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ON THE DIOPHANTINE EQUATION f(n) = u! + v!

Florian Luca

National Autonomous University of Mexico, Mexico

Abstract. In this paper, we show under the abc conjecture that the
Diophantine equation f(x) = u!+v! has only finitely many integer solutions
(x, u, v) whenever f(X) ∈ Q[X] is a polynomial of degree at least three.

1. Introduction

Let f(x) ∈ Q[x] be a polynomial of degree d ≥ 1. The Diophantine
equation

f(n) = u!

in integers n and u ≥ 0 was investigated in many papers (see, for example,
[2, 7]). Here, we look at the equation

(1.1) f(n) = Au! +Bv!,

in integer unknowns n, u ≥ 0, v ≥ 0, where A,B are fixed nonzero integers.
Our result is conditional upon the abc conjecture which we now recall. For a
nonzero integer n put

N(n) =
∏

p|n
p.

Conjecture 1.1 (The abc conjecture). For all ε > 0, there exists C = Cε

such that whenever a, b, c are nonzero integers with a+b = c and gcd(a, b, c) =
1, then

max{|a|, |b|, |c|} ≤ CεN(abc)1+ε.

Our result is the following.
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Theorem 1.2. Assume that A,B are fixed nonzero integers and f(x) ∈
Q[x] is a polynomial of degree d ≥ 3. Then, under the abc conjecture, equation
(1.1) has only finitely many integer solutions (n, u, v) with u ≥ 0, v ≥ 0,
except when A+B = 0. In this last case, there are only finitely many solutions
(n, u, v) with u 6= v.

Particular cases of equation (1.1) have been studied before. For example,
in was shown in [3] unconditionally that equation (1.1) has only finitely many
solutions when (A,B) = (1, 1), (1,−1) and f(x) = xd and d ≥ 2. Further,
under the abc conjecture it was shown in [4] that equation (1.1) has only
finitely many solutions (n, u, v) when A = B = 1 and

f(x) = c0x
d + c1x

d−1 + c2x
d−2 + · · ·+ cd ∈ Z[x]

with c0 6= 0, and c1 = c2 = 0.
Throughout the paper, we use the Landau symbols O and o as well as

the Vinogradov symbols ≪, ≫ and ≍ with their regular meanings. Recall
that F = O(G), F ≪ G and G ≫ F are all equivalent and mean that the
inequality |F | ≤ cG holds with some constant c, whereas F ≍ G means that
both inequalities F ≪ G and G ≪ F hold. The constants implied by these
symbols depend on our data f(x), A, B and some fixed ε > 0. Further,
F = o(G) means that F/G → 0. For a polynomial g(x) ∈ Q[x], we write Dg

for the minimal positive integer D such that Dg(x) ∈ Z[x].

2. Preliminary results

While the abc conjecture is an important ingredient in the proof of
Theorem 1.2, it is not the only one. We shall need a few more facts about
polynomials with rational coefficients and factorials which we collect in this
section. For a polynomial g(x) ∈ Q[x] put

Rg = {p : g(n) ≡ 0 (mod p) does not admit an integer solution n}.
The following result is [1, Lemma 3].

Lemma 2.1. If g(x) ∈ Q[x] is irreducible of degree d ≥ 2, then Rg has a
positive (relative) density rg. Further, rg is a rational number in the interval
[(d− 1)/d!, 1− 1/d].

For a real number y we write ⌊y⌋ and {y} for the integer and fractional
part of y, respectively. The next result is a particular case (J = 1) of [5,
Lemma 5.1].

Lemma 2.2. Fix ε > 0. Then there exists a constant c > 0 such that for
y ≤ x there are

σ1π(y) +O
(

(y1−c(log y)2/ log x + y3/2+εx−1/2)(log x)4
)

primes p ≤ y such that {x/p} < σ1.
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Lemma 2.3. Let

(2.1) u! =
∏

p≤u

pαp(u).

(i) If g(x) ∈ Q[x] is irreducible of degree d ≥ 2, then for u > u0 we have

∏

p≤u
p∈Rg

pαp(u) > u!δ, where δ =
d− 1

3d!
.

(ii) If e > 1 is an integer, then for u > u0 we have

∏

p≤u
αp(u) 6≡0 (mod e)

pαp(u) > u!δ, where δ =
e− 1

3e
.

Proof. Observe that

αp(u) =

⌊

u

p

⌋

for all primes p ∈ (
√
u, u].

Thus, if S ⊂ (
√
u, u] is a set of primes, then

(2.2)

log
∏

p∈S
pαp(u) =

∑

p∈S
αp(u) log p =

∑

p∈S

⌊

u

p

⌋

log p

=
∑

p∈S

(

u

p
+O(1)

)

log p = u
∑

p∈S

log p

p
+ O





∑

p∈S
log p





= u
∑

p∈S

log p

p
+O(u).

Assume now that ε > 0 is arbitrarily small and that S ⊂ (
√
u, u1−ε) has a

relative density η > 0 in (
√
u, u1−ε); that is, if we put

S(t) = #{p ≤ t : p ∈ S},

then the estimate

S(t) = (η + o(1))π(t) holds for t ∈ (
√
u, u1−ε).

Then, by the Prime Number Theorem, the estimate

S(t) = ηt

log t
+ o

(

t

log u

)

holds for t ∈ (
√
u, u1−ε)
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as u → ∞. By partial summation, we have

(2.3)

∑

p∈S

log p

p
=

∫ u1−ε

√
u

log t

t
d (S(t))

=
(log t)S(t)

t

∣

∣

∣

t=u1−ε

t=
√
u

+

∫ u1−ε

√
u

(log t− 1)S(t)dt
t2

= O(1) +

∫ u1−ε

√
u

(log t− 1)

t2

(

ηt

log t
+ o

(

t

log u

))

dt

= O(1) + η

∫ u1−ε

√
u

log t− 1

t log t
dt+ o

(

∫ u1−ε

√
u

dt

t

)

= O(1) + η (log t− log log t)
∣

∣

∣

t=u1−ε

t=
√
u

+ o(log u)

= ((1/2− ε)η + o(1)) log u as u → ∞.

Taking ε > 0 sufficiently small and then u > u0 sufficiently large, we deduce
from (2.2) and (2.3) that

log
∏

p∈S
pαp(u) ≥ (η/3)u logu > log

(

u!η/3
)

,

so
∏

p∈S
pαp(u) > u!η/3.

Now (i) follows with

S = Rg ∩ (
√
u, u1−ε)

and Lemma 2.1 according to which η exists and satisfies η ≥ (d−1)/d!. Thus,
we can take δ = η/3 = (d− 1)/3d!. For (ii) we take

T = {
√
u < p ≤ u : αp(u) ≡ 0 (mod e)} and S = {

√
u < p < u1−ε}\T ,

and note that p ∈ T if and only if e | ⌊u/p⌋, which is equivalent to the
inequality {(u/e)/p} < 1/e. By Lemma 2.2, T has relative density 1/e in
(
√
u, u1−ε) for any ε > 0, therefore S has relative density η = (e − 1)/e in

(
√
u, u1−ε), which leads to (ii) with δ = η/3 = (e− 1)/3e.

3. Unconditional results on equation (1.1)

In equation (1.1), we shall assume that n ≥ 0. The case n ≤ 0 follows by
replacing f(x) by f(−x). We shall also assume that the leading term of f(x)
is positive, otherwise we replace the triple (f(x), A,B) by (−f(x),−A,−B).
We also assume that u ≤ v. If u = v, we then get

f(n) = (A+B)u!
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If A+B = 0, then f(n) = 0. Hence, we get infinitely many solutions (n, u, v)
but they all have u = v and f(n) = 0. From now on, we do not consider such
solutions. If A+B 6= 0, then we replace f(x) by g(x) = f(x)/(A+B) ∈ Q[x]
and equation (1.1) becomes

g(n) = v!

This equation has only finitely many solutions for d ≥ 2 under the abc
conjecture by the main result from [7]. So, from now on, we assume that
u < v. We multiply both sides of equation (1.1) by Df and get

Dff(x) = A1u! +B1v!,

where (A1, B1) = (DfA,Df , B). Hence, we may replace f(x) by Dff(x), and
(A,B) by (A1, B1), and therefore assume that f(x) ∈ Z[x].

Let K be any positive integer. If u ≤ K, then we can give u the values
u = 0, 1, . . . ,K, and replace f(x) ∈ Q[x] by g(x) = (f(x) − Au!)/B ∈ Q[x],
so equation (1.1) reduces to equation

g(n) = v!,

which was already treated in [7]. Thus, only solutions (n, u, v) of equation
(1.1) with a large u are of interest. To study them, it turns out that the
factorization of f(x) ∈ Z[x] plays an important role. So, let us write

f(x) = f1(x)
e1 · · · fs(x)es ∈ Z[x],

where f1(x), . . . , fs(x) are non associated irreducible polynomials of positive
leading terms and positive degrees d1, . . . , ds, respectively, and e1 ≥ e2 ≥
· · · ≥ es ≥ 1. We have the following unconditional result concerning solutions
of equation (1.1).

Lemma 3.1. Assume that d ≥ 2. In equation (1.1) with u < v, the number
u is bounded in any of the following instances:

(i) es > 1;
(ii) s = 1.

Proof. (i) Assume that u is sufficiently large such that u5/6 > 3|A|.
Take I = (u5/6, 3u5/6) and let p1 < p2 < · · · < pt be all primes in I. Since
p2j > u for j = 1, . . . , t, it follows that

αpj
(u) =

⌊

u

pj

⌋

for j = 1, . . . , t,

where αpj
(u) is the exponent of pj in the factorization of u! (see formula

(2.1)). Further, observe that for j ∈ {1, . . . , t− 1}, we have

u

pj
− u

pj+1
=

u(pj+1 − pj)

pjpj+1
= O

(

pj+1 − pj
u2/3

)

= o(1)
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as u → ∞, where we used the known fact that pj+1 − pj = O(p0.6j ) = O(u0.5)

(see, for example, [6]). Thus, for large u, the numbers
⌊

u

p1

⌋

, . . . ,

⌊

u

pt

⌋

cover all the integers interval
[

⌊u1/6/3⌋+ 1, ⌊u1/6⌋ − 1
]

.

By Bertand’s postulate, the above interval contains a prime if u is sufficiently
large. Any such prime, call it q, satisfies q > u1/6/3, so for large u, the
prime q is coprime to e1 · · · es. Thus, if pj ∈ I is such that αpj

(u) = q, then

pj | A+ B(u + 1) · · · v, and since pj > u5/6/3 > |A|, it follows that pj ∤ A, so
pj ∤ B(u+ 1) · · · v. This shows that

v − u < pj ≤ 3u5/6.

However, p‖u! for all p ∈ (u/2, u), therefore, by a similar argument, we have
∏

u/2<p<u

p | A+B(u + 1) · · · v.

By the Prime Number Theorem, the number in the left–side above is of size
exp((1/2 + o(1))u) as u → ∞, and in particular it exceeds exp(u/3) for large
enough u. However, the number on the right–side above is nonzero and its
size is smaller than

2max{|A|, |B|}vv−u = exp(O(u5/6 log u).

Putting together the above bounds we get

exp(u/3) < exp(O(u5/6 log u)),

so u = O(1), which is what we wanted. This takes case of (i).
(ii) Follows from (i) if e1 > 1. If e1 = 1, then d1 = d > 1, and now (ii)

follows from Lemma 2.1 and the fact that rf1 > 0, which implies, in particular,
that there are infinitely many primes p in Rf1 and obviously the smallest such
cannot divide f(n), therefore it exceeds u.

4. The proof of Theorem 1.2

Given any positive constant K, there are only finitely many pairs of
integers (u, v) with 0 ≤ u < v ≤ K, so only finitely many elements in the set

FK = {Au! +Bv! : 0 ≤ u < v ≤ K}.
Since for a fixed z the equation f(n) = z has at most d solutions, it follows
that there are only finitely many n such that f(n) ∈ FK . Discarding such
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“small” solutions, from now on, we may assume that v is as large as we wish.
In particular, we assume that v is sufficiently large such that

|Au! +Bv!| ≥ |B|v!− |A|(v − 1)! > v!/2.

The last inequality holds when v > 2|A|/(2|B| − 1). Thus,

(4.1) v!/2 < |Au! +Bv!| < (|A| + |B|)v!.
Write

f(x) = c0x
d + · · ·+ cd,

where c0, . . . , cd ∈ Z and c0 > 0. Assume that n is sufficiently large such that
the estimates

(4.2) (c0/2)n
d < |f(n)| < 2c0n

d

hold. Comparing estimates (4.1) and (4.2), we get that

(c0/2)n
d < |f(n)| = |Au! +Bbv!| < (|A|+ |B|)v!

v!/2 < |Au! + Bv!| = |f(n)| < 2c0n
d,

so nd ≍ v!. In particular, n is as large as we wish. Since also n ≥ 0, it follows
that f(n) > 0, so Au! + Bv! > 0. Since v > u and v is large, the sign of
Au!+Bv! is the same as the sign of B. Thus, we assume that B > 0. Finally,
recall that we also assume that u is as large as we wish.

To continue, we distinguish several cases. We let ε0 > 0 be some small
number depending on d to be determined later.

4.1. Solutions with small u.

Lemma 4.1. Assume that d ≥ 2. Under the abc conjecture, there are only
finitely many solutions (n, u, v) with n ≥ 0 and u < v to equation (1.1) with
u! < nd−1−ε0 .

Proof. We multiply both sides of equation (1.1) by ddcd−1
0 obtaining

(dc0n)
d + dc1(dc0n)

d−1 + · · ·+ cdd
dcd−1

0 = (ddcd−1
0 A)u! + (ddcd−1

0 B)v!

Put m = dc0n+ c1, A1 = ddcd−1
0 A, B1 = ddcd−1

0 B. Then the above relation
can be rewritten as

(4.3) md + (g(m)−A1u!) = B1v!,

where g(x) ∈ Z[x] has degree at most d− 2. Since n and c0d are positive and
n is large, it follows that m > 0. Further,

|g(m)| ≪ md−2 ≪ nd−2, so |g(m)−A1u!| ≪ nd−2 + u! ≪ nd−1−ε0 .

We treat equation (4.3) as an abc equation, with

a = md, b = g(m)−A1u!, and c = B1v!.

We first need to insure that none of the above amounts a, b or c is 0. If
a = 0, then m = 0, which is not the case. If b = 0, then md = B1v!. Since



38 F. LUCA

the interval (v/2, v) contains a prime for v > 2, it follows that if v > 2B1,
then B1v! is divisible by a prime p ∈ (v/2, v), but not by its square, so the
equation md = B1v! is not possible for such values of v because d ≥ 2. Thus,
v = O(1), and there are only finitely many such solutions. Finally, c 6= 0,
because dc0B 6= 0. Let ∆ = gcd(a, b, c) and put a1 = a/∆, b1 = b/∆, and
c1 = c/∆. Then

(4.4) a1 + b1 = c1.

We apply the abc conjecture with some small ε > 0 to equation (4.4) getting

md

∆
= a1 ≤ CεN (a1b1c1)

1+ε
.

Clearly,

N(a1) ≤ N(m) ≤ m ≪ n;

N(b1) ≤ |b1| =
|b|
∆

≪ nd−1−ε0

∆
;

N(c1) = N(B1v!) ≪
∏

p≤v

p = exp((1 + o(1))v) = v!O(1/ log v) = nO(1/ log v).

Thus,

(4.5) N(a1b1c1) ≪
nd−ε0+O(1/ log v)

∆
.

We thus get that

nd

∆
≪ md

∆
≪ε

(

nd−ε0+O(1/ log v)

∆

)1+ε

leading to

(4.6) nd−(d−ε0+O(1/ log v))(1+ε) = Oε(1).

Assume that κ1 is the constant implied by the above O–symbol. We first
choose a sufficiently large v such that κ1/ log v < ε0/2 (that is, v > e2κ1/ε0),
and then we choose ε > 0 sufficiently small such that

(d− ε0/2)(1 + ε) < d− ε0/3.

Then the exponent of n in the left–hand side of inequality (4.6) exceeds ε0/3.
This in turn implies that n = O(1), so v = O(1). So, there are only finitely
solutions (n, u, v) with n ≥ 0 and u < v in this case, and the lemma follows.



ON THE DIOPHANTINE EQUATION f(n) = u! + v! 39

4.2. Solutions with large u.

Lemma 4.2. Assume that d ≥ 2. Under the abc conjecture, there are only
finitely many solutions (n, u, v) with n ≥ 0 and u < v of equation (4.3) with
u! > nd−1+ε0 .

Proof. Here, we work with the abc equation

md + g(m) = A1u! +B1v!,

where the notations are from the proof of Lemma 4.1. In particular, we have
m = dc0n+ c1. We take

a = md, b = g(m), and c = A1u! +B1v!.

We already saw that the case a = 0 is impossible. In fact, a > 0 in our case.
The case b = 0 leads to g(m) = 0. If g(x) is not the zero polynomial, then
m = O(1), so n = O(1) and again v = O(1). If g(x) = 0, then f(x) = f1(x)

e1 ,
with f1(x) = dc0x + c1 being linear, so e1 = d > 1. Lemma 3.1 (i) now
implies that u = O(1), which in turn leads to only finitely many solutions
(n, u, v) with n ≥ 0 and u < v under the abc conjecture as in [7]. This deals
with the case b = 0. Finally, the case c = 0 is not possible because we are
assuming that inequality (4.1) holds. So, we put, as in the proof of Lemma
4.1, ∆ = gcd(a, b, c), a1 = a/∆, b1 = b/∆, and c1 = c/∆, and apply the abc
conjecture to the equation

a1 + b1 = c1

with some small ε > 0, getting

md

∆
= a1 ≪ε N(a1b1c1)

1+ε.

We now have

N(a1) ≤ N(m) ≤ m ≪ n;

N(b1) ≤ |b1| ≤
|g(m)|
∆

≪ md−2

∆
≪ nd−2

∆
;

N(c1) ≤ N(u!)(|A1|+B1(u+ 1) · · · v) ≪
(

∏

p<v

p

)

(v!/u!)

≤ exp((1 + o(1))v)n1−ε0 = v!O(1/ log v)n1−ε0

= n1−ε0+O(1/ log v),

where we used the fact that v! ≪ nd and u! ≫ nd−1+ε0 to conclude that
v!/u! ≪ n1−ε0 . Thus,

N(a1b1c1) ≪
nd−ε0+O(1/ log v)

∆
,

which is the same as inequality (4.5). Now the argument finishes as in the
proof of Lemma 4.1.



40 F. LUCA

From now on, we assume that log u!/ logn ∈ [d− 1− ε0, d− 1+ ε0]. Now
we look at the factorization of f(x). The case s = 1 leads to u = O(1) by
Lemma 3.1 (ii), so to only finitely many solutions (n, u, v) with n ≥ 0 and
u < v of equation (1.1). From now on, we assume that s ≥ 2.

4.3. The case s ≥ 3.

Lemma 4.3. Under the abc conjecture, there are only finitely many
solutions (n, u, v) with n ≥ 0 and u < v of equation (1.1) when s ≥ 3.

Proof. Assume that s ≥ 3 and let

p(x) = f1(x)
e1 , q(x) = f2(x)

e2 , and r(x) =

s
∏

j=3

fj(x)
ej .

Write

a(n) = u1v1, b(n) = u2v2, and c(n) = u3v3,

where u1u2u3 = u!. Write

p(x) = p0x
d + p1x

d−1 + · · · ;
q(x) = q0x

e + q1x
e−1 + · · · ;

r(x) = r0x
f + r1x

f−1 + · · · .
Choose integers U, V,W not all zero such that

dU + eV + fW = 0;

(p1/p0)U + (q1/q0)V + (r1/r0)W = 0.

Not all numbers U, V,W are positive. In fact, at least one is positive and
one is negative since d, e, f are all positive. Up to relabeling the variables
(U, V,W ) and simultaneously changing the signs of (U, V,W ), we may assume
that U > 0, V < 0 and W ≤ 0. Raise the relations

nd + (p1/p0)n
d−1 + · · · = u1v1/p0;

ne + (q1/q0)n
e−1 + · · · = u2v2/q0;

nf + (r1/r0)n
f−1 + · · · = u3v3/r0

to powers U, −V and −W respectively, and note that

(u1v1/p0)
U − (u2v2/q0)

−V (u3v3/r0)
−W = (nd + (p1/p0)n

d−1 + · · · )U

− (ne + (q1/q0)n
e−1 + · · · )−V × (nf + (r1/r0)n

f−1 + · · · )−W = s(n),

where s(x) ∈ Q[x] has degree ≤ dU − 2. We apply the abc conjecture to the
above equation with

a = ∆1(u1v1/p0)
U , b = −∆1(u2v2/q0)

−V (u3v3/r0)
−W , c = ∆1s(n),
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where ∆1 = pU0 q
−V
0 r−W

0 . Next, we need to study the greatest common divisor
of a and b. Note that

a = q−V
0 r−W

0 p(n)U , b = −pU0 q(n)
−V r(n)−W .

Since p(x), q(x), and r(x) are coprime any two as polynomials in Q[x], it
follows that gcd(p(n), q(n)) = O(1) and gcd(p(n), r(n)) = O(1). Hence, we
conclude that ∆ = gcd(a, b) = O(1). We now write a = ∆a1, b = ∆b1, and
c = ∆c1, and apply the abc conjecture to the equation

a1 + b1 = c1.

Since n is large and p0, q0, r0 are positive, it follows that a > 0 and b < 0.
Observe that a1 = a/∆ ≫ ndU . We thus get

ndU ≪ a1 ≪ε N(a1b1c1)
1+ε ≪ N(abc)1+ε.

Clearly,

N(ab) ≪ N(u!(A+B(u + 1) · · · v)) ≪ N(u!)(v!/u!) ≤ nO(1/ log v)n1+ε0 ,

whereas

N(c) ≤ |c| ≪ |s(n)| ≪ ndU−2.

Thus,

N(abc) ≪ ndU−1+ε0+O(1/ log v).

Hence, we get

ndU ≪ε n
(dU−1+ε0+O(1/ log v))(1+ε),

and, as in the conclusion of the proofs of Lemma 4.1 and 4.2, we get that
n = O(1) provided that v is sufficiently large and ε > 0 is sufficiently small,
which completes the proof of this lemma.

So, from now on we assume that s = 2.

4.4. The case s = 2 and d1 > 1, d2 > 1.

Lemma 4.4. Under the abc conjecture, equation (1.1) has only finitely
many solutions (n, u, v) with n ≥ 0 and u < v in the case when s = 2 and
d1 > 1, d2 > 1.

Proof. Assume that d1 > 1 and d2 > 1. Write

p(x) = f1(x)
e1 , and q(x) = f2(x)

e2 .

Write also, as before,

p(n) = u1v1, and q(n) = u2v2,

where

u1 = gcd(p(n), u!), and u2 = u!/u1,
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and v1 = p(n)/u1, v2 = q(n)/u2. Since gcd(p(n), q(n)) = O(1), it follows that
gcd(v1, v2) = O(1). Since

v1v2 ≤ |A|+B(u+ 1) · · · v ≪ v!/u! ≪ n1+ε0 ,

it follows that there exists j ∈ {1, 2} such that vj ≪ n(1+ε0)/2. To fix the
notation, say j = 1, and write

p(x) = p0x
d1e1 + p1x

d1e1−1 + · · ·+ pd1e1 .

The equation p(n) = u1v1 is then

p0n
d1e1 + p1n

d1e1−1 + · · ·+ pd1e1 = u1v1.

Multiplying both sides of it by U = pd1e1−1
0 (d1e1)

d1e1 and making the
substitution m = p0e1d1n+ p1, we get

md1e1 + g(m) = Uu1v1,

where g(x) ∈ Z[x] is of degree at most d1e1−2. Since n is large, and p0, e1, d1
are positive, it follows that m > 0. We apply the abc conjecture to the above
equation with

a = md1e1 , b = g(m), and c = Uu1v1.

We first check that abc 6= 0. The case a = 0, leads to m = 0, which is not the
case we are considering. If b = 0, then either g(m) = 0 but g(x) is not the
constant zero polynomial, so m = O(1), therefore n = O(1), so only finitely
many solutions (n, u, v) with n ≥ 0 and u < v, or g(x) is the constant zero
polynomial but in this last case p(x) = f1(x)

e1 and f1(x) = p0e1d1x + p1
is linear, so d1 = 1, which is not the case we are considering. Therefore
b 6= 0. The fact that c 6= 0 is obvious. We let ∆ = gcd(a, b, c) and write
a = ∆a1, b = ∆b1, and c = ∆c1. We apply the abc conjecture to the equation

a1 + b1 = c1

with some ε > 0 and get

nd1e1

∆
≪ md1e1

∆
= a1 ≪ε N(a1b1c1)

1+ε.

Now

N(a1) ≤ N(m) ≤ m ≪ n;

N(b1) ≤ |b1| =
|b|
∆

≪ |g(m)|
∆

≪ md1d2−2

∆
≪ nd1d2−2

∆
;

N(c1) = N(Uu1v1) ≪





∏

p≤v

p



 v1 = exp((1 + o(1))v)n(1+ε0)/2

= v!O(1/ log v)n(1+ε0)/2 = n(1+ε0)/2+O(1/ log v),
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as v → ∞. Thus,

N(a1b1c1) ≪
nd1d2−1+(1+ε0)/2+O(1/ log v)

∆
,

which leads to

nd1d2 ≪ n(d1d2−1+(1+ε0)/2+O(1/ log v))(1+ε).

This implies that n = O(1) provided that ε0 ≤ 1/2, v is sufficiently large, say
such that κ1/ log v < 1/10, and then ε is chosen to be sufficiently small with
respect to d1e1. This completes the proof of the lemma.

From now on, we assume that s = 2 and d1 = 1. Discarding the condition
that e1 ≥ e2, we may assume that f1(x) = p0x + p1 for some integers p0 > 0

and p1. We multiply both sides of equation (1.1) by pd−1
0 , replace (A,B) by

(A1, B1) = (pd−1
0 A, pd−1

0 B) and make the substitution y = p0x + p1. Thus,
we may assume that f1(x) = x. With the notations from the preceding
subsection, we have

p(x) = xe1 , and q(x) = f2(x)
e2 .

Thus, we write

(4.7) ne1 = u1v1, and q(n) = u2v2,

where u1 = gcd(p(n), u!), u2 = u!/u1, and v1v2 = |A+B(u+ 1) · · · (v + 1)|.
The remaining of the argument is split into two cases according to whether

e1 > 1 or e1 = 1, respectively.

4.5. The case when s = 2, d1 = 1, and e1 > 1.

Lemma 4.5. Under the abc conjecture, equation (1.1) has only finitely
many solutions (n, u, v) with n ≥ 0 and u < v in the case when s = 2, d1 = 1,
and e1 > 1.

Proof. In this case, we may assume that e2 = 1, otherwise Lemma
3.1 (i) implies right away that u = O(1); hence only finitely many solutions
(n, u, v) with n ≥ 0 and u < v.

Assume next that d2 > 1. Let k be a large integer, put ℓ = ke1 + 1 and
consider primes p ∈ (u/ℓ+ 1, u/ℓ) in Rf2 . Since Rf2 has positive density by
Lemma 2.1, it follows that p exists if u > u0. Assume further that u > (ℓ+1)2.
Then p >

√
u, therefore αp(u) = ⌊u/p⌋ = ℓ = ke1 + 1. Since

ne1f2(n) = Au! +Bv! = u!(A+B(u+ 1) · · · v),

the exponent of p in u! is not a multiple of e1 and p ∤ f2(n), it follows that
p | A + B(u + 1) · · · v. If u > |A|ℓ, then p > |A|, so p ∤ A, therefore p ∤
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B(u + 1) · · · v. Hence, v − u < u/ℓ. In particular, v < 2u. However, since
v! ≍ nd, and nd−1−ε0 ≪ u! ≪ nd−1+ε0 , it follows that

(2u)v−u > vv−u ≥ v!/u! ≫ n1−ε0 ≫ u!
1−ε0

d−1+ε0 ≥
(u

e

)

u(1−ε0)

d−1+ε0
.

If ε0 < 1/(d+ 1), then the exponent on the right above exceeds u/d. Thus,

(2u)v−u >
(u

e

)u/d

,

which for u > u0 implies that v−u > u/(d+1). However, this last inequality
contradicts v − u < u/ℓ with ℓ = ke1 + 1, provided that k is sufficiently large
(say, k > d/e1). This argument shows that if d2 > 1, then u = O(1), so we
have only finitely many solutions (n, u, v) with n ≥ 0 and u < v.

Assume now that d2 = e2 = 1. Then d1 = d − 1 and q(x) = q0x + q1.
Since n and q0 are positive and n is large, it follows that q(n) > 0. Lemma
2.3 (ii) shows that if u > u0, then

u2 > u!δ ≫ nδ(d−1−ε0), where δ =
d1 − 1

3d1
=

d− 2

3(d− 1)
.

Put δ1 = (d− 1)δ = (d− 2)/3. Thus,

(4.8) v2 = q(n)/u2 ≪ n1−δ1+δε0 < n1−δ1+dε0 .

If δ1 ≥ 1, then since v2 ≥ 1, we get that n = O(1), and the lemma is proved.
So, assume that δ1 < 1. In particular, d ∈ {3, 4}, although we shall not need
this information. Next write

v1 = v′1v
′′
1 , where v′1 =

∏

pδp‖v1
p≤u

pδp and v′′1 = v1/v
′
1.

From the equation
nd−1 = u1v1 = (u1v

′
1)v

′′
1 ,

and the fact that all prime factors of v′′1 exceed u, we get gcd(u1v
′
1, v

′′
1 ) = 1,

therefore v′′1 = wd−1
1 for some integer w1. Observe that

w1 = (v′′1 )
1

d−1 ≤ v
1

d−1

1 =

(

v1v2
v2

)
1

d−1

≪ n
1+ε0
d−1 v

− 1
d−1

2 .

Further, n = u′w1, where (u′)d−1 = u1v
′
1, so u′ is a positive integer all whose

prime factors are at most u. We now apply the abc conjecture to the equation
q(n) = u2v2 written under the form

q0n+ q1 = u2v2,

where
a = q0n = q0u

′w1, b = q1, and c = u2v2.

Clearly, a 6= 0, and b 6= 0, since if b = 0, then f2(x) = q0x = q0f1(x), so
s = 1, which is impossible, and clearly c 6= 0. Put ∆ = gcd(a, b) and note
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that ∆ | q1, so ∆ = O(1). Write a = ∆a1, b = ∆b1, and c = ∆c1 and apply
the abc conjecture to the equation

a1 + b1 = c1

with some small ε > 0 to get that

(4.9) n ≪ a1 ≪ε N(a1b1c1)
1+ε ≪ N(abc)1+ε.

Observe that

N(a) ≤ N(q0u
′w1) ≪ N(v!)w1 ≪ v!O(

1
log v )w1 ≪ n

1+ε0
d−1 +O( 1

log v )v
− 1

d−1

2 ;

N(b) = O(1);

N(c) = N(u2v2) ≤ N(v!)v2 ≪ nO( 1
log v )v2.

Thus,

N(abc) ≪ n
1+ε0
d−1 +O( 1

log v )v
(1− 1

d−1 )
2 .

Using inequality (4.8), we get that

N(abc) ≪ n
1+ε0
d−1 +(1−δ1+dε0)(1− 1

d−1 )+O( 1
log v ).

The exponent of n above is smaller than

1− δ1

(

1− 1

d− 1

)

+ dε0 +O

(

1

log v

)

.

Thus, assuming that ε0 < δ1/(3d) = (d − 2)/(9d), and then that v is large,
the above expression is smaller than 1 − δ1/2. Thus, for such large values of
v, we have

n ≪ε n
(1−δ1/2)(1+ε),

which for a sufficiently small ε > 0 implies that n = O(1), which is what we
wanted.

4.6. The case when s = 2, d1 = 1, and e1 = 1.

Lemma 4.6. Under the abc conjecture, equation (1.1) has only finitely
many solutions (n, u, v) with n ≥ 0 and u < v in the case when s = 2,
d1 = e1 = 1, and d ≥ 3.

Proof. In this case, d2 > 1, for if d2 = 1, then since d1 = e1 = 1 and
d ≥ 3, it follows that e2 = d − 1 > 1 = e1, and this is a case treated already
(just reverse the roles of f1(x) and f2(x) in Lemma 4.5). In this case, the
equations (4.7) are

n = u1v1 and q(n) = u2v2.

We distinguish two cases.
Case 1. u1 ≤ n2/3.
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In this case, v1 ≫ n1/3, therefore v2 ≪ n1+ε0/v1 ≪ n2/3+ε0 . Write the
equation q(n) = u2v2 as

q0n
d−1 + q1n

d−1 + · · ·+ qd−1 = u2v2.

Multiply both sides of the above equation by U = qd−2
0 (d − 1)d−1 and put

m = q0(d− 1)n+ q1. Since n is large, it follows that m > 0. Then the above
equation can be rewritten as

md−1 + g(m) = Uu2v2,

where g(x) ∈ Q[x] is of degree at most d− 3. We apply the abc conjecture to
the above relation with

a = md−1, b = g(m), and c = Uu2v2.

Since m > 0, it follows that a > 0. Note that g(x) 6= 0, for if not, then
q(x) = f2(x)

d−1, where f2(x) = q0(d− 1)x+ q1, which is not the case we are
considering. Thus, g(x) 6= 0, therefore if b = 0, then g(m) = 0, so m = O(1),
and we get only finitely many solutions (n, u, v) of equation (1.1) with n ≥ 0
and u < v. This deals with the case b = 0. Finally, it is clear that c 6= 0. Put
∆ = gcd(a, b) and write a = ∆a1, b = ∆b1, and c = ∆c1. We apply the abc
conjecture to the equation

a1 + b1 = c1

with some small ε > 0 to get that

nd−1

∆
≪ md−1

∆
= a ≪ε N(a1b1c1)

1+ε.

Clearly,

N(a1) ≤ N(m) ≤ m ≪ n;

N(b1) ≤ |b1| =
|b|
∆

≪ |g(m)|
∆

≪ nd−3

∆
;

N(c1) = N(u2v2) ≪





∏

p≤v

p



 v2 = nO(1/ log v)+(2/3+ε0).

Thus,

(4.10) N(a1b1c1) ≪
nd−4/3+ε0+O(1/ log v)

∆
.

We thus get that

(4.11) nd−1 ≪ε n
(d−4/3+ε0+O(1/ log v))(1+ε).

If ε0 < 1/6 and v is sufficiently large, then

d− 4/3 + ε0 +O(1/ log v) < d− 1.15,

so if additionally ε > 0 is sufficiently small, then the exponent of n on the
right–hand side of inequality (4.11) above is < d − 1.1. In turn, the above
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inequality (4.11) then implies that n = O(1), so only finitely many solutions
(n, u, v) with n ≥ 0 and u < v.

Case 2. u1 > n2/3.
In this case, v1 < n1/3. Further, equation (1.1) is

q(n)n = Au! +Bv!,

therefore

q0n
d−1v1 +

(

q1n
d−2v1 + · · ·+ qd−1 −Au2

)

= Bv!/u1.

We apply the abc conjecture to the above equation with

a = q0n
d−1v1, b = q1n

d−2v1 + · · ·+ qd−1 −Au2, and c = Bv!/u1.

It is clear that a > 0 and that c 6= 0. If b = 0, we then get q0n
d−1 = Bv!/u1,

so q0n
d = Bv!, and we get n = O(1) by invoking the Bertrand postulate

concerning the existence of primes in the interval (n/2, n). Thus, we may
assume that b 6= 0. Put ∆ = gcd(a, b), write a = ∆a1, b = ∆b1, and c = ∆c1,
and apply the abc conjecture to the equation

a1 + b1 = c1

with some small ε > 0 to get that

nd−1

∆
≤ nd−1v1

∆
≪ a1 ≪ε N(a1b1c1)

1+ε.

Clearly,

N(a1) ≤ N(u1v1) ≤ N(u!)v1 ≪ n1/3+O(1/ log v);

N(b1) ≤ |b1| =
|b|
∆

≪ max{md−2v1, u!/u1}
∆

≪ max{nd−5/3, nd−5/3+ε0}
∆

≪ nd−5/3+ε0

∆
;

N(c1) ≤ N(Bv!) = nO(1/ log v).

Thus,

(4.12) N(a1b1c1) ≪
nd−4/3+ε0+O(1/ log v)

∆
.

We thus get that

(4.13) nd−1 ≪ε n
(d−4/3+ε0+O(1/ log v))(1+ε),

which is the same as estimate (4.11). The proof now ends as the proof in Case
1. Thus, the proof of this lemma and indeed of Theorem 1.2 is complete.
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