intercept (S.E.)
nm2

r2

1 s 6.565 (0.378) 3.233 (0.589) 0.9649
1 rm 5.318 (0.348) 3.355 (0.544) 0.9549
2 s 4.228 (0.178) 4.572 (0.334) 0.9878
2 rm 3.407 (0.160) 4.722 (0.302) 0.9846
3 s 3.189 (0.165) 3.743 (0.294) 0.9789
3 rm 2.616 (0.148) 4.008 (0.264) 0.9750
4 s 5.394 (0.221) 3.914 (0.467) 0.9851
4 rm 4.352 (0.192) 4.164 (0.406) 0.9828
5 s 4.708 (0.139) 3.689 (0.356) 0.9922
5 rm 3.842 (0.128) 3.970 (0.327) 0.9902
6 s 4.064 (0.112) 3.678 (0.344) 0.9940
6 rm 3.300 (0.093) 4.055 (0.287) 0.9937
7 s 3.576 (0.040) 3.224 (0.143) 0.9990
7 rm 2.893 (0.031) 3.725 (0.109) 0.9991
8 s 2.870 (0.056) 4.001 (0.118) 0.9970
8 rm 2.263 (0.054) 4.439 (0.184) 0.9954
9 s 2.296 (0.041) 4.332 (0.214) 0.9978
9 rm 2.064 (0.147) 3.295 (0.597) 0.9789
10 s 5.085 (0.194) 3.729 (0.386) 0.9871
10 rm 4.005 (0.179) 4.061 (0.357) 0.9824
11 s 4.201 (0.133) 3.787 (0.324) 0.9920
11 rm 3.241 (0.120) 4.140 (0.293) 0.9891
12 s 2.097 (0.045) 4.337 (0.325) 0.9968
12 rm 1.690 (0.002) 4.950 (0.156) 0.9989
13 s 2.556 (0.028) 3.743 (0.108) 0.9990
13 rm 1.945 (0.032) 4.400 (0.122) 0.9978
14 s 4.634 (0.147) 4.137 (0.405) 0.9820
14 rm 3.785 (0.134) 4.433 (0.367) 0.9901

Mean Molecular Radius and the Wiener Number:
A Quest for Meaning

by Nenad Raos
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TABLE S.V. Linear regression equations of the square of molecular
radii (s2 and rm2) on W1/3; S.E. is the standard error

Set Dependent
variable

104 Slope (S.E.)
nm2

102 Intercept (S.E.)
nm2

r2

1 s 3.492 (0.260) –3.066 (1.127) 0.9427
1 rm 2.862 (0.187) –1.873 (0.813) 0.9551
2 s 3.316 (0.173) –5.436 (0.888) 0.9813
2 rm 2.681 (0.123) –3.391 (0.632) 0.9854
3 s 2.302 (0.107) –2.631 (0.530) 0.9827
3 rm 1.896 (0.079) –1.254 (0.390) 0.9862
4 s 4.248 (0.244) –8.098 (1.257) 0.9712
4 rm 3.437 (0.185) –5.575 (0.954) 0.9746
5 s 4.307 (0.269) –9.795 (1.498) 0.9661
5 rm 3.526 (0.206) –7.092 (1.146) 0.9702
6 s 4.583 (0.249) –13.210 (1.520) 0.9770
6 rm 3.723 (0.198) –9.671 (1.212) 0.9778
7 s 4.452 (0.283) –14.184 (1.828) 0.9688
7 rm 3.600 (0.230) –10.350 (1.488) 0.9684
8 s 3.375 (0.217) –8.804 (1.385) 0.9680
8 rm 2.670 (0.158) –5.712 (1.009) 0.9728
9 s 3.990 (0.266) –14.991 (2.032) 0.9698
9 rm 3.663 (0.123) –14.649 (0.939) 0.9922
10 s 3.870 (0.236) –7.804 (1.196) 0.9675
10 rm 3.069 (0.160) –4.556 (0.813) 0.9760
11 s 4.019 (0.189) –9.761 (1.060) 0.9827
11 rm 3.111 (0.129) –6.369 (0.725) 0.9864
12 s 4.564 (0.284) –20.568 (2.440) 0.9735
12 rm 3.678 (0.222) –15.117 (1.901) 0.9752
13 s 3.448 (0.193) –10.600 (1.297) 0.9755
13 rm 2.632 (0.133) –6.656 (0.892) 0.9801
14 s 4.675 (0.253) –11.872 (1.477) 0.9770
14 rm 3.827 (0.194) –8.695 (1.130) 0.9799

TABLE S.VI. Linear regression equations of the cube of molecular
radii (s3 and rm3) on W1/3; S.E. is the standard error

Set Dependent
variable

102 Slope (S.E.)
nm3

102 Intercept (S.E.)
nm3

r2

1 s 1.701 (0.208) –2.506 (0.902) 0.8591
1 rm 1.300 (0.145) –1.744 (0.629) 0.8798
2 s 1.661 (0.145) –4.327 (0.745) 0.9493
2 rm 1.272 (0.099) –3.011 (0.508) 0.9594
3 s 0.9916 (0.0806) –2.138 (0.396) 0.9498
3 rm 0.7886 (0.0572) –1.463 (0.281) 0.9596
4 s 2.293 (0.227) –6.008 (1.173) 0.9186
4 rm 1.744 (0.161) –4.344 (0.829) 0.9290
5 s 2.378 (0.244) –7.283 (1.357) 0.9136
5 rm 1.832 (0.175) –5.325 (0.974) 0.9241
6 s 2.619 (0.239) –9.712 (1.461) 0.9375
6 rm 2.004 (0.174) –7.139 (0.107) 0.9428
7 s 2.540 (0.254) –10.329 (1.644) 0.9259
7 rm 1.937 (0.188) –7.519 (1.217) 0.9298
8 s 1.776 (0.175) –6.487 (1.115) 0.9283
8 rm 1.326 (0.119) –4.453 (0.759) 0.9396
9 s 2.370 (0.222) –11.725 (1.695) 0.9421
9 rm 1.970 (0.103) –9.926 (0.790) 0.9810
10 s 2.002 (0.204) –5.214 (1.031) 0.9149
10 rm 1.487 (0.132) –3.560 (0.670) 0.9336
11 s 2.130 (0.179) –6.980 (1.008) 0.9463
11 rm 1.535 (1.147) –4.670 (0.644) 0.9573
12 s 2.951 (0.259) –16.947 (2.220) 0.9489
12 rm 2.238 (0.189) –12.292 (1.625) 0.9523
13 s 1.831 (0.158) –7.569 (1.064) 0.9435
13 rm 1.314 (0.100) –4.948 (0.677) 0.9352
14 s 2.692 (0.251) –9.086 (1.461) 0.9352
14 rm 2.076 (0.179) –6.670 (1.045) 0.9437

TABLE S.III. Linear regression equations of the cube of molecular ra-
dii (s3 and rm3) on the Wiener number (W); S.E. is the standard error

Set Dependent
variable

104 Slope (S.E.)
nm3

103 Intercept (S.E.)
nm3

r2

1 s 3.409 (0.039) 3.425 (0.615) 0.9985
1 rm 2.570 (0.054) 4.701 (0.842) 0.9952
2 s 2.166 (0.030) 6.161 (0.553) 0.9987
2 rm 1.649 (0.029) 7.874 (0.541) 0.9979
3 s 1.410 (0.025) 5.576 (0.446) 0.9975
3 rm 1.114 (0.029) 6.911 (0.518) 0.9946
4 s 3.016 (0.060) 2.286 (0.127) 1.0000
4 rm 2.282 (0.015) 4.837 (0.321) 0.9996
5 s 2.683 (0.026) 0.009 (0.664) 0.9992
5 rm 2.056 (0.075) 3.075 (0.191) 0.9999
6 s 2.378 (0.030) –2.574 (0.936) 0.9987
6 rm 1.814 (0.017) 1.549 (0.539) 0.9993
7 s 2.083 (0.052) –5.209 (0.853) 0.9950
7 rm 1.586 (0.035) –0.322 (0.259) 0.9960
8 s 1.544 (0.023) 1.596 (0.771) 0.9983
8 rm 1.146 (0.009) 5.283 (0.296) 0.9995
9 s 1.378 (0.053) –3.157 (2.766) 0.9897
9 rm 1.125 (0.034) –3.463 (1.797) 0.9937
10 s 2.721 (0.029) 2.432 (0.572) 0.9990
10 rm 2.001 (0.018) 5.241 (0.353) 0.9993
11 s 2.228 (0.013) 1.002 (0.323) 0.9997
11 rm 1.633 (0.009) 4.526 (0.230) 0.9997
12 s 1.369 (0.034) –9.304 (3.637) 0.9906
12 rm 1.034 (0.032) –1.414 (2.346) 0.9932
13 s 1.379 (0.027) –0.231 (1.024) 0.9970
13 rm 0.984 (0.015) 4.822 (0.397) 0.9995
14 s 2.738 (0.021) –0.197 (0.574) 0.9995
14 rm 2.102 (0.008) 3.417 (0.211) 0.9999

TABLE S.IV. Linear regression equations of molecular radii (s and
rm) on W1/3; S.E. is the standard error

Set Dependent
variable

102 Slope (S.E.)
nm

101 Intercept (S.E.)
nm

r2

1 s 6.025 (0.095) 0.631 (0.041) 0.9973
1 rm 5.211 (0.045) 0.804 (0.020) 0.9992
2 s 5.115 (0.098) 0.770 (0.050) 0.9974
2 rm 4.343 (0.072) 0.932 (0.037) 0.9981
3 s 4.140 (0.045) 0.839 (0.022) 0.9991
3 rm 3.503 (0.034) 1.064 (0.017) 0.9992
4 s 6.267 (0.087) 0.320 (0.045) 0.9983
4 rm 5.329 (0.069) 0.611 (0.036) 0.9985
5 s 6.180 (0.124) 0.165 (0.069) 0.9982
5 rm 5.326 (0.010) 0.449 (0.057) 0.9966
6 s 6.271 (0.110) –0.116 (0.067) 0.9975
6 rm 5.367 (0.106) 0.236 (0.065) 0.9969
7 s 6.085 (0.156) –0.238 (0.102) 0.9973
7 rm 5.179 (0.155) 0.151 (0.100) 0.9929
8 s 4.964 (0.144) 0.317 (0.092) 0.9934
8 rm 4.130 (0.114) 0.688 (0.073) 0.9939
9 s 5.130 (0.209) –0.044 (0.160) 0.9885
9 rm 5.237 (0.238) –0.416 (0.182) 0.9857
10 s 5.930 (0.114) 0.388 (0.058) 0.9967
10 rm 4.960 (0.068) 0.694 (0.034) 0.9983
11 s 5.910 (0.052) 0.148 (0.029) 0.9994
11 rm 4.870 (0.040) 0.516 (0.023) 0.9995
12 s 5.388 (0.202) –0.376 (0.173) 0.9903
12 rm 4.599 (0.166) 0.058 (0.142) 0.9909
13 s 4.996 (0.125) 0.120 (0.084) 0.9950
13 rm 4.030 (0.096) 0.575 (0.065) 0.9977
14 s 6.367 (0.086) 0.074 (0.050) 0.9985
14 rm 5.492 (0.076) 0.381 (0.045) 0.9985


