ON ZEROS OF SOME ANALYTIC FUNCTIONS RELATED TO THE RIEMANN ZETA-FUNCTION

Antanas Laurinčikas
Vilnius University, Lithuania

Abstract

For some classes of functions F, we obtain that the function $F(\zeta(s)$), where $\zeta(s)$ denotes the Riemann zeta-function, has infinitely many zeros in the strip $\frac{1}{2}<\operatorname{Re} s<1$. For example, this is true for the functions $\sin \zeta(s)$ and $\cos \zeta(s)$.

1. Introduction

The zero-distribution of the Riemann zeta-function $\zeta(s), s=\sigma+i t$, is of particular interest in analytic number theory. It is well known that $s=-2 m$, $m \in \mathbb{N}$, are so called trivial zeros of $\zeta(s)$. Moreover, $\zeta(s) \neq 0$ for $\sigma \geq 1$, and for $\sigma \leq 0, t \neq 0$, however, $\zeta(s)$ has infinitely many complex (non-trivial) zeros in the critical strip $\{s \in \mathbb{C}: 0<\sigma<1\}$. The famous Riemann hypothesis (RH) says that all non-trivial zeros of $\zeta(s)$ lie on the critical line $\sigma=\frac{1}{2}$, and this is equivalent to the assertion that $\zeta(s) \neq 0$ for $\sigma>\frac{1}{2}$. At the moment, it is known ([1]) that at least 41 percent of all non-trivial zeros of $\zeta(s)$ in the sense of density lie on the critical line. By numerical calculations [2], the 10^{13} first non-trivial zeros are located on the line $\sigma=\frac{1}{2}$. This supports RH.

The best known result on zero-free regions for $\zeta(s)$ is of the form: there exists an absolute constant $c>0$ such that $\zeta(s) \neq 0$ in the region

$$
\sigma \geq 1-\frac{c}{(\log (|t|+2))^{\frac{2}{3}}(\log \log (|t|+2))^{\frac{1}{3}}} .
$$

For the number $N(T)$ of all zeros $\beta+i \gamma$ of $\zeta(s)$ with $0<\beta<1$ and $0<\gamma \leq T$, the von Mangoldt formula

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi \mathrm{e}}+\mathrm{O}(\log T)
$$

Key words and phrases. Riemann zeta-function, universality, zero-distribution.
is true. These and other classical results on zero-distribution of $\zeta(s)$ can be found in the monograph [4].

On the other hand, there exists zeta-functions similar to $\zeta(s)$ for which the Riemann hypothesis is not true. The simplest example of such functions is the Hurwitz zeta-function $\zeta(s, \alpha)$ with parameter $\alpha, 0<\alpha \leq 1$, defined, for $\sigma>1$, by

$$
\zeta(s, \alpha)=\sum_{m=0}^{\infty} \frac{1}{(m+\alpha)^{s}}
$$

and by analytic continuation elsewhere. However, the functions $\zeta(s)$ and $\zeta(s, \alpha)$ are similar only by their definition by Dirichlet series, and in fact differ one from another very much. The function $\zeta(s, \alpha)$, except for the values $\alpha=1(\zeta(s, 1)=\zeta(s))$ and $\alpha=\frac{1}{2}\left(\zeta\left(s, \frac{1}{2}\right)=\left(2^{s}-1\right) \zeta(s)\right)$, does not have Euler product over primes, and this has a large influence for its properties. The main difference in the zero-distribution problem is that the function $\zeta(s, \alpha)$, $\alpha \neq 1, \frac{1}{2}$, differently from $\zeta(s)$, has zeros in the half-plane $\{s \in \mathbb{C}: \sigma>1\}$, and if α is transcendental or rational $\alpha \neq 1, \frac{1}{2}$, then $\zeta(s, \alpha)$ has infinitely many zeros lying in the strip $\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$. More precisely, Theorem 8.4.7 of [6] and [9, Theorem 8, p. 96], says that, for every $\sigma_{1}, \sigma_{2}, \frac{1}{2}<\sigma_{1}<\sigma_{2}<1$, there exists a constant $c=c\left(\alpha, \sigma_{1}, \sigma_{2}\right)>0$ such that, for sufficiently large T, the function $\zeta(s, \alpha)$ has more than $c T$ zeros in the rectangle $\left\{s \in \mathbb{C}: \sigma_{1}<\right.$ $\left.\sigma<\sigma_{2}, 0<t<T\right\}$.

The aim of this note is to present some examples of functions $F(\zeta(s))$ for which RH is not true. This is motivated by a better understanding of the RH problem.

For a region G on the complex plane \mathbb{C}, denote by $H(G)$ the space of analytic functions on G endowed with the topology of uniform convergence on compacta. Let $D=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<1\right\}$. Define several classes of functions F.
1° We say that the function $F: H(D) \rightarrow H(D)$ belongs to the class $\operatorname{Lip}(\beta), \beta>0$, if the following hypotheses are satisfied:
a) For every polynomial $p=p(s)$ and every compact subset $K \subset D$ with connected complement, there exists an element $g \in F^{-1}\{p\} \subset H(D)$ such that $g(s) \neq 0$ on K;
b) For every compact subset $K \subset D$ with connected complement, there exist a constant $c>0$ and a compact subset $K_{1} \subset D$ with connected complement such that

$$
\sup _{s \in K}\left|F\left(g_{1}(s)\right)-F\left(g_{2}(s)\right)\right| \leq c \sup _{s \in K_{1}}\left|g_{1}(s)-g_{2}(s)\right|^{\beta}
$$

for all $g_{1}, g_{2} \in H(D)$.
Clearly, the set $\{\operatorname{Lip}(\beta): \beta>0\}$ is non-empty. For example, the function $F: H(D) \rightarrow H(D), F(g)=g^{\prime}, g \in H(D)$, is an element of the class $\operatorname{Lip}(1)$. This is a simple exercise of using the Cauchy integral formula.
2° Let $S=\{g \in H(D): g(s) \neq 0$ or $g(s) \equiv 0\}$. Denote by U the class of continuous functions $F: H(D) \rightarrow H(D)$ such that, for every open set $G \subset H(D)$, the set $\left(F^{-1} G\right) \cap S$ is non-empty.

We note that the hypothesis that the set $\left(F^{-1} G\right) \cap S \neq \varnothing$ for every open set G is theoretical and with difficulty checked. It can be replaced by a stronger but simpler one.
3° Denote by U_{p} the class of continuous functions $F: H(D) \rightarrow H(D)$ such that, for each polynomial $p=p(s)$, the set $\left(F^{-1}\{p\}\right) \cap S$ is non-empty.

An application of the Mergelyan theorem on the approximation of analytic functions by polynomials ([7], see also [10]) shows that $U_{p} \subset U$.
4° The main property of the set S is a non-vanishing of functions $g \in$ $H(D)$. The definition of the class U_{p} involves polynomials, however, in the non-bounded region D, it is not easy to derive an information on the nonvanishing for the functions $g \in F^{-1}\{p\}$ with a given polynomial $p=p(s)$. Therefore, for $V>0$, we define a bounded region $D_{V}=\left\{s \in \mathbb{C}: \frac{1}{2}<\sigma<\right.$ $1,|t|<V\}$, and in place of the set S, take $S_{V}=\left\{g \in H\left(D_{V}\right): g(s) \neq\right.$ 0 or $g(s) \equiv 0\}$.

Denote by $U_{p, V}$ the class of continuous functions $F: H\left(D_{V}\right) \rightarrow H\left(D_{V}\right)$ such that, for each polynomial $p=p(s)$, the set $\left(F^{-1}\{p\}\right) \cap S_{V}$ is non-empty.

It is easily seen that, for some functions F and each polynomial $p=p(s)$, there exists a polynomial $p_{1}=p_{1}(s) \in F^{-1}\{p\}$ and $p_{1}(s) \neq 0$ for $s \in D_{V}$. For example, this holds for the function $F(g)=c_{1} g^{(1)}+\cdots+c_{r} g^{(r)}, \quad g \in$ $H\left(D_{V}\right), \quad c_{1}, \ldots, c_{r} \in \mathbb{C} \backslash\{0\}$.
5° For $a_{1}, \ldots, a_{r} \in \mathbb{C}$ and $F: H(D) \rightarrow H(D)$, let $H_{a_{1}, \ldots, a_{r} ; F(0)}(D)=$ $\left\{g \in H(D):\left(g(s)-a_{j}\right)^{-1} \in H(D), j=1, \ldots, r\right\} \cup\{F(0)\}$.

Denote by $U_{a_{1}, \ldots, a_{r} ; F(0)}$ the class of continuous functions $F: H(D) \rightarrow$ $H(D)$ such that $F(S) \supset H_{a_{1}, \ldots, a_{r} ; F(0)}$.

The function $F(g)=g^{N}+a, N \in \mathbb{N}, a \in \mathbb{C}$, clearly, is an element of the class $U_{a ; a}$. The functions $F(g)=\sin g$ and $F(g)=\sinh g$ belong to the class $U_{-1,1 ; 0}$ while the functions $F(g)=\cos g$ and $F(g)=\cosh g$ are elements of the class $U_{-1,1 ; 1}$. To see this, it suffices to solve the equation $F(g)=f$, $f \in H(D)$, in $g \in S$.
6° Denote by \hat{U} the class of continuous functions $F: H(D) \rightarrow H(D)$ such that $s-a \in F(S)$ for every $a \in\left(\frac{1}{2}, 1\right)$.

For example, the function $F(g)=g g^{\prime}, g \in H(D)$, belongs to the class \hat{U}. To see this, we have to solve the equation

$$
g g^{\prime}=s-a .
$$

Obviously, the latter equation implies

$$
\left(g^{2}\right)^{\prime}=2 s-2 a
$$

and

$$
g^{2}=s^{2}-2 a s+C
$$

$$
g= \pm \sqrt{s^{2}-2 a s+C}
$$

with arbitrary constant C. We can choose C such that $s^{2}-2 a s+C \neq 0$ for $s \in D$. Thus, there exists $g \in H(D)$ satisfying the equation $F(g)=s-a$. Now we state the theorems on zeros of $F(\zeta(s))$.

Theorem 1.1. Suppose that F belongs to at least one of the classes $\operatorname{Lip}(\beta), U, U_{p}, U_{p, V}$ and \hat{U}. Then, for every $\sigma_{1}, \sigma_{2}, \frac{1}{2}<\sigma_{1}<\sigma_{2}<1$, there exists a constant $c=c\left(\sigma_{1}, \sigma_{2}, F\right)>0$ such that, for sufficiently large T, the function $F(\zeta(s))$ has more than $c T$ zeros lying in the rectangle $\left\{s \in \mathbb{C}: \sigma_{1}<\sigma<\sigma_{2}, 0<t<T\right\}$.

ThEOREM 1.2. Suppose that F is an element of the class $U_{a_{1}, \ldots, a_{r} ; F(0)}$, where $\operatorname{Re} a_{j} \notin\left(-\frac{1}{2}, \frac{1}{2}\right), j=1, \ldots, r$. Then the same assertion as in Theorem 1.1 is true.

Proof of Theorems 1.1 and 1.2 is based on the universality of $F(\zeta(s))$.

2. Universality of $F(\zeta(s))$

In [8], S. M. Voronin discovered a very interesting approximation property of the function $\zeta(s)$ which now is called universality. He proved that any analytic non-vanishing function can be approximated with a given accuracy uniformly on compact subsets of the strip D by shifts $\zeta(s+i \tau), \tau \in \mathbb{R}$. More precisely, let $K \subset D$ be a compact subset with connected complement, and let $f(s)$ be a continuous non-vanishing function on K which is analytic in the interior of K. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \operatorname{meas}\left\{\tau \in[0, T]: \sup _{s \in K}|\zeta(s+i \tau)-f(s)|<\varepsilon\right\}>0
$$

Here meas $\{A\}$ denotes the Lebesgue measure of a measurable set $A \subset \mathbb{R}$. Since the approximated functions are non-vanishing, the Voronin theorem does not give any information on the number of zeros of $\zeta(s)$ in the strip D. In [5], we began to consider universality theorems for $F(\zeta(s))$ in which the shifts $F(\zeta(s+i \tau))$ approximate not necessarily non-vanishing analytic functions. Thus, theorems of such a kind provide an information on zeros of $F(\zeta(s))$. For the proof of Theorems 1.1 and 1.2, we apply the following universality properties of $F(\zeta(s))$.

Lemma 2.1. Suppose that the function F satisfies the hypotheses at least one of the classes $\operatorname{Lip}(\beta), U$ and U_{p}. Let $K \subset D$ be a compact subset with connected complement, and let $f(s)$ be a continuous function on K which is analytic in the interior of K. Then, for every $\varepsilon>0$,

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \operatorname{meas}\left\{\tau \in[0, T]: \sup _{s \in K}|F(\zeta(s+i \tau))-f(s)|<\varepsilon\right\}>0
$$

Proof. The case of U was considered in [5]. Since $U_{p} \subset U$, it remains to prove the lemma for the class $\operatorname{Lip}(\beta)$. By the Mergelyan theorem, there exists a polynomial $p=p(s)$ such that

$$
\begin{equation*}
\sup _{s \in K}|f(s)-p(s)|<\frac{\varepsilon}{2} \tag{2.1}
\end{equation*}
$$

Let $g \in F^{-1}\{p\}$ and $g(s) \neq 0$ on K. By the Voronin theorem, the set of $\tau \in \mathbb{R}$ such that

$$
\sup _{s \in K_{1}}|\zeta(s+i \tau)-g(s)|<c^{-\frac{1}{\beta}}\left(\frac{\varepsilon}{2}\right)^{\frac{1}{\beta}}
$$

has a positive lower density. This and 2° of the class $\operatorname{Lip}(\beta)$ show that the set of $\tau \in \mathbb{R}$ such that

$$
\sup _{s \in K}|F(\zeta(s+i t))-p(s)|<\frac{\varepsilon}{2}
$$

also has a positive lower density what together with (2.1) proves the lemma.

Lemma 2.2. Let K and $f(s)$ be the same as in Lemma 2.1. Suppose that $V>0$ is such that $K \subset D_{V}$, and that $F \in U_{p, V}$. Then the same assertion as in Lemma 2.1 is true.

The lemma in a bit different form is given in [5].
Lemma 2.3. Suppose that the function $F \in U_{a_{1}, \ldots, a_{r} ; F(0)}$. If $r=1$, let $K \subset D$ be a compact subset with connected complement, and let $f(s)$ be a continuous and $\neq a_{1}$ function on K which is analytic in the interior of K. If $r \geq 2$, let $K \subset D$ be an arbitrary compact subset and $f \in H_{a_{1}, \ldots, a_{r} ; F(0)}(D)$. Then the same assertion as in Lemma 2.1 is true.

Proof. The lemma for $r=1$ was proved in [5], therefore, we consider the case $r \geq 2$, only. We use a probabilistic limit theorem for $F(\zeta(s))$. Denote by $\mathcal{B}(H(D))$ the σ-field of Borel sets of the space $H(D)$. Then is known ([4]) that T^{-1} meas $\{\tau \in[0, T]: \zeta(s+i \tau) \in A\}, \quad A \in \mathcal{B}(H(D))$, converges weakly to the probability measure P_{ζ} on $(H(D), \mathcal{B}(H(D)))$ as $T \rightarrow \infty$, and the support of P_{ζ} is the set S. This and the continuity of F implies that

$$
\begin{equation*}
\frac{1}{T} \operatorname{meas}\{\tau \in[0, T]: F(\zeta(s+i \tau)) \in A\}, \quad A \in \mathcal{B}(H(D)) \tag{2.2}
\end{equation*}
$$

converges weakly to $P_{\zeta} F^{-1}$ as $T \rightarrow \infty$.
Let $g \in H_{a_{1}, \ldots, a_{r} ; F(0)}(D)$ be arbitrary. Then we can find $g_{1} \in S$ such that $F\left(g_{1}\right)=g$. This, the continuity of F and the above remarks show that, for every open neighbourhood G of g, the inequality $P_{\zeta} F^{-1}(G)>0$ holds. This means that g belongs to the support of the measure $P_{\zeta} F^{-1}$. Thus, the support of $P_{\zeta} F^{-1}$ contains the set $H_{a_{1}, \ldots, a_{r} ; F(0)}(D)$, and even its closure.

Let

$$
\hat{G}=\left\{g \in H(D): \sup _{s \in K}|g(s)-f(s)|<\frac{\varepsilon}{2}\right\}
$$

Since $f(s) \in H_{a_{1}, \ldots, a_{r} ; F(0)}(D)$ is an element of the support of $P_{\zeta} F^{-1}$, therefore, $P_{\zeta} F^{-1}(\hat{G})>0$. This together with weak convergence of (2.2) shows that

$$
\liminf _{T \rightarrow \infty} \frac{1}{T} \operatorname{meas}\left\{\tau \in[0, T]: \sup _{s \in K}|F(\zeta(s+i \tau))-f(s)|<\varepsilon\right\} \geq P_{\zeta} F^{-1}(\hat{G})>0
$$

Lemma 2.4. Suppose that $F: H(D) \rightarrow H(D)$ is a continuous function, $K \subset D$ is a compact subset, and $f \in F(S)$. Then the same assertion as in Lemma 2.1 is true.

Proof is similar to that of the case $r \geq 2$ of Lemma 2.3.

3. Proof of Theorems

Proof of Theorem 1.1. We apply Lemmas $2.1,2.2$ and 2.4 with $K=$ $\left\{s \in \mathbb{C}:\left|s-\sigma_{0}\right| \leq \rho\right\}$ and $f(s)=s-\sigma_{0}$, where

$$
\sigma_{0}=\frac{\sigma_{1}+\sigma_{2}}{2} \quad \text { and } \quad \rho=\frac{\sigma_{2}-\sigma_{1}}{2} .
$$

Then the mentioned lemmas show that, for every $\varepsilon>0$, the set of $\tau \in \mathbb{R}$ satisfying the inequality

$$
\begin{equation*}
\sup _{s \in K}|F(\zeta(s+i \tau))-f(s)|<\varepsilon \tag{3.1}
\end{equation*}
$$

has a positive lower density. Now we take ε such that

$$
0<\varepsilon<\inf _{\left|s-\sigma_{0}\right|=\rho}|f(s)|=\rho
$$

Then the functions $f(s)$ and $F(\zeta(s+i \tau))-f(s)$ on the disc K satisfy the hypotheses of the classical Rouché theorem. Since the function $f(s)$ has one zero $s=\sigma_{0}$ on K, by Rouché's theorem, the sum $F(\zeta(s+i \tau))$ of the functions $F(\zeta(s+i \tau))-f(s)$ and $f(s)$ also has one zero on K. However, the measure of $\tau \in[0, T]$ satisfying inequality (3.1), for sufficiently large T, is greater than $c T$, and the theorem is proved.

Remark 3.1. The hypothesis of the class \hat{U} can be replaced by a more general one: there exists a function $g \in S \backslash\{0\}$ such that, for every $a \in\left(\frac{1}{2}, 1\right)$, there exists b with $F(g(b))=0$ and $\operatorname{Re} b=a$. The proof runs in the above way with $f(s)=F(g(s))$ and $K=\left\{s \in \mathbb{C}:\left|s-\sigma_{0}-i t_{0}\right| \leq \rho\right\}$, where t_{0} is such that $F\left(g\left(\sigma_{0}+i t_{0}\right)\right)=0$.

Proof of Theorem 1.2. We preserve the notation used in the proof of Theorem 1.1. Since $\operatorname{Re} a_{j} \notin\left(-\frac{1}{2}, \frac{1}{2}\right)$, we have that the function $f(s)=$ $s-\sigma_{0} \neq a_{j}$, in the strip $D, j=1, \ldots, r$. Therefore, the function $f(s)$ on the disc K satisfies the hypotheses of Lemma 2.3, and the further proof runs in the same way as that of Theorem 1.1.

Acknowledgements.

The author thanks an anonymous referee for his suggestion concerning Remark 3.1.

References

[1] H. M. Bui, B. Conrey and M. P. Young, More than 41% of the zeros of the zeta function are on the critical line, Acta Arith. 150 (2011), 35-64.
[2] X. Gourdon, The 10^{13} first zeros of the Riemann zeta function and zeros computation at very large height, http://numbers.computation.free.fr, 2004.
[3] A. Ivić, The Riemann zeta-function, Wiley, New York, 1985.
[4] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Kluwer, Dordrecht, 1996.
[5] A. Laurinčikas, Universality of the Riemann zeta-function, J. Number Theory 130 (2010), 2323-2331.
[6] A. Laurinčikas and R. Garunkštis, The Lerch Zeta-Function, Kluwer, Dordrecht, 2002.
[7] S. N. Mergelyan, Uniform approximations to functions of complex variable, Usp. Matem. Nauk 7 (1952), 31-122 (Russian).
[8] S. M. Voronin, Theorem of the "universality" of the Riemann zeta-function, Izv. Akad. Nauk SSSR. Ser. Mat. 39 (1975), 475-486 (Russian).
[9] S. M. Voronin, Selected works: mathematics, (ed. A. A. Karatsuba), Publishing House MGTU Im. N. E. Baumana, Moscow, 2006 (Russian).
[10] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Vol. XX, Amer. Math. Soc. Coll. Publ. 1960.
A. Laurinčikas

Department of Mathematics and Informatics
Vilnius University
Naugarduko 24, LT-03225 Vilnius
Lithuania
E-mail: antanas.laurincikas@mif.vu.lt
Received: 26.3.2012.
Revised: 22.8.2012.

