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A 4-valent square tiled toroid is transformed into 3-valent hexagonal (and other polygonal) lat-
tices either by simple cutting procedures or by some more elaborated operations such as leap-
frog and related transformations. Tiling or embedding isomers can be interchanged by means
of such operations on toroidal maps, for which rigorous definitions and some theorems are
given. Parents and products of most important operations are illustrated.
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INTRODUCTION

Carbon allotropes, other than ancient graphite and dia-
mond, arose from rational design of highly symmetric
molecular structures and appropriate synthesis.1,2

In the two last decades, finite molecular cage struc-
tures have been synthesized, and characterized from a
physico-chemical point of view. They have been
functionalized or inserted in some supramolecular com-
pounds.3-6 Besides the well-known spherical fullerenes,
other graphitoids which have excited researchers are car-
bon nanotubes7-9 and tori.10-26

It is known that a spherical surface cannot be tessel-
lated by a pure hexagonal pattern. In finding structural

conditions for preferable fullerenes,27 the scientists in-
vestigated a variety of covering patterns, e.g., combina-
tions of C5, C6, C7, polygons, arranged in different ways,
with a view to lowering the total energy of possible mo-
lecular structures.10,26,28 However, the fascination of
pure polyhex graphitoids remained. Such structures in-
clude cylinders (e.g., open nanotubes), tori and the Klein
bottles,29 the first – and structures that quite possibly are
tori – being identified among the products of laser irradi-
ation of graphite.7,8,30-33

A toroidal surface can be covered with hexagons by
cutting out a parallellogram13,14,20,23,24 from a graphite
sheet, rolling it up to form a tube and finally gluing its
two ends to form a torus.
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A method for visualizing a structure for which an
adjacency matrix or connection table is already avail-
able, is the use of adjacency matrix eigenvectors to find
appropriate 3D coordinates of a graph (in particular,
here, of a torus).34–37 The method was previously used in
generating spheroidal fullerenes.38 Polyhex tori are more
agreeable to organic chemists (perhaps they offer the pure
carbon benzenoid model)26,39 while the other tessellated
tori (i.e., various sized polygons) are expected to appear
in supramolecular inorganic compounds (see polyoxo-
metalates).40

Diudea41-45 has recently proposed a procedure for
generating polyhex tori starting from a square net embed-
ded on the toroidal surface. In short, a circulant c-folded
cycle, lying in a plane perpendicular to the tube, of ra-
dius r, runs around the torus, of radius R > r. The subse-
quent n copies of the cycle, equally spaced and joined
with edges, point by point, form a square net covering
the torus. In all, c � n points are generated and evenly
distributed on the toroidal surface.

The control parameters are c, n, R and r (the last two
not being directly involved in the topological character-
ization of the lattice). The name of the resulting square
torus C4�c,n� includes the polygon size and the c and n

dimensions of the lattice. The square torus is next submit-
ted to some cutting procedures (detailed elsewhere)43,44

providing, after optimization by a molecular mechanics
procedure, hexagonal nets or other polygonal tilings, of
chemical importance.

In the present paper the attention is focused on oper-
ations allowing the transformation of both 4-valent and
3-valent lattices into 3-valent nets that are plausible from
a chemical point of view.

SIMPLE OPERATIONS ON A MAP

A map, M is a combinatorial representation of a closed
surface.46,47 Several transformations (i.e., operations) on
maps are known and used for various purposes.

Let us denote in a map: v – number of vertices, e –
number of edges, f – number of faces and d – vertex de-
gree. An asterisk * will mark the corresponding parame-
ters in the transformed map.

Recall the basic relations in a map:

d v ed� � 2 (1)

n f en� � 2 (2)

where vd and fn are the number of vertices of degree d

and number of n-gonal faces, respectively. The two rela-
tions are joined in the famous Euler’s formula:

v – e + f = 2 – 2g (3)

with g being the genus48 of a graph (e.g., g = 0 for a pla-
nar graph and 1 for a toroidal graph).

This formula is useful for checking the consistency
of an assumed structure.

STELLATION, St, of a face is achieved by adding a
new vertex in its center followed by connecting it with
each boundary vertex. It is also called a capping opera-
tion or triangulation.49 When all the faces of a map are
thus operated, it is referred to as an omnicapping opera-
tion. The resulting map shows the relations:

St(M): v * = v + f

e * = 3e (4)

f * = 2e

so that the Euler’s relation holds.
DUALIZATION, Du, of a map is built as follows: lo-

cate a point in the center of each face. Join two such
points if their corresponding faces share a common
edge. The new edge is called the edge dual, Du(e) and
the transformed map, the (Poincaré) dual Du(M). The
vertices of Du(M) represent the faces of M and
vice-versa.47 Thus the following relations exist:

Du(M): v * = f

e * = e (5)

f * = v .

Dual of the dual recovers the original map:
Du(Du(M)) = M.

COMPOSITE OPERATIONS

LEAPFROG, Le, is a composite operation 47,50-52 that can
be written as:

Le(M) = Du(St(M)) . (6)

Within the leapfrog process, the dualization is made
on the stellated map. A sequence stellation-dualization
rotates parent n-gonal faces by �/n.51 Figure 1 illustrates
Le in case of a square face.
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Figure 1. Leapfrog Le operation on a square face; circles denote
the vertices in Le transform.



If the map is a d regular graph, the following theo-
rem is true:

THEOREM 1. The number of vertices in the leapfrog

transform Le(M) of M is d times larger than in the origi-

nal map M, irrespective of the type of tessellation.

The demonstration follows from the observation42

that each edge in M shares two vertices in Le(M). Thus,
keeping in mind Eq. (1), it follows that:

v * = 2e = dv (7)

v * / v = dv / v = d . (8)

Eq. (8) clearly shows no dependency on the type of
tessellation. Note that the vertex degree in Le(M) is al-
ways 3, as a consequence of the involved stellation. In
other words, the dual of a triangulation is a cubic net.47

For completion,

Le(M): v * = dv = 2e

e * = 3e (9)

f * = f + v .

A simple example of using Le operation is: Le(Dode-
cahedron) = Fullerene C60. Leapfrogging can be achieved
by a different sequence of simple operations: Le = Tr(Du(M))
where Tr denotes the truncation operation47 (not discus-
sed in detail herein). An example of the above sequence
of operations is: Tr(Icosahedron) = Fullerene C60, where
Icosahedron = Du(Dodecahedron). The leapfrog opera-
tion can be used to get isolate pentagons in spherical ful-
lerenes.1,27

In square tori (Figure 2(a)), the leapfrogging can be
used to switch from a 4-valent net to a 3-valent one. The
�/4 rotation, appearing by Le, would produce a
rhomboidal RC4C8 lattice (Figure 2(c)). The multiplica-
tion ratio 4 is conceivable evenly distributed on the two
dimensions c and n. When applied to a rhomboidal RC4

net (Figure 2(b)) the resulting leapfrog transform is a
normal HC4C8 lattice (Figure 2(d)). In the above sym-
bol, H before the net type C4C8 denotes the »horizontal«
orientation of the cut edges.

MEDIAL, Me, is an important operation of a map.42,46,47

It is achieved as follows: put the new vertices as the mid-
points of the original edges. Join two vertices if and only
if the original edges span an angle. More exactly, the two
edges must be incident and consecutive within a rotation
path around their common vertex in the original map.

The medial graph is a subgraph of the line-graph.48

In the line-graph each original vertex gives rise to a
complete graph while in the medial graph only a cycle
Cd (i.e., a d-membered cycle, d being the vertex degree)

is formed. The medial of a map is a 4-valent graph and
Me(M) = Me(Du(M)). The transformed parameters are:

Me(M): v * = e

e * = 2e (10)

f * = f + v .

The medial operation rotates parent n-gonal faces by
�/n.

DUAL OF THE STELLATION OF A MEDIAL, Dsm. Dual
of the stellation of a medial is a new composite opera-
tion42 that can be written as:

Dsm (M) = Du(St(Me(M))) . (11)

Figure 3 illustrates the steps involved by this opera-
tion, in the particular case of a square face.

THEOREM 2. The vertex multiplication ratio in a Dsm

transformation is 2d, irrespective of the tiling type. It

preserves the initial mutual orientation of all parent

faces.

With the observation that each vertex v of M gives
rise to twice d new vertices in Dsm(M) it is easily seen
that:

v * / v = 2dv / v = 2d (12)

and it does not depend on the kind of polygonal faces.
The multiplication is twice that induced by Le. Since it
consists of simple operations that rotate the parent
n-gonal faces by an even number of �/n, the global re-
sult of Dsm is the preservation of their original mutual
orientation. The transformed parameters are:42
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Figure 2. Leapfrog transforms of two 4-valent tori: C4�8,32� and
RC4�8,32�.



Dsm(M): v * = 2dv = 4e

e * = 6e (13)

f * = f + v + e .

This operation is particularly applicable to square tori,
with a multiplication ratio 8. The expansion is eventually
non-isotropic, over the two dimensions (c � n = 4 � 2, and
vice-versa, for an H- and a V-net, respectively) as illus-
trated in Figure 4 for the Dsm transforms of C4 �8,24�.

Note that in square tori the bounding face is an octa-
gon, as expected for a 4-valent regular graph. The pat-
tern is thus a C4C8 net (see Figure 3).

The two objects in Figure 4 represent two different
embeddings of the same topological object on 1536
points (i.e., atoms): both have 16 � 48 hexes and the
same vertex distance degree sequence DDS,53 given as
(vertes contribution to) the Hosoya polynomial54,55 (see
Appendix). Wiener index W (i.e., the sum of all dis-
tances in the graph) is, consequently, equal for the both
embedding isomers: W = 33,546,240. Also identical are
the spectra of eigenvalues of their adjacency matrix.

General formulas for the Hosoya polynomial and
Wiener index in tori HC4C8 �c,n� and VC4C8 �c,n� are
given elsewhere.56

Q-TRANSFORMATION. There exists another transfor-
mation that preserves the initial orientations of all parent
faces in the map. It is called the quadrupling transforma-

tion Q.51,57 The Q operation can be viewed as a particu-
lar case of Dsm:

Q(M) = Du(St(Mer(M))) (14)

with Mer being a reduced medial, where the face resulted
(by Me operation) around each original vertex collapses
into this vertex, so preserving its original valency. It is
illustrated for a hexagonal net in Figure 5.

THEOREM 3. The vertex multiplication ratio in a Q

transformation is d + 1 irrespective of the tiling type of

the original map.
With the observation that for each vertex v in M re-

sults d new vertices in Q(M) and the old vertices are pre-
served, the demonstration is immediate:42

v * = vd + v (15)

and the multiplication ratio:

v * / v = v(d + 1) / v = d + 1 . (16)

Q operation involves two �/n rotations, so that the
initial orientation of the polygonal faces is conserved.

The transformed parameters are:42

Q(M): v * = v + 2e = v + dv

e * = 4e (17)

f * = f + e .
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Figure 3. Dual of the stellation of a
medial Dsm transformation of a
square net.

Figure 4. Two possible Dsm transforms of HC4�8,24�: HC4C8�32,48�
and VC4C8�16,96�, two different embeddings of the same topological
object on 1536 points.

Figure 5. Stages in a quadrupling Q transformation of a polyhex
net.



This operation works well in trivalent maps (e.g., in
polyhex tori – see below), with 3 + 1 = 4, the multiplica-
tion ratio, and conserving the regular degree 3. Conver-
sely, in a square net, this operation leads to nonregular
graphs (degree 3 and 4) and therefore it is useless.

LEAPFROGGING POLYHEX TORI

When the leapfrog operation is applied to polyhex tori,
two cases appear, function of the starting lattice: HC6

and VC6. The dualization step will decide the type of the
leapfrog product.

(i) CASE OF HC6 PATTERN. The leapfrog product is
an acenic (i.e., armchair) net, herein called a VC6 pat-
tern. The process acts in the sense of expanding, three
times, the n-dimension (thus producing a minimal modi-
fication of the net) of a torus. Figure 6 illustrates the
stages occurring in the leapfrog transformation of an
HC6 net. It appears more clear after geometry optimiza-
tion (Figure 7).

(ii) CASE OF VC6 PATTERN. The leapfrog product is
now a phenacenic, HC6 patterned net (see Figures 8 and
9). In this case, the leapfrog transformation expands
(three times) the c-dimension of a torus.

Observe that, at a limited value of n, the increasing
c-dimension provides tubes with a flattened shape (Fig-
ure 9). It is the case of the so-called »elongated« tori.12

Q operations are useful in polyhex tori for preserv-
ing the pattern: HC6 or VC6. Figure 10 illustrates such a

transformation. The two objects in this figure are em-
bedding isomers, with different topology, as shown by
their (vertex) Hosoya polynomials and Wiener numbers
(see Appendix). A more simple example of using the Q
operation is: Q(Dodecahedron) = �80�Fullerene.
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Figure 6. Stages in the leapfrog transformation of a HC6-pattern.

Figure 7. Leapfrog transform of HC6�12,36�: VC6�12,108�.

Figure 8. Stages in the leapfrog transformation of a VC6-pattern.

Figure 9. Leapfrog transform of VC6�12,36�: HC6�36,36�.

Figure 10. Quadrupling transforms of HC6�12,36� and VC6�12,36�



In contrast to the C4C8 series, the C6 tori clearly
show different topology for embedding isomers, even in
case they have the same number of hexes on each dimen-
sion. As an example, the pair (HC6 �24,72�; VC6 �12,144�)
is given: the two objects differ both in Hosoya polyno-
mial and Wiener index (see Appendix).

CONCLUSIONS

Square tori can be used for generating hexagonal (and
combined polygonal) tori, either by appropriate cutting
procedures or by leapfrog and related operations.

Leapfrog acting on a non-isotropic polyhex lattice leads
to the mutual interchanging of its twin patterns: HC6 and
VC6, respectively. Q operation, applied in polyhex tori,
preserves the original pattern orientation. The operations
presented above can also be described by »unit-cell« op-
erations, as will be shown in a future paper.

The involvement of such operations in the energetic
of toroidal objects has been already discussed in the lit-
erature.14,23,25,46,52,58
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proving the manuscript.

APPENDIX
HOSOYA POLINOMIALS AND WIENER INDEX
IN SOME TORI

HC4C8 �32,48� and VC4C8 �16,96� (16 � 48 hexes):
H(i,x) = 1 + 3x + 5x2 + 8x3 + 11x4 + 13x5 + 16x6 + 19x7 +

21x8 + 24x9 + 27x10 + 29x11 + 32x12 + 35x13 +
37x14 + 40x15 + 42x16 + 41x17 + 40x18 + 39x19 +
37x20 + 36x21 + 35x22 + 33x23 + 32x24–47 + 31x48 +
28x49 + 24x50 + 20x51 + 16x52 + 12x53 + 8x54 +
4x55 + x56

W = 33,546,240.

HC6 �24,72� (12 � 72 hexes):
H(i,x) = 1 + 3x + 6x2 + 9x3 + 12x4 + 15x5 + 18x6 + 21x7 +

24x8 + 27x9 + 30x10 + 33x11 + 35x12 + 35x13 +
34x14 + 33x15 + 32x16 + 31x17 + 30x18 + 29x19 +
28x20 + 27x21 + 26x22 + 25x23 + 24x24–71 + 12x72

W(HC6 �24,72�) = 5.4736128 � 107

VC6 �24,72� (24 � 36 hexes):
H(i,x) = 1 + 3x + 6x2 + 9x3 + 12x4 + 15x5 + 18x6 + 21x7 +

24x8 + 27x9 + 30x10 + 33x11 + 36x12 + 39x13 +
42x14 + 45x15 + 48x16 + 51x17 + 54x18 + 57x19 +
60x20 + 63x21 + 66x22 + 69x23 + 59x24 + 48x25–35

+ 47x36 + 44x37 + 40x38 + 36x39 + 32x40 + 28x41 +
24x42 + 20x43 + 16x44 + 12x45 + 8x46 + 4x47 + x48

W(VC6 �24,72�) = 3.6820224 � 107

VC6 �12,144� (12 � 72 hexes):

H(i,x) = 1 + 3x + 6x2 + 9x3 + 12x4 + 15x5 + 18x6 + 21x7

+ 24x8 + 27x9 + 30x10 + 33x11 + 29x12 +
24x13–71 + 23x72 + 20x73 + 16x74 + 12x75 + 8x76

+ 4x77 + x78

W(VC6 �12,144�) = 5.8347648 � 107
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SA@ETAK

»Leapfrog« i srodne operacije na toroidalnim fullerenima

Mircea V. Diudea, Peter E. John, Ante Graovac, Miljenko Primorac i Toma` Pisanski

^etverovalentni, kvadratima parketirani toroid dade se transformirati u trovalentnu heksagonalnu re{etku i
druge poligonalne re{etke uporabom jednostavnoga rezanja ili slo`enijih »leapfrog« i srodnih operacija. Pri-
mjenom ovih operacija jedni se parketirani izomeri prevode u druge, a za te operacije dane su stroge definicije i
nekoliko teorema. Za najva`nije operacije prikazana su po~etna i kona~na parketiranja.
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