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The non-rigid molecule group theory (NRG), in which the dynamical symmetry operations are

defined as physical operations, is a new field of chemistry. In a series of papers Smeyers ap-

plied this notion to determine the character table of restricted NRG of some molecules. In this

work, a simple method is described, by means of which it is possible to calculate character ta-

bles for the symmetry group of molecules consisting of a number of NH3 groups attached to a

rigid framework. We have studied the full non-rigid group (f-NRG) of tetraammine plati-

num(II) with the symmetry group C2v and we have proven that it is a group of order 216 with

27 conjugacy classes. We have also computed the character table of this group.
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INTRODUCTION

A non-rigid molecule is a molecular system representing

large amplitude vibration modes. This kind of motion ap-

pears whenever the molecule possesses various isoener-

getic forms separated by relatively low energy barriers.

In such cases, intramolecular transformations occur.

The complete set of molecular conversion operations

that commute with the nuclear motion operator will con-

tain the overall rotation operations, describing the mole-

cule rotating as a whole, and intramolecular motion opera-

tions, describing molecular moieties moving with respect

to the rest of the molecule. Such a set forms a group,

which we call the Full Non-Rigid Group (f-NRG).

Group theory for non-rigid molecules is becoming in-

creasingly relevant, and numerous applications to large

amplitude vibrational spectroscopy of small organic mole-

cules are appearing in the literature.1–8

In Ref. 9 Longuet-Higgins investigated the symme-

try groups of non-rigid molecules, where changes from

one conformation to another can occur easily. In many

cases, these symmetry groups are not isomorphic with

any of the familiar symmetry groups of rigid molecules

and their character tables are not known. It is therefore

of some interest and importance to develop simple meth-

ods of calculating these character tables, which are need-

ed for classification of wave functions, determination of

selection rules, and so on.

The method as described here is appropriate for mo-

lecules consisting of a number of XH3 groups attached

to a rigid framework. An example of such a molecule is

tetraammine platinum(II), which is considered here in

some detail. It is not appropriate in cases where the fra-

mework is linear, as it is in ethane, but Bunker10 has shown

how to deal with such molecules. To compute the charac-

ter table of this molecule, we use Refs. 11,12 for the stan-

dard notation and terminology of the character theory.

Lomont13 has proposed two methods for calculating

character tables. These are satisfactory for a small group,
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but both of them require knowledge of the class struc-

ture and hence of the group multiplication table and they

become very unwieldy as soon as the order of the group

becomes even moderately large. They are usually quite

impracticable for non-rigid molecules, whose symmetry

groups may have several thousands of elements.

The alternative approach is less mechanical, requir-

ing a certain amount of thought, but it is nevertheless

simpler in practice. This involves two steps: first, the de-

composition of the group into classes, and second, the

determination of sets of basis functions for certain repre-

sentations, whose characters are then determined.

In Ref. 14 Smeyers and Villa investigated the r-NRG

of planar trimethylamine and proved that this is a group

of order 324. Furthermore, they showed that this molecule

has a pyramidal inversion and so the order of r-NRG of

trimethylamine is 648. For basic properties of non-rigid

molecule groups and information on r-NRG and f-NRG

the reader is referred to Refs. 15,16.

In Ref. 17, Stone described a method appropriate for

molecules with a number of XH3 groups attached to a rigid

framework. It is not appropriate in cases where the frame-

work is linear, as it is in ethane and dimethylacetylene.

The motivation for this study is outlined in Refs. 7,

8, 14–19 and the reader is encouraged to consult these

papers for background material as well as basic compu-

tational techniques.

We now recall some algebraic definitions that will

be used in the paper. Let G be a finite group and let N be

a normal subgroup of G. If �N� > 1, then the factor group

G/N is smaller than G. The characters of G/N should

therefore be easier to find than the characters of G. In

fact, we can use the characters of G/N to get some of the

characters of G, by a process which is known as lifting.

Thus, normal subgroups help us to find characters of G.

To see this, we assume that � is a character of G/N. De-

fine �: G � C, C is the field of complex numbers, by

�(g) = �(gN), for g �G. Then � is a character of G and �

and � have the same degree. Character � of G is called

the lift of � to G. It is a well-known fact that, � is irre-

ducible if and only if � is irreducible (Ref. 12, p. 168).

In this paper, we investigate the f-NRG of tetraam-

mine platinum(II). We prove that this is a group of order

216 and obtain its character table.

Throughout this paper, all groups considered are as-

sumed to be finite. Our notation is standard and taken

mainly from Refs. 11, 12 and 15.

EXPERIMENTAL

First of all, we consider the point group of tetraammine

platinum(II) in the case of a rigid framework. We consider

the full non-rigid group H (f-NRG) of this molecule, each

equilibrium conformation of which has an ordinary point-

group symmetry C2v.

Since H is a permutation group, every two elements

of this group with a different cycle structure belong to

different conjugacy classes. Using Figure 1, we give the

cycle structure of the representatives of the conjugacy

classes of H in Table I.

Using Figure 1, we obtain a generating set for group

H. Assume that

a1 = (2,4)(3,5)(6,12)(9,15)(7,13)(10,16)(8,14)(11,17),

b1 = (2,4)(3,5)(6,12,7,14,8,13)(9,15,10,17,11,16),

c1 = (3,5)(7,8)(9,15)(10,17)(11,16)(13,14).

Then, with a simple Maple program, we can see that

�a1, b1, c1� is a generating set for group H.

Now, using a computer calculation, we can see that

H has exactly three conjugacy classes of elements of type

24, two conjugacy classes of elements of type 26, two co-

njugacy classes of elements of type 28, and so on. In Ta-

ble II, we give the representatives of every conjugacy class

of H with their orders.

RESULTS AND DISCUSSION

For every element x of a group T, the subgroup CT(x) =

�y �T � xy = yx� is called the centralizer of x in T. If T is

finite, then by a well-known theorem in group theory

�CT(x)� = �T� / �ClT(x)�, in which ClT(x) is the conjugacy

class of x in T.11 Also, �CT(x)� and �ClT(x)� are called the

centralizer order and conjugacy length of x in group T,

respectively. To simplify our argument, we denote by na,

nb, nc, … the different conjugacy classes of elements of

order n in group T. The conjugacy vector of T is a vector
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TABLE I. The cycle type of non-identity elements of H

24 26 28 32 33 34

2432 2361 2561 2262 213261 213161

Figure 1. The structure of tetraammine platinum(II) with C2v ordi-
nary point group symmetry.



of size k, k is the number of conjugacy classes of T, such

that every array of this vector is a conjugacy length for

T. Similarly, we can define the centralizer vector of T.

From the conjugacy classes of group H, we can see

that H is a group of order 216. Suppose that A denotes

the conjugacy vector of H. Then

A = (1a,3a,3b,3c,2a,3d,3e,3f,3g,2b,6a,2c,6b,6c,6d,

2d,6e,6f,6g,2e,6h,2f,6i,2g,6j,6k,6l).

We now assume that B is the centralizer vector of H.

Using the first paragraph of this section, we can compute

the components of this vector from the conjugacy lengths

of this group. Thus, in Table II, we have:

B = (216,27,108,54,8,54,108,108,54,72,18,24,12,36,

36,72,18,36,36,24,12,24,12,72,18,36,36).

Since H/H' � Z2 	 Z2 	 Z2, where Z2 is a cyclic group

of order 2, H has exactly eight linear characters, which

we denote by �1, �2, ... �8. It is a well-known fact that such

�i’s are irreducible and one can compute these characters

from the character table of group Z2. In what follows, we

calculate the character table of H.

Suppose that T1 = 
x1, x2, x3�, T2 = 
y1, y2, y3, y4� and

T3 = 
x1, y1, y3, z1� are subgroups generated by xi, i = 1,

2, 3, yi, i = 1, 2, 3, 4 and �x1, y1, y3, z1�, in which xi's, yi's

and z1 are as follows:

x1 = (3,5)(9,15)(10,16)(11,17),

x2 = (2,4)(6,12)(7,14)(8,13)(10,11)(16,17),

x3 = (6,7,8)(12,13,14)(15,17,16),

y1 = (2,4)(6,12)(7,13)(8,14),

y2 = (3,5)(7,8)(9,15)(10,17)(11,16)(13,14),

y3 = (6,7,8)(12,14,13),

y4 = (9,10,11)(12,14,13)(15,16,17),

z1 = (9,11,10)(15,16,17).

It is an obvious fact that T1, T2 and T3 are normal

subgroups of H of order 36 and the factor groups H mo-

dulus Ti, i = 1, 2, 3, are isomorphic to S3, the symmetric

group on three letters. On the other hand, if Ai, i = 1, 2, 3

are the set of all conjugacy classes of Ti, i = 1, 2, 3 then

we can see that:

A1 = �1a,3b,3d,3f,2b,6c,2e,2g,6k�,

A2 = �1a,3c,3e,3f,2c,2d,6g,2g,6l�,

A3 = �1a,3b,3e,3g,2b,6d,2d,6f,2f�.

Since S3, has an irreducible character of degree 2,

we can obtain three irreducible characters of H by lifting

the irreducible character of S3 of degree 2 to H. We de-

note these characters by �9, �16 and �20. If � is a linear

character of H, then the Kronecker product ��i, i = 9,

16, 20, is an irreducible character of H. Using this fact,

we can obtain 12 irreducible characters of H of degree 2.

These are �9, �10 = �2�9, �11 = �8�9, �12 = �7�9, �13 =

�5�16, �14 = �4�16, �15 = �2�16, �16, �17 = �4�20, �18 =

�3�20, �19 = �2�20 and �20. We now define �21 = �9�16�2,

�22 = �9�16, �23 = �3�9�20, �24 = �9�20, �25 = �3�16�20

and �26 = �16�20. By the definition of the Kronecker pro-

duct, we can see that �21, ..., �26 are irreducible charac-

ters of H of degree 4.

We now complete the character table of H. Since, H

has exactly 27 conjugacy classes, it has 27 irreducible

characters. Hence, it remains to compute one irreducible
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TABLE II. Representatives of the conjugacy classes of group H

No. Representatives Size

1 () 1

2 (12,13,14)(15,16,17) 8

3 (9,10,11)(15,17,16) 2

4 (9,10,11)(12,14,13)(15,16,17) 4

5 (7,8)(10,11)(13,14)(16,17) 27

6 (6,7,8)(12,13,14)(15,17,16) 4

7 (6,7,8)(12,14,13) 2

8 (6,7,8)(9,10,11)(12,13,14)(15,16,17) 2

9 (6,7,8)(9,10,11)(12,14,13)(15,17,16) 4

10 (3,5)(9,15)(10,16)(11,17) 3

11 (3,5)(9,15,10,16,11,17)(12,13,14) 12

12 (3,5)(7,8)(9,15)(10,17)(11,16)(13,14) 9

13 (3,5)(7,8)(9,15,10,17,11,16)(12,13) 18

14 (3,5)(6,7,8)(9,15,11,17,10,16)(12,13,14) 6

15 (3,5)(6,7,8)(9,15)(10,16) (11,17)(12,14,13) 6

16 (2,4)(6,12)(7,13)(8,14) 3

17 (2,4)(6,12,7,13,8,14)(15,16,17) 12

18 (2,4)(6,12)(7,13)(8,14)(9,10,11)(15,17,16) 6

19 (2,4)(6,12,8,14,7,13)(9,10,11)(15,16,17) 6

20 (2,4)(6,12)(7,14)(8,13)(10,11)(16,17) 9

21 (2,4)(6,12,7,14,8,13)(10,11)(15,16) 18

22 (2,4)(3,5)(6,12)(7,13)(8,14)(9,15)(10,16)(11,17) 9

23 (2,4)(3,5)(6,12,7,13,8,14)(9,15,10,16,11,17) 18

24 (2,4)(3,5)(6,12)(7,14)(8,13)(9,15)(10,17)(11,16) 3

25 (2,4)(3,5)(6,12,7,14,8,13)(9,15,10,17,11,16) 12

26 (2,4)(3,5)(6,12)(7,14)(8,13)(9,16,10,15,11,17) 6

27 (2,4)(3,5)(6,12,8,13,7,14)(9,16)(10,15)(11,17) 6



character. Since �H� = 216 = �1(1)2 + ... + �27(1)2, �27 is

an irreducible character of degree 8. We claim that this

character is rational valued. To see this, we note that if �

is an irreducible character of H, then the complex conju-

gate of � is an irreducible character of the same degree.

But H has a unique irreducible character of degree 8, so

�27 is rational valued. On the other hand, in the ortho-

gonality relation (Ref. 12, p. 161), if g1, ... , g27 are rep-

resentatives of the conjugacy classes of H, then for any

r,s ��1, 2, ... , 27�, we have:

�1(gr) �1(gs) + ... + �27(gr) �27(gs) = �rs�CH(gr)�,

in which for all r ��1, 2, ... , 27�, �rr = 1 and �rs = 0.

Using this relation, we can compute the irreducible char-

acter �27, which completes the character table of H. We

summarize our calculations in Table III.
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Teorija potpune GNK za tetraamminoplatinat(II)

Ali Reza Ashrafi i Masood Hamadanian

Teorija grupa za gipke (non-rigid) molekule (GNK), gdje su operacije dinami~ke simetrije definirane kao

fizikalne operacije, predstavlja novo podru~je kemije. Ovo je podru~je zapo~eo Smeyers koji je za niz gipkih

molekula izra~unao tablice karaktera pripadnih ograni~enih GNK. Autori su opisali jednostavan postupak koji

omogu}ava ra~unanje tablica karaktera za grupe simetrije gipkih molekula u kojima je odre|en broj NH3 skupi-

na vezan na kruti skeleton. Posebice je prou~ena potpuna GNK za tetraamminoplatinat(II) grupe simetrije C2v .

Pokazano je da ova grupa sadr`i 216 elemenata, koji se dijele u 27 klasa konjugiranih elemenata, i za nju je

izra~unana pripadna tablica karaktera.

FULL NON-RIGID GROUP OF TETRAAMMINE PLATINUM(II) 303

Croat. Chem. Acta 76 (4) 299–303 (2003)


