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ON GEOMETRIC PROGRESSIONS ON PELL EQUATIONS

AND LUCAS SEQUENCES

Attila Bérczes and Volker Ziegler

University of Debrecen, Hungary and Graz University of Technology, Austria

Abstract. We consider geometric progressions on the solution set
of Pell equations and give upper bounds for such geometric progressions.
Moreover, we show how to find for a given four term geometric progression
a Pell equation such that this geometric progression is contained in the
solution set. In the case of a given five term geometric progression we
show that at most finitely many essentially distinct Pell equations exist,
that admit the given five term geometric progression. In the last part of

the paper we also establish similar results for Lucas sequences.

1. Introduction

Let H be the set of solutions of a norm form equation

(1.1) NK/Q(x1α1 + · · ·+ xnαn) = m,

where K is a number field, α1, . . . , αn ∈ K and m ∈ Z, and arrange H in
an |H | × n array H. Then two questions in view of arithmetic (geometric)
progressions occur.

The horizontal problem: do there exist infinitely many rows of H which
form arithmetic (geometric) progressions, i.e., are there infinitely many
solutions that are in arithmetic progression?
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2 A. BÉRCZES AND V. ZIEGLER

The vertical problem: do there exist arbitrary long arithmetic (geomet-
ric) progressions in some column of H?

Note, the first question is only meaningful if n > 2. This paper is devoted to
the vertical problem. General, but ineffective results for the vertical problem
in the case of arithmetic progressions have been established by Bérczes, Hajdu
and Pethő ([2]).

Let us note that the vertical problem can be considered for any Diophan-
tine equation. In particular, the case of elliptic curves has been investigated
by several authors. Let us note that Bremner, Silverman and Tzanakis ([5])
showed that a subgroup Γ of the group of rational points E(Q) on the elliptic
curve E : Y 2 = X(X2 − n2) of rank 1 does not have non-trivial integral
arithmetic progressions in the X-component, provided that n ≥ 1.

In this paper we want to consider geometric progressions on Pell equations

(1.2) X2 − dY 2 = m,

i.e., norm form equations (1.1) with K = Q(
√
d) a quadratic field, α1 = 1

and α2 =
√
d, where d is some integer not a square. Note that usually an

equation of type (1.2) is called a Pell equation only if d > 0 and square-
free. However in this paper we consider equation (1.2) for all d,m ∈ Z. In
2008 Pethő and Ziegler ([9]) considered the vertical problem for this case,
i.e., they considered arithmetic progressions on such Diophantine equations
and obtained effective results. In particular, they proved upper bounds for
max |Xi| and max |Yi| respectively, where X1, X2 and X3 or Y1, Y2 and Y3 are
in arithmetic progression and are also solutions to (1.2). Moreover, Pethő
and Ziegler considered also fixed arithmetic progressions and asked whether
there exist integers d and m such that these arithmetic progressions are
part of the solution set of (1.2). They established results for arithmetic
progressions of length 3 and ≥ 5. The case of length 4 was settled by
Dujella, Pethő and Tadić ([6]). Moreover Dujella, Pethő and Tadić found
arithmetic progressions of length 5, 6 and 7. Aguirre, Dujella and Peral ([1])
also found arithmetic progressions of length 6 and 7. However in contrast
to the arithmetic progression case we were not able to find long geometric
progressions by the method of Dujella, Pethő and Tadić ([6]) nor could we
apply the methods of Aguirre, Dujella and Peral ([1]). In particular, we even
found no example of length 5.

Our intention is to prove analogous results for geometric progressions. For
technical reasons we exclude trivial geometric progressions X1, X2, X3, with
|X1| = |X2| = |X3| or X1X2X3 = 0.

Theorem 1.1. Let X1 < X2 < X3 be the X-components of three positive
distinct solutions to (1.2) such that they form a geometric progression, i.e.,
fulfill X1X3 = X2

2 . Then we have

X3 < 1645683|m|20.
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Similarly assume that Y1 < Y2 < Y3 are the Y -components of three
positive distinct solutions to (1.2) which form a geometric progression. Then
we have

Y3 <
1645683|m|20

d
.

Similarly as in [9] we obtain as a corollary that for small m there are no
three term geometric progressions, in particular we find a method to determine
for fixed m all d such that (1.2) provides geometric progressions in their
solution set.

Corollary 1.2. Let m ∈ Z, m 6= 0 be fixed and assume (1.2) provides a
non-trivial geometric progression in its solution set. Then we have

d ≤ m2(13 +
√
7)

2
.

In particular this yields an effective algorithm to find all geometric progressions
in the solution set of Pell equations (1.2) with |m| ≤ C, with C a given
constant.

The following theorem on linear relations on the solution set of Pell
equations contains as a corollary an upper bound for three term arithmetic
progressions (cf. [9, Theorem 1]) as well as an upper bound for three term
geometric progressions (Theorem 1.1).

Theorem 1.3. Let (X1, Y1), (X2, Y2) and (X3, Y3) be three non-zero
solutions to (1.2), i.e., X1X2X3Y1Y2Y3 6= 0, such that they fulfill the
inhomogeneous linear equation

aX1 + bX2 + cX3 + f = 0,

where a, b, c, f ∈ Z and abc 6= 0 and let c̃ = max{|a|, |b|, |c|}. In the case of
f = 0 we additionally assume that |a|, |b|, |c| are the sides of a triangle, i.e.,
the maximum of |a|, |b| and |c| does not exceed the sum of the other two.

C := C(c̃, f,m) = max{a0, a1, a2}
with

a0 =394347c̃8|f |8|m|4 + 564133c̃10|f |7|m|5 + 469762c̃12|f |6|m|6

+ 187909c̃12|f |5|m|7 + 29534c̃12|f |4|m|8;
a1 =817797c̃9|f |7|m|4 + 582364c̃11|f |6|m|5 + 192227c̃11|f |5|m|6

+ 8986c̃11|f |3|m|7;
a2 =768542c̃10|f |6|m|4 + 317902c̃11|f |5|m|5 + 118821c̃12|f |4|m|6;

in the case f 6= 0 and

a0 = 304c̃12|m|8, a1 = 240
√
2c̃11|m|7, a2 = 400c̃12|m|6
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if f = 0. Then we have

max{|X1|, |X2|, |X3|} ≤ C

or one of the four exceptional cases holds:

• X1 = min{|Xi|}, f = −aX1, b = ±c and X2 = ∓X3;
• X2 = min{|Xi|}, f = −bX2, a = ±c and X1 = ∓X3;
• X3 = min{|Xi|}, f = −cX3, b = ±a and X2 = ∓X1;
• f = 0, a = ±b± c and |X1| = |X2| = |X3| and |Y1| = |Y2| = |Y3|.
Remark 1.4. If we choose a = c = 1, b = −2 and f = 0 we immediately

get an upper bound for non-constant positive arithmetic progressions by
applying Theorem 1.3. To see that Theorem 1.1 is a consequence of Theorem
1.3 is more tricky and this will be discussed in Section 3.

Obviously the Theorems 1.1 and 1.3 are trivial if d is not positive or d is
a square. However, to find d,m ∈ Z such that a given geometric progression
is admitted by (1.2) is not easy, even if we allow negative d. In view of
[9, Theorem 5 and Theorem 7] we show:

Theorem 1.5. Let 0 < Y1 < Y2 < Y3 < Y4 < Y5 be a given geometric
progression. Then there are at most finitely many d,m ∈ Z such that d is not
a square, m 6= 0 and gcd(d,m) is square-free such that Y1, Y2, Y3, Y4, Y5 are
the Y -components of solutions to X2 − dY 2 = m.

For a given geometric progression 0 < X1 < X2 < X3 there exist at most
finitely many d,m ∈ Z such that d is not a square, m 6= 0 and gcd(d,m) is
square-free such that X1, X2, X3 are the X-components of solutions to X2 −
dY 2 = m.

And in view of [6] we show:

Theorem 1.6. Let 0 < Y1 < Y2 < Y3 < Y4 be a given geometric
progression. Then there exist infinitely many d,m ∈ Z such that d is not
a square, m 6= 0 and gcd(d,m) is square-free such that Y1, Y2, Y3, Y4 are the
Y -components of solutions to X2 − dY 2 = m.

Remark 1.7. Note that the condition that gcd(d,m) is square-free is
important to avoid Pell equations that are essentially the same. Note that if
Y1 < Y2 < · · · is a geometric progression on the Pell equation X2−dY 2 = m,
then it is also a geometric progression on the Pell equationX2−dd20Y

2 = md20.

Let us note that the sequence (yn)n∈N of Y -components of increasing
solutions to the Pell equation X2 − dY 2 = 1 satisfies a binary recursion. In
particular let ǫ = x0 + y0

√
d be the fundamental solution. Then the sequence

(yn)n∈N of Y -components is given by

yn = y0
ǫn − ǭn

ǫ− ǭ
,
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where ǭ = x0 − y0
√
d. Therefore closely related to the solution set of Pell

equations are so-called Lucas sequences, i.e., sequences of the form

un =
αn − βn

α− β
,

where

α =
a+

√
b

2
and β =

a−
√
b

2
,

with a, b non-zero integers. Furthermore we assume α+β and αβ are non-zero,
co-prime integers and α/β is not a root of unity. For these Lucas sequences
we prove the following theorem.

Theorem 1.8. Let (un)n≥1 be a Lucas sequence and assume that there are
three distinct indices n, k, l such that ukul = u2

n. Except the trivial case where
uk, ul, un ∈ {±1} the only solutions are (u1, u2, u4) = (u3, u2, u4) = (1,−2, 4)
with a = −2 and b = −8.

In the next section we will prove Theorem 1.3, which is essential for
proving Theorem 1.1 in the subsequent Section 3. The proof of Theorem 1.3
is, beside the use of Groebner bases, elementary. The cases of fixed three
and five term geometric progressions is discussed in Section 4 and the case of
fixed four term geometric progressions is treated in Section 5. The treatment
of fixed five term geometric progressions makes use of Faltings’ theorem ([7])
on rational points of curves of genus > 1 and our result is therefore non-
effective. On the other hand in the case of four term geometric progressions
we are led to elliptic curves and we can effectively compute Pell equations that
admit a given geometric four term progression. The last section is devoted to
geometric progressions in Lucas sequences. The use of the primitive divisor
Theorem due to Bilu, Hanrot and Voutier ([3]) breaks the problem down to
some elementary considerations.

As mentioned above the case of non-positive or square d is trivial in the
proof of Theorems 1.1 and 1.3. Therefore we assume in the next two sections
that d is positive and not a perfect square.

2. Pell equations with linear Restriction

Let us assume that (X1, Y1), (X2, Y2) and (X3, Y3) are three non-zero
solutions, i.e., X1X2X3Y1Y2Y3 6= 0 to (1.2) and assume they fulfill the linear
relation

(2.1) aX1 + bX2 + cX3 + f = 0,

with a, b, c, f ∈ Z and abc 6= 0. Without loss of generality we may assume
that sign(Xi) = sign(Yi) for i = 1, 2, 3. First, we show that the homogeneous
variant of (2.1) cannot hold for the Y -components simultaneously provided
X is not too small.
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Lemma 2.1. Let (X1, Y1), (X2, Y2) and (X3, Y3) be non-zero solutions to
(1.2) that satisfy (2.1). Then

(2.2) aY1 + bY2 + cY3 = 0

implies

max{|Xi|} ≤ 2|m|c̃2(3|m|c̃2 + |f |2)(2
√
d+ 1)

|f |(
√
d− 1)

+ |f |

or f = 0 and |a| = |b± c| and |X1| = |X2| = |X3|.

Before we start with the proof of Lemma 2.1 we state a useful Diophantine
inequality for square roots.

Lemma 2.2. Let p, q, d be integers, with d, q > 0 and d not a perfect
square. Then

(2.3) |p− q
√
d| >

√
d− 1

max{1, |p|}(2
√
d+ 1)

.

Proof of Lemma 2.2. The case p ≤ 0 is obvious, therefore we assume
p > 0.

First, let us consider the case, where
√
d − 1 < p/q <

√
d + 1, i.e.,

q(
√
d− 1) < p < q(

√
d+1) respectively p+ q

√
d < q(2

√
d+1) and q < p√

d−1
.

Therefore

1 ≤ |p2 − q2d| =|p− q
√
d||p+ q

√
d| < |p− q

√
d||q|(2

√
d+ 1)

<|p− q
√
d||p|2

√
d+ 1√
d− 1

,

hence we obtain (2.3) in this case.

Now assume
√
d− 1 > p/q. Then we obtain p− q

√
d < −q, i.e.,

|p− q
√
d| > q ≥ 1 >

√
d− 1

|p|(2
√
d+ 1)

and the lemma is also proved in this case.
The case

√
d+ 1 < p/q is similar to the case above and is omitted.

Proof of Lemma 2.1. We split the proof up into two cases: f = 0 and
f 6= 0.

Let us start with the second case and assume (2.2) holds. Then by
combining (2.1) and (2.2) and using the fact that

|X − Y
√
d| = |m|

|X + Y
√
d|
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for a solution (X,Y ) to (1.2) we get

|f | =|a(X1 − Y1

√
d) + b(X2 − Y2

√
d) + c(X3 − Y3

√
d)|

≤3|m|max{|a|, |b|, |c|}
min{|Xi|}

.

We remind the reader that we assumed sign(Xi) = sign(Yi) for i = 1, 2, 3.
Hence, we deduce that

min{|Xi|} ≤ 3|m|c̃
|f | =: B.

Without loss of generality we may assume that |X1| = min{|Xi|} and

Lemma 2.2 applied to λ = f +aX1−aY1

√
d with p = |f +aX1| and q = |aY1|

yields

|λ| ≥
√
d− 1

(|a|B + |f |)(2
√
d+ 1)

:= B′.

Hence

|B′| ≤ |λ| =
∣
∣
∣b(X2 − Y2

√
d) + c(X3 − Y3

√
d)
∣
∣
∣ ≤ 2|m|max{|b|, |c|}

min{|X2|, |X3|}
,

and

min{|X2|, |X3|} ≤ 2|m|c̃(3|m|c̃2 + |f |2)(2
√
d+ 1)

|f |(
√
d− 1)

.

Now let us assume without loss of generality that |X2| = min{|X2|, |X3|}.
Then (2.1) yields together with the bounds for |X1| and |X2| the statement
of the lemma.

Now let us assume that f = 0. By the assumptions of the lemma we
assume that |a|, |b|, |c| are the sides of a triangle. Together with the other
constraints we obtain several equations in several variables. In order to
eliminate at least some of the variables we use Groebner bases. In particular,
we compute the Groebner basis of the ideal I generated by

X2
1 − dY 2

1 −m, X2
2 − dY 2

2 −m, X2
3 − dY 2

3 −m,

aX1 + bX2 + cX3, aY1 + bY2 + cY3

over the ring Q[X1, X2, X3, Y1, Y2, Y3], with respect to the lexicographic term
order implied by X1 < X2 < · · · < Y3. The smallest element of the Groebner
basis (computed with the computer algebra program Mathematica) gives us
the following quadratic polynomial in Y3

−m2
(
a4m2 + b4m2 + c4m2 − 4b3cdY2Y3 − 4bc3dY2Y3+

2a2(2bcdY2Y3 − (b2 + c2)m2)− 2b2c2(m2 + 2d(Y 2
2 + Y 2

3 ))
)

which has discriminant

δ = 16db2(m2 + dY 2
2 )((b + c)2 − a2)((b − c)2 − a2).
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Therefore the quadratic equation yields a solution only if δ ≥ 0. But, we
have δ < 0 if and only if |b| + |c| > |a| > |b| − |c|. By permuting indices we
get similar inequalities for |b| and |c|, which are exactly fulfilled by the sides
of a triangle, hence by our assumptions either δ = 0 or no solution exists.
Therefore we have to consider the corner cases, i.e., we may assume that the
case |a| = |b± c| holds. The smallest element of the Groebner basis yields in
this case

4b2c2d(Y2 ∓ Y3)
2.

Therefore we conclude Y2 = ±Y3. Hence we obtain

aY1 + (b± c)Y2 = ±(b± c)Y1 + (b± c)Y2 = 0

and therefore Y1 = ±Y2 which implies |X1| = |X2| = |X3|.

Let us write

∆Y = aY1 + bY2 + cY3

and the lemma above shows that either |∆Y | ≥ 1 or max{|Xi|} is “small” or
exceptional. Therefore we may assume for the rest of the section that ∆Y 6= 0.
Our next aim is to show that |∆Y | stays relatively small.

Lemma 2.3. We have

|∆Y | ≤
|m|(|a|+ |b|+ |c|)
min{|Xi|}

√
d

+
|f |√
d
≤ |m|(|a|+ |b|+ |c|) + |f |√

d
.

Proof. We have

|∆Y |
√
d =|a(X1 − Y1

√
d) + b(X2 − Y2

√
d) + c(X3 − Y3

√
d)− f |

≤|m|
( |a|
|X1 +

√
dY1|

+
|b|

|X2 +
√
dY2|

+
|c|

|X3 +
√
dY3|

)

+ |f |

≤|m|(|a|+ |b|+ |c|)
min{|Xi|}

+ |f |

which proves the lemma. Note that we still assume sign(Xi) = sign(Yi).

We apply Lemma 2.2 to ∆Y

√
d+ f and obtain

|∆Y

√
d+ f | >

√
d− 1

|f |(2
√
d+ 1)

if f 6= 0 and |∆Y | ≥ 1 if f = 0. Hence, by the proof of Lemma 2.3 we obtain
in any case

(2.4) min{|Xi|} ≤ |m|max{|f |, 1}(|a|+ |b|+ |c|)(2
√
d+ 1)√

d− 1
.

For the rest of the proof of Theorem 1.3 we may assume without loss of
generality that |X1| ≤ |X2| ≤ |X3|. Therefore we have to find upper bounds
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for |X3|. By (2.4) we have already found an upper bound for |X1|. Now let
us write ∆ = ∆Y . We consider the ideal

I := 〈X2
1 − dY 2

1 −m,X2
2 − dY 2

2 −m,X2
3 − dY 2

3 −m,

aX1 + bX2 + cX3 − f, aY1 + bY2 + cY3 −∆〉
in the polynomial ringQ[X1, X2, X3, Y1, Y2, Y3], and we compute the Groebner
basis of I with respect to the lexicographic term order implied by Y2 < Y1 <
Y3 < X2 < X1 < X3. The smallest element g1 of the Groebner basis is of
degree 4 in X3. Let us write

g1 = X4
3a4 +X3

3a3 +X2
3a2 +X3a1 + a0.

Since the polynomial consists of 362 monomials in Z[a, b, c, d, f,m,∆, X1, X3]
we abandon to write down the whole polynomial. However, our purpose is to
find upper bounds for the roots of g1. We have to distinguish between the
cases a4 6= 0 and a4 = 0. Let us consider the case a4 6= 0 first.

We note that every integral root of an integral polynomial divides the
constant term. Therefore |a0| is an upper bound for |X3| provided a0 6= 0.
But, in the case of a0 = 0 we divide g1 by X3, hence a1 is the new constant
term and is therefore the new upper bound, provided a1 6= 0. Applying similar
arguments we end in the estimate

|X3| ≤ max
0≤i≤3

{|ai|}.

Hence, we have to estimate the coefficients ai. This can be done by assuming
that every monomial is positive and replacing a, b, c by c̃ = max{|a|, |b|, |c|}, ∆
by the upper bound obtained in Lemma 2.3 and X1 by the upper bound (2.4).
We also distinguish between the case f = 0 and f 6= 0.

Let us consider first the case f 6= 0. In this case we also use the inequality
2
√
d−1√
d−1

< 2
√
2+1√
2−1

and therefore we obtain

|a0| ≤394347c̃8|f |8|m|4 + 564133c̃10|f |7|m|5 + 469762c̃12|f |6|m|6

+ 187909c̃12|f |5|m|7 + 29534c̃12|f |4|m|8;
|a1| ≤817797c̃9|f |7|m|4 + 582364c̃11|f |6|m|5 + 192227c̃11|f |5|m|6

+ 8986c̃11|f |3|m|7;
|a2| ≤768542c̃10|f |6|m|4 + 317902c̃11|f |5|m|5 + 118821c̃12|f |4|m|6;
|a3| ≤141653c̃9|f |5|m|3 + 84103c̃10|f |4|m|4 + 35941c̃11|f |3|m|5.

These bounds yield the result of Theorem 1.3 in the case f 6= 0.
In the case of f = 0 we obtain

|a0| ≤304c̃12m8, |a1| ≤240
√
2c̃11m7,

|a2| ≤400c̃12m6, |a3| ≤160
√
2c̃11m5,
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which settles Theorem 1.3 in the case a4 6= 0.
Now we consider the case a4 = 0. Therefore we have a closer look on a4:

a4 = 16c4
(
−(f2 + a2m− 2afX1)

2+

2d(f2 − 2afX1 − a2(m− 2X2
1 ))∆

2 − d2∆4
)
.

Obviously this is a quadratic polynomial in X1 and a rational root exists if and
only if the discriminant of this polynomial is a square. But the discriminant
of this polynomial is

4096a2c8d∆2(−f2 + a2m+ d∆2)2

which cannot be a square by the assumption that d is not a perfect square,
unless f2 = a2m+ d∆2. Substituting f2 = a2m+ d∆2 into a4 we obtain

a4 = −64c4(f + aX1)
2(f2 − d∆2)

which vanishes if and only if f = −aX1. Now, let us compute g1 under the
assumptions f = −aX1 and f2 = a2m+ d∆2 and we obtain

g1 = m2(b2 − c2)2
(
(b2 − c2)2m2 + 8d(b2m+ c2(m− 2X2

3 ))∆
2 + 16d2∆4

)
.

Therefore either b = ±c orX3 fulfills a quadratic equation (note the coefficient
of X2

3 is −16c2d∆2 6= 0). But, b = ±c and f = −aX1 yields

0 = aX1 + bX2 + cX3 + f = c(X2 ±X3)

an exceptional case. Therefore we are left to estimate X3. Solving g1 = 0 for
X3 under the assumptions f = −aX1 and f2 = a2m+ d∆2 we obtain

|X3| =
√

(b2 − c2)2m2 + 8(b2 + c2)dm∆2 + 16d2∆4

4c∆
√
d

≤
√

4c̃4m2 + 16c̃2dm∆2 + 16d2∆4

16d∆2

≤
√

c̃4m2 + c̃2m+ d∆2

≤
√

c̃4m2 + c̃2m+ 4m2c̃2

≤c̃2m
√
6 < C(c̃,m, f).

Note that we used by estimating ∆ the fact that f = −aX1 and hence |f | ≤
|a| ≤ c̃. Therefore Theorem 1.3 is proved completely.

Remark 2.4. As an immediate consequence of Theorem 1.3 we obtain
an upper bound for the length of arithmetic progressions 0 < X1 < X2 < X3

by noting that X1− 2X2+X3 = 0 implies X3 ≤ 19 ·216|m|8 provided |m| > 1
and X3 < 25 · 216 if |m| = 1. Note that the bounds given in [9] are sharper.
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3. Upper bounds for geometric progressions

The main aim of this section is to prove Theorem 1.1. First, we note that
for a positive solution (X,Y ), i.e., X,Y > 0, to Pell equation (1.2), we have

(3.1) X =
αǫn + ᾱǫ−n

2
,

where n is some integer, α is some algebraic integer coming form a finite
set, ᾱ is its (Galois) conjugate and ǫ > 1 is the fundamental unit of Z[

√
d].

Assume now that the X-components X1 < X2 < X3 of the solutions (Xi, Yi),
i = 1, 2, 3, to (1.2) form a geometric progression, i.e., X2

2 = X1X3 and let us

write Xi =
αiǫ

ni+ᾱiǫ
−ni

2
. This leads us to the equation

0 =X1X3 −X2
2

=

:=ξ1/2
︷ ︸︸ ︷

ǫn1+n3α1α3 + ᾱ1ᾱ3ǫ
−n1−n3

4
+

:=ξ2/2
︷ ︸︸ ︷

ǫn1−n3α1ᾱ3 + ᾱ1α3ǫ
−n1+n3

4

−

:=ξ3/2
︷ ︸︸ ︷

ǫ2n2α2
2 + ᾱ2

2ǫ
2n2

4
−m

2

=
ξ1 + ξ2 − ξ3 −m

2

where ξi, i = 1, 2, 3 are solutions to the Pell equation

ξ2 − dη2 = M := m2.

Note that the norm of αi is m for i = 1, 2, 3. We apply Theorem 1.3 to this
situation and obtain for i = 1, 2, 3

max{|ξi|} ≤ 1645683|m|20

or one of the exceptional cases holds. Assume that we are not in an exceptional
case, then we know that

1645683|m|20 ≥ ξ1 + ξ2
2

= |X1||X3| ≥ |X3| = max{|Xi|},

which proves the first part of Theorem 1.1.
Now let us consider the case that 0 < Y1 < Y2 < Y3 forms a geometric

progression. In this case a solution (X,Y ) to the Pell equation (1.2) satisfies

(3.2) Y =
αǫn − ᾱǫ−n

2
√
d

,
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hence we obtain

0 =Y1Y3 − Y 2
2

=

:=ξ1/2d
︷ ︸︸ ︷

ǫn1+n3α1α3 + ᾱ1ᾱ3ǫ
−n1−n3

4d
−

:=ξ2/2d
︷ ︸︸ ︷

ǫn1−n3α1ᾱ3 + ᾱ1α3ǫ
−n1+n3

4d

−

:=ξ3/2d
︷ ︸︸ ︷

ǫ2n2α2
2 + ᾱ2

2ǫ
2n2

4d
+
m

2d

=
ξ1 − ξ2 − ξ3 +m

2d
,

where again ξi, i = 1, 2, 3 are solutions to the Pell equation

ξ2 − dη2 = M := m2.

Obviously this yields the same upper bound for max{|ξ|}. Further, this time
we obtain

1645683|m|20
d

≥ ξ1 − ξ2
2d

= |Y1||Y3| ≥ |Y3| = max{|Yi|}.

We are left to exclude the exceptional cases and the cases ξi = 0 and ηi = 0
for i = 1, 2, 3. The case ξi = 0 for i = 1, 2, 3 cannot occur, since M = m2 > 0.
If an exceptional case occurs we have f 6= 0 and since |a| = |b| = |c| = 1 we
would obtain ξ = m for some i = 1, 2, 3, hence ηi = 0. Therefore we are left
with the three cases η1 = 0, η2 = 0 and η3 = 0.

Let us first note that if α = u + v
√
d is a fundamental solution to an

ambiguous class with u ≥ 0 and v > 0 and assume x + y
√
d = ǫ > 1 is the

fundamental solution to

X2 − dY 2 = 1

we note that α = ǫᾱ. Indeed let us write u+
n +v+n

√
d = αǫn and u−

n −v−n
√
d =

ᾱǫ−n, then v+n and v−n are strictly increasing, and, since we assume v was
chosen minimal, we obtain α = ǫᾱ.

First, we consider the case η1 = 0. In this case we have ξ1 = M and
therefore we conclude

ǫn1+n3α1α3 = m

which yields α1 = ǫnᾱ3 for some n. This yields ǫn1+n3α1α3 = ǫn1+n3+nα3ᾱ3 =
m, hence n1 = −n3 − n. Therefore we have

ǫn1α1 = ǫ−n3−nǫnᾱ3 = ǫn3α3.

But this yields X1 = X3 and Y1 = −Y3 a contradiction. The case η2 = 0 is
similar and we omit this case. In the case η3 = 0 we have

ǫ2n2α2
2 = m
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and therefore we have α2 = ᾱ2ǫ
n for some n. Since α2 is a fundamental

solution we deduce α2 = ᾱ2, hence α2 =
√
m ∈ Z and n2 = 0, or α2 =

ǫᾱ2. The first case yields X2 =
√
m and Y2 = 0. If we consider geometric

progressions in the Y -components we are done, since we assume that 0 <
Y1 < Y2 < Y3. In the case of considering geometric progressions in the X-
component we note that X =

√
m ∈ Z is smallest possible, but we assume

|X1| < |X2| =
√
m, hence a contradiction. In the second case we have

ǫ2n2α2
2 = ǫ2n2+1α2ᾱ2 = m,

hence 2n2 + 1 = 0 a contradiction and Theorem 1.1 is proved completely.
The rest of this section is devoted to the proof of Corollary 1.2.

Proof of Corollary 1.2. As explained above we have to consider the
linear relations on the solution set of the Pell equation ξ2 − dη2 = M with
M = m2. Let us reconsider Lemma 2.3. In this case we have |a| = |b| = |c| =
1, |f | = |m| and M = m2 and therefore

(3.3) |∆η

√
d| ≤ 3m2

√
d

+ |m|,

provided that η1η2η3 6= 0. Note that since we assume that |ηi| ≥ 1 the
denominators in the second line of the estimate in the proof of Lemma 2.3 are
at least |

√
d|. On the other hand, if we assume |∆η| ≥ 1 we obtain

d ≤ 3m2 + |m|
√
d.

Therefore by solving the above inequality for d we obtain in any case a bound
for d depending on m:

d ≤ m2(7 +
√
13)

2
.

Now assume ∆η = 0. Then we have η3 = η1 + η2 and ξ3 = ξ1 + ξ2 −m
and the Pell equation for ξ3 and η3 yields

ξ21 + ξ22 +m2 + 2ξ1ξ2 − 2m(ξ1 + ξ2)− d(η21 + η22 + 2η1η2)−m2 = 0.

We replace η2i by
ξ2
i
−m2

d for i = 1, 2 and obtain

m2 −m(ξ1 + ξ2) + ξ1ξ2 = dη1η2.

Squaring this equation and replacing the η’s again we obtain

2m(m− ξ1)(m− ξ2)(ξ1 + ξ2) = 0.

Therefore either m = 0 or ξi = m for some i = 1, 2, but ξi = m yields ηi = 0
in any case a contradiction. Therefore the case ∆η = 0 cannot occur. This
proves Corollary 1.2.



14 A. BÉRCZES AND V. ZIEGLER

4. Pell equations with fixed geometric progressions

Now let us consider the case, where we fix the geometric progression and
we want to find Pell equations (1.2) that have this geometric progression in
the X or Y -components of their solution sets. Note that in this and the next
section we consider all d ∈ Z and do not restrict ourselves to positive and
non-square d’s. We start to prove the statement on the X-components in
Theorem 1.5 (see the proposition below).

Proposition 4.1. For a given geometric progression 0 < X1 < X2 < X3

there exist at most finitely many d,m ∈ Z such that d is not a square, m 6= 0
and gcd(d,m) is square-free such that X1, X2, X3 are the X-components of
solutions to X2 − dY 2 = m.

Proof. Assume that X1 = q, X2 = qa and X3 = qa2 for fixed q and a.
We obtain the system of equations

q2 − dY 2
1 = m, q2a2 − dY 2

2 = m, q2a4 − dY 2
3 = m.

The first two equations yield

q2(a2 − 1) = d(Y 2
2 − Y 2

1 )

Since we assume that a > 1 we deduce that there are only finitely many
possibilities for d, since d|q2(a2−1). On the other hand also (Y2+Y1)|q2(a2−1)
is fulfilled and therefore we have only finitely many possibilities for Y1 and
Y2. However, this also yields finitely many possibilities for m.

Now let us consider what happens, if we fix a five-term geometric
progression that is contained in the Y -components of the solution set of (1.2).
Similarly as in the proof above we obtain the following system of equations:

X2
1 − dq2 = m, X2

2 − dq2a2 = m, X2
3 − dq2a4 = m,

X2
4 − dq2a6 = m, X2

5 − dq2a8 = m.

Eliminating m from these equations we obtain the system of equations

X2
2 −X2

1 =dq2(a2 − 1), X2
3 −X2

2 =dq2a2(a2 − 1),

X2
4 −X2

3 =dq2a4(a2 − 1), X2
5 −X2

4 =dq2a6(a2 − 1).

Now eliminating dq2 yields

a2X2
1 − (a2 + 1)X2

2 +X2
3 = 0, a2X2

2 − (a2 + 1)X2
3 +X2

4 = 0,

a2X2
3 − (a2 + 1)X2

4 +X2
5 = 0

It is easy to prove that this is a projective curve C for every a ∈ Q in the
4-dimensional projective space P4. We use the following lemma proved in
[9, Lemma 5]:
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Lemma 4.2. Let ai,j be non-zero integers, and let the non-singular curve
X be defined by

X2
1a1,1 +X2

2a1,2 +X2
3a1,3 = 0,

X2
2a2,1 +X2

3a2,2 +X2
4a2,3 = 0,

X2
3a3,1 +X2

4a3,2 +X2
5a3,3 = 0.

(4.1)

Let

F1 = a2,2a3,2 − a2,3a3,1,

F2 = a1,2a2,2 − a1,3a2,1,

F3 = a2,2a3,2a1,2 − a2,3a1,2a3,1 − a3,2a1,3a2,1.

If F1F2F3 6= 0, then the genus of X is 5.

According to Lemma 4.2 we compute

F1 = F2 = (a2 + 1)2 − a2 = a4 + a2 + 1

and

F3 = (a2 + 1)3 + 2a2(a2 + 1).

Therefore the curve C is of genus 5. Hence, by Faltings’ theorem ([7]) there
are only finitely many rational points on the curve C, i.e., there exist only
finitely many X1, X2, X3, X4 and X5 and hence only finitely many d and m
that fulfill the conditions of Theorem 1.5.

5. Pell equations with fixed four term geometric progressions

Assume that Xk = qak for k = 1, 2, 3, 4 are solutions to a Pell equation
(1.2). Then similarly as in the section above we obtain a curve C ⊂ P3 given
by

a2X2
1 − (a2 + 1)X2

2 +X2
3 = 0, a2X2

2 − (a2 + 1)X2
3 +X2

4 = 0.

We parameterize the first equation of C by projecting the corresponding conic
from the point P = (1, 1, 1, 1) ∈ C to the plane X4 = 0. The line from P to
Q = (x, y, z, 0) is given by the system

zX2 − yX3 + (y − z)X4 = 0,

zX1 − xX3 + (x− z)X4 = 0

and intersecting the conic with the line yields

X1 =a2(x− y)2 − 2xy + y2 + 2xz − z2,

X2 =a2(x− y)2 + (y − z)2,

X3 =a2(x− y)(x + y − 2z)− (y − z)2,

X4 =a2(x2 − y2) + z2 − y2.
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Substituting this parametrization into the second equation defining C we
obtain a plane curve E1 given by

(
a2(x− y)− y + z

)
×

(
a4(x− y)(x− z)(y − z) + y(y − z)z − a2(x− y)(x+ y − z)z

)
= 0.

Assuming the first factor is 0, we obtain X1 = X2 = X3 = X4 contrary to our
assumptions. Therefore we want to have a closer look on the second factor.
Using a computer algebra program like Magma ([4]) we see that the second
factor yields a cubic curve of genus 1. We want to transform this elliptic
curve into Weierstrass form, therefore we make the transformations suggested
in [10, pages 22-23]. As O we choose the point (1, 1, 1) and the tangent at O
is given by

(a2 + 1)y − a2x− z = 0.

Furthermore this tangent intersects the elliptic curve E1 in A = (a4 + a2 +
1, a4 + a2, a4). The tangent at A is given by

x
a4

a4 + a2 + 1
− y +

z

a2
= 0.

Now we choose B = (0, 1, a2) and the line from B to O is given by

x(a2 − 1)− ya2 + z = 0.

These three lines represent the new coordinate axes and we therefore perform
the transformation

ξ =
a4

a4 + a2 + 1
x− y +

z

a2

η = (a2 − 1)x− a2y + z

ζ = − a2x+ (a2 + 1)y − z.

and obtain the elliptic curve E2 given by

a2ζξ(ξ(a4 + a2 + 1)− 2(2a2 + 1)η) + ζ2(ξ(−a4 + a2 − 1)− 2ηa2)

+ (a2 − 1)ζ3 − η2ξa2(1 + a2) = 0.

For the next step we have to consider the case ξζ = 0 separately. We

start with the case ξ = 0. In this case we obtain ζ = 0 or ζ = η 2a2

1−a2 . The

case ξ = ζ = 0 yields η = 1 (we are in projective space) and we obtain for this
choice −X1 = X2 = X3 = X4 = a4 + a2 a contradiction to our assumptions.
In the other case we obtain

X1 =3a2 + a4 + a6 − a8, X2 =a2 + 3a4 − a6 + a8,

X3 =a2 − a4 + 3a6 + a8, X4 =a2 − a4 − a6 − 3a8.
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From the system X2
i − dq2a2i−2 = m for i = 1, 2, 3, 4 we can compute d and

m. In particular we obtain

d = 8
a4 + a6 + a8 + a10

q2

and

m = a4 − 2a6 − a8 − 12a10 − a12 − 2a14 + a16.

By multiplying the equation X2 − dY 2 = m by a suitable rational square
we obtain indeed a Pell equation such that there exist solutions (Xi, Yi) with
Yi = qai−1 for i = 1, 2, 3, 4. Obviously m cannot be zero and if d is a square
we would obtain that 2(a6 + a4 + a2 + 1) is a square. But the only rational
point on the elliptic curve

(2a2)3 + 2(2a2)2 + 4(2a2) + 8 = X3 + 2X2 + 4X + 8 = 4Y 2

is (X,Y ) = (−2, 0) which yields no rational a. Therefore we have proved
that for every four term geometric progression there exists a Pell equation
containing it in the Y -components of the solution set.

Now, let us consider the case ζ = 0. We obtain ξ = 0 or η = 0. The
case ξ = 0 has been considered above and the case η = 0 yields by similar
computations Xi = 0 for i = 1, 2, 3, 4.

Now we may assume that ξζ 6= 0 and therefore we multiply the defining
equation of E2 by ξ/ζ and substitute η′ = ηξ/ζ. Moreover by writing

η′′ = η′ − ζ

a2 + 1
− ξ(2a2 + 1)

a2 + 1

we also eliminate the linear term of η′ and obtain the elliptic curve E3 given
(as affine curve) by

(ξa2 + 1)(ξ(a2 + 1) + 1)(ξ(a4 + a2 + 1) + a2)

a2(1 + a2)2
= (η′′)2.

In order to obtain E3 in Weierstrass form we put

Y = η′′(a+ a3)(a8 + 2a6 + 2a4 + a2), X = ξ(a8 + 2a6 + 2a4 + a2)

and obtain the elliptic curve E in Weierstrass form

(5.1) (X + a6 + a4)(X + a6 + a4 + a2)(X + a6 + 2a4 + 2a2 + 1) = Y 2.

Beside the three torsion points T1 = (−a6−a4, 0), T2 = (−a6−a4−a2, 0) and
T3 = (−a6 − 2a4 − 2a2 − 1, 0) also the point P = (−a6 − a4 − a2 − 1, a3 + a)
lies on the elliptic curve E. If P is a torsion point, then according to the
Lutz-Nagel theorem (see e.g. [8, Theorem 5.1])

2P =

(

−3a8 + 4a6 + 2a4 − 1

4a2
,
(a2 − 1)(a2 + 1)3(a4 + 1)

8a3

)
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should have integer coordinates. But the X-component of 2P is an element
of 1

4
Z− 1

4a2 , hence we would have a = 1 which is excluded. Therefore P is of
infinite order.

Let (X,Y ) ∈ E be a rational point, then this point yields d and m
according to our transformations described above. In particular we obtain

d = −4(2a5 + 2a7 + a9 + a3(1 +X)− Y )((a+ a3)(a2 + a4 + a6 +X)− Y )

× ((1 + a2 + a4)(a4 + a6 +X)− aY )

q2(a2 − 1)(a+ a3)2X3
.

Multiplying by a suitable square we may assume

d = 4(a2 − 1)X(2a5 + 2a7 + a9 + a3(1 +X)− Y )

× ((a+ a3)(a2 + a4 + a6 +X)− Y )((1 + a2 + a4)(a4 + a6 +X)− aY ).

We want to show that for a given integer d0 there are only finitely many
integers Z such that d = d0Z

2. Since d is not constant as a function on the
elliptic curve E, we deduce that infinitely many d0 exist and therefore also
infinitely many pairs (d,m) exist, such that gcd(d,m) is square-free. Hence it
is enough to prove that the curve C ⊂ C3 defined by

Y 2 =(X + a6 + a4)(X + a6 + a4 + a2)(X + a6 + 2a4 + 2a2 + 1)

d0Z
2 =4(a2 − 1)X(2a5 + 2a7 + a9 + a3(1 +X)− Y )

× ((a+ a3)(a2 + a4 + a6 +X)− Y )

× ((1 + a2 + a4)(a4 + a6 +X)− aY )

has at most finitely many rational points for fixed a and d0. Let us expand
the second equation defining C and replace Y 2 by (X+a6+a4)(X+a6+a4+
a2)(X+a6+2a4+2a2+1) and Y 3 by Y (X+a6+a4)(X+a6+a4+a2)(X+a6+
2a4+2a2+1). Then we have a linear equation in Y and solving this equation
for Y we obtain Y = P (X,Z)/Q(X), where P and Q are certain polynomials.
Squaring this last equation and again replacing Y 2 by (X+a6+a4)(X+a6+
a4 + a2)(X + a6 + 2a4 + 2a2 + 1) we obtain a polynomial equation in X and
Z ′ = Z2 with the parameters a and d0. Moreover this polynomial equation is
quadratic in Z ′ and under the assumption that (X,Y, Z) is a rational point the
according discriminant has to be square W 2, i.e., we obtain the Diophantine
equation

W 2 = (a2−1)X(a4+a6+X)(a2+a4+a6+X)(1+2a2+2a4+a6+X)R(X),

where R(X) is a polynomial of degree 7 with parameters a and d0. But this
hyperelliptic equation has only finitely many rational solutions, i.e., we have
finished the proof of Theorem 1.6.

Remark 5.1. Although we performed an intensive computer search we
could not find geometric progressions of length 5. In particular we computed
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all pairs (d,m) corresponding to the points Ti + kP with k = 0, . . . , 10 and
i = 0, . . . 3, where T0 = O is the point at infinity, for 1 ≤ a ≤ 103 and a ∈ Z.
But, none of these pairs provides a geometric progression of length 5. For
small a ∈ Z, i.e., a ≤ 35 we computed the Mordell-Weil group and considered
for all points with relatively small height the pairs d,m but none of these
yield a geometric progressions of length 5. In particular let {G1, . . . , Gr} be
the generators of the Mordell-Weil group that are computed by Sage, then we
computed all points of the form T +

∑r
i=1 aiGi, such that

∑r
i=1 ai ≤ 10 and

T is some torsion point.

6. Lucas Sequences

The basic tool for the proof of Theorem 1.8 is the ingenious theorem of
Bilu, Hanrot and Voutier ([3]) on primitive prime divisors of Lucas sequences.
Let us recall some basic facts about Lucas sequences, which will be needed in
our proofs.

Let α, β be two algebraic integers, such that α + β and αβ are non-zero
co-prime integers, and α/β is not a root of unity. The sequence

un :=
αn − βn

α− β

is called the Lucas sequence corresponding to the Lucas pair (α, β). Two Lucas
pairs (α1, β1) and (α2, β2) are said to be equivalent if α1/α2 = β1/β2 = ±1.
In fact un is a binary recurrence sequence defined by un = Aun−1 + Bun−2,
u0 := 0, u1 := 1, where A := α+ β and B := −αβ.

For convenience of the reader we state a simplified version of the above
mentioned deep theorem on primitive divisors of Lucas sequences, which is
suitable for our situation. Note that we call a prime p a primitive divisor of
un if p|un but p ∤ (α− β)u1 . . . un−1.

Proposition 6.1 (Bilu, Hanrot, Voutier [3]). Consider the Lucas sequence

un :=
αn − βn

α− β
.

We have

• For n > 30 there always exists a primitive divisor for un.
• For n = 5 and 7 ≤ n ≤ 30 there always exist primitive prime divisors

for un unless (up to equivalence) (α, β) =
(

(a+
√
b)/2, (a−

√
b)/2

)

and triples (a, b, n) listed in Table 1.

Remark 6.2. In [3] the authors give a complete answer also for the cases
n = 2, 3, 4, 6, but we have not used these cases in our proof, so we decided
not to quote the full statement established in [3].
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Table 1. Exceptional pairs (a, b)

n (a, b)
5 (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76), (12,−1364)
7 (1,−7), (1,−19)
8 (2,−24), (1,−7)
10 (2,−8), (5,−3), (5,−47)
12 (1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19)
13 (1,−7)
18 (1,−7)
30 (1,−7)

Proof of Theorem 1.8. If uk, ul, um form a geometric progression for
pairwise distinct indices u, k,m, then we have

(6.1) ukum = u2
l .

Let us write n := max{k, l,m} and without loss of generality suppose that
k < m. Clearly, u0 = 0 cannot appear in a non-trivial geometric progression,
so we have n ≥ 3. Now, if un has a primitive prime divisor, this contradicts
(6.1). This means, that un has no primitive prime divisor. If n = 5 or n ≥ 7
we have to check the exceptional cases listed in Table 1. By a short Magma [4]
program we checked equation (6.1) for all exceptional cases listed in Table 1.
But, we obtained only solutions that yield trivial geometric progressions.

It remains to consider the cases n = 3, 4, 6. In these cases we use a direct
computation. The first 7 terms of a Lucas sequence can be expressed as

u0 = 0, u1 = 1, u2 = A, u3 = A2 +B, u4 := A3 + 2AB,

u5 = A4 + 3A2B +B2, u6 = A5 + 4A3B + 3AB2.

Let n = 6. We have to consider the equations

(6.2) ukum = u2
6, uku6 = u2

l .

Let p be a prime > 3 with pk‖A then we get p ∤ u1, u3, u5 and pk‖u2, u4, u6.
Similarly if 2k‖A with k > 0 we have 2 ∤ u1, u3, u5, 2

k‖u2, u6 and 2k+1‖u4 and
if 3k‖A with k > 0 we have 3 ∤ u1, u3, u5, 3

k‖u2, u4 and 3k+1‖u6. Therefore
either k, l,m ∈ {2, 4, 6} or A = ±1,±2,±3

In the case A 6= ±1,±2,±3 we have to consider the three equations

A ·A(A2 + 2B) = A2(A4 + 4A2B + 3B2)2

A ·A(A4 + 4A2B + 3B2) = A2(A2 + 2B)2

A(A2 + 2B) · A(A4 + 4A2B + 3B2) = A2.

(6.3)
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Let us note that A4 +4A2B+3B2 = (A2 +2B)2 −B2 = (A2 +B)(A2 +3B).
Then the first equation of (6.3) yields

(A2 + 2B) = (A2 +B)2(A2 + 3B)2,

but |A2 + 2B| < max{|A2 + B|, |A2 + 3B|} provided B 6= 0 and therefore
the right hand side is larger than the left hand side, i.e., the equation has no
solution. The second equation of (6.3) yields

(A2 + 2B)2 −B2 = (A2 + 2B)2

an obvious contradiction for B 6= 0. The last equation of (6.3) can be written
as

(A2 + 2B)(A2 + B)(A2 + 3B) = 1

which is possible only if A = 1 and B = 0.
Now we have to handle the case n = 6, A = ±1,±2,±3. However, for

fixed values of A the two equations in (6.2) are polynomial equations in one
variable. The integer solutions of such equations can be easily computed, even
by hand, but since we have many equations to consider, as (k,m) and (k, l)
vary we used a Magma [4] program to check all cases. However, no solution
was found that yields a non-trivial geometric progression.

The case n = 4 is handled similarly. We have to consider the equations

ukum = u2
4 uku4 = u2

l .

The p-adic considerations made in the case n = 6 show that the case n = 4
is not possible unless A = ±1,±2. The case n = 4, A = ±1,±2 is treated in
the same way as above. But, in this case we find the non-trivial geometric
progressions (u1, u2, u4) = (u3, u2, u4) = (1,−2, 4) for A = −2 and B = −3.

The easiest case, namely n = 3, remains. We are left to consider the
equations

(6.4) A = (A2 +B)2, A2 +B = A2, A(A2 +B) = 1.

The second equation has solutions only if B = 0, which is excluded. The
last equation of (6.4) yields A = ±1 and therefore we obtain A = 1, B = 0
or A = −1, B = −2. But A = −1, B = −2 yields only trivial geometric
progressions. We are left to the first equation of (6.4). Since A and B are
coprime we deduce that A = ±1 and since the right-hand side is positive
we have A = 1. Therefore we have 1 = (1 + B)2 and therefore B = 0, a
contradiction.
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