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University of Maribor, Slovenia

Abstract. A classical result of Herstein asserts that any Jordan
derivation on a prime ring of characteristic different from two is a
derivation. It is our aim in this paper to prove the following result,
which is in the spirit of Herstein’s theorem. Let R be a prime ring with
char(R) = 0 or 4 < char(R), and let D : R → R be an additive mapping
satisfying either the relation D(x3) = D(x2)x + x2D(x) or the relation
D(x3) = D(x)x2 + xD(x2) for all x ∈ R. In both cases D is a derivation.

This research has been motivated by the recent work of Vukman ([14]).
Throughout, R will represent an associative ring with center Z(R). As usual
we write [x, y] for xy − yx. Given an integer n ≥ 2, a ring R is said to be n-
torsion free, if for x ∈ R, nx = 0 implies x = 0. Recall that a ring R is prime
if for a, b ∈ R, aRb = (0) implies that either a = 0 or b = 0 and is semiprime
in case aRa = (0) implies a = 0. An additive mapping D : R → R, where R is
an arbitrary ring, is called a derivation if D(xy) = D(x)y+xD(y) holds for all
pairs x, y ∈ R and is called a Jordan derivation in caseD(x2) = D(x)x+xD(x)
is fulfilled for all x ∈ R. A derivation D is inner in case there exists a ∈ R,
such that D(x) = [x, a] holds for all x ∈ R. Every derivation is a Jordan
derivation. The converse is in general not true. A classical result of Herstein
([11]) asserts that any Jordan derivation on a 2-torsion free prime ring is a
derivation. A brief proof of Herstein’s result can be found in [7]. Cusack
([10]) generalized Herstein’s result to 2-torsion free semiprime rings (see also
[3] for an alternative proof). Let us point out that Beidar, Brešar, Chebotar
and Martindale ([1]) have considerably generalized Herstein’s theorem. A
generalization of Herstein’s theorem can be found also in [8].
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Let us start with the following result proved by Brešar ([4]).

Theorem 1. Let R be a 2-torsion free semiprime ring and let D : R → R

be an additive mapping satisfying the relation

(1) D(xyx) = D(x)yx + xD(y)x + xyD(x)

for all pairs x, y ∈ R. In this case D is a derivation.

An additive mapping D : R → R, where R is an arbitrary ring, satisfying
the relation (1) for all pairs x, y ∈ R is called a Jordan triple derivation.
One can easily prove that any Jordan derivation D on an arbitrary 2-torsion
free ring is a Jordan triple derivation (see, for example, [7]), which means
that Theorem 1 generalizes Cusack’s generalization of Herstein’s theorem.
Theorem 1 has been recently generalized in [9]. Let us point out that Brešar’s
result, we have just mentioned above, has motivated many results (see [15]).

Motivated by Theorem 1 Vukman ([14]) has recently proved the following
theorem.

Theorem 2. Let R be a 2-torsion free semiprime ring and let D : R → R

be an additive mapping. Suppose that either

(2) D(xyx) = D(xy)x + xyD(x)

or

(3) D(xyx) = D(x)yx + xD(yx)

holds for all pairs x, y ∈ R. In both cases D is a derivation.

Putting y = x in (1), (2) and (3) we obtain

(4) D(x3) = D(x)x2 + xD(x)x + x2D(x),

D(x3) = D(x2)x+ x2D(x)

and

D(x3) = D(x)x2 + xD(x2).

The relation (4) has been considered in [13] and [1] (actually in [1] much more
general situation has been studied). It is our aim in this paper to consider
the last two relations.

Theorem 3. Let R be a prime ring with char(R) = 0 or 4 < char(R)
and let D : R → R be an additive mapping satisfying either the relation

(5) D(x3) = D(x2)x+ x2D(x)

or the relation

(6) D(x3) = D(x)x2 + xD(x2).

for all x ∈ R. In both cases D is a derivation.
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Theorem 3 is obtained as an application of the theory of functional
identities (Brešar-Beidar-Chebotar theory). In particular, we shall use some
ideas from the paper of Beidar and Fong [2] where bijective additive mappings
preserving a fixed polynomial are characterized. The theory of functional
identities considers set-theoretic mappings on rings that satisfy some identical
relations. When treating such relations one usually concludes that the form
of the mappings involved can be described, unless the ring is very special. We
refer the reader to [5] for an introductory account on functional identities and
to [6] for full treatment of this theory. For the proof of Theorem 3 we need
Theorem 4 which might be of independent interest.

Let R be an algebra over a commutative ring φ and let

(7) p(x1, x2, x3) =
∑

π∈S3

xπ(1)xπ(2)xπ(3)

be a fixed multilinear polynomial in noncommuting indeterminates xi over φ.
Here S3 stands for the symmetric group of order 3. Let L be a subset of R
closed under p, i.e., p(x̄3) ∈ L for all x1, x2, x3 ∈ L, where x̄3 = (x1, x2, x3).
We shall consider a mapping D : L → R satisfying

(8) D(p(x̄3)) =
∑

π∈S3

D(xπ(1)xπ(2))xπ(3) +
∑

π∈S3

xπ(1)xπ(2)D(xπ(3))

for all x1, x2, x3 ∈ L. Let us mention that the idea of considering the
expression [p(x̄3), p(ȳ3)] in its proof is taken from [2].

Theorem 4. Let L be a 6-free Lie subring of R closed under p. If D :
L → R is an additive mapping satisfying (8), then D is a derivation.

Proof. For any a ∈ R and x̄3 ∈ L3 we have

[p(x̄3), a] = p([x1, a] , x2, x3) + p(x1, [x2, a] , x3) + p(x1, x2, [x3, a]),

and therefore

D [p(x̄3), a] =
∑

π∈S3

D
[

xπ(1)xπ(2), a
]

xπ(3) +
∑

π∈S3

D(xπ(1)xπ(2))
[

xπ(3), a
]

+
∑

π∈S3

[

xπ(1)xπ(2), a
]

D(xπ(3)) +
∑

π∈S3

xπ(1)xπ(2)D
[

xπ(3), a
]

.

In particular

(9)

D [p(x̄3), p(ȳ3)]

=
∑

π∈S3

D
[

xπ(1)xπ(2), p(ȳ3)
]

xπ(3) +
∑

π∈S3

D(xπ(1)xπ(2))
[

xπ(3), p(ȳ3)
]

+
∑

π∈S3

[

xπ(1)xπ(2), p(ȳ3)
]

D(xπ(3)) +
∑

π∈S3

xπ(1)xπ(2)D
[

xπ(3), p(ȳ3)
]

.
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Using

D
[

xπ(1)xπ(2), p(ȳ3)
]

= −D
[

p(ȳ3), xπ(1)xπ(2)

]

=
∑

σ∈S3

D
[

xπ(1)xπ(2), yσ(1)yσ(2)
]

yσ(3) +
∑

σ∈S3

D(yσ(1)yσ(2))
[

xπ(1)xπ(2), yσ(3)
]

+
∑

σ∈S3

[

xπ(1)xπ(2), yσ(1)yσ(2)
]

D(yσ(3)) +
∑

σ∈S3

yσ(1)yσ(2)D
[

xπ(1)xπ(2), yσ(3)
]

and

D
[

xπ(3), p(ȳ3)
]

= −D
[

p(ȳ3), xπ(3)

]

=
∑

σ∈S3

D
[

xπ(3), yσ(1)yσ(2)
]

yσ(3) +
∑

σ∈S3

D(yσ(1)yσ(2))
[

xπ(3), yσ(3)
]

+
∑

σ∈S3

[

xπ(3), yσ(1)yσ(2)
]

D(yσ(3) +
∑

σ∈S3

yσ(1)yσ(2)D
[

xπ(3), yσ(3)
]

in (9) we have

(10)

D [p(x̄3), p(ȳ3)] =
∑

π∈S3

∑

σ∈S3

D
[

xπ(1)xπ(2), yσ(1)yσ(2)
]

yσ(3)xπ(3)

+
∑

π∈S3

∑

σ∈S3

D(yσ(1)yσ(2))
[

xπ(1)xπ(2), yσ(3)
]

xπ(3)

+
∑

π∈S3

∑

σ∈S3

[

xπ(1)xπ(2), yσ(1)yσ(2)
]

D(yσ(3))xπ(3)

+
∑

π∈S3

∑

σ∈S3

yσ(1)yσ(2)D
[

xπ(1)xπ(2), yσ(3)
]

xπ(3)

+
∑

π∈S3

∑

σ∈S3

D(xπ(1)xπ(2))
[

xπ(3), yσ(1)yσ(2)yσ(3)
]

+
∑

π∈S3

∑

σ∈S3

[

xπ(1)xπ(2), yσ(1)yσ(2)yσ(3)
]

D(xπ(3))

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)D
[

xπ(3), yσ(1)yσ(2)
]

yσ(3)

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)D(yσ(1)yσ(2))
[

xπ(3), yσ(3)
]

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)

[

xπ(3), yσ(1)yσ(2)
]

D(yσ(3))

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)yσ(1)yσ(2)D
[

xπ(3), yσ(3)
]

.
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If we replace the roles of π and σ we get

(11)

D [p(x̄3), p(ȳ3)] =
∑

π∈S3

∑

σ∈S3

D
[

xπ(1)xπ(2), yσ(1)yσ(2)
]

xπ(3)yσ(3)

+
∑

π∈S3

∑

σ∈S3

D(xπ(1)xπ(2))
[

xπ(3), yσ(1)yσ(2)
]

yσ(3)

+
∑

π∈S3

∑

σ∈S3

[

xπ(1)xπ(2), yσ(1)yσ(2)
]

D(xπ(3))yσ(3)

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)D
[

xπ(3), yσ(1)yσ(2)
]

yσ(3)

+
∑

π∈S3

∑

σ∈S3

D(yσ(1)yσ(2))
[

xπ(1)xπ(2)xπ(3), yσ(3)
]

+
∑

π∈S3

∑

σ∈S3

[

xπ(1)xπ(2)xπ(3), yσ(1)yσ(2))
]

D(yσ(3))

+
∑

π∈S3

∑

σ∈S3

yσ(1)yσ(2)D
[

xπ(1)xπ(2), yσ(3)
]

xπ(3)

+
∑

π∈S3

∑

σ∈S3

yσ(1)yσ(2)D(xπ(1)xπ(2))
[

xπ(3), yσ(3)
]

+
∑

π∈S3

∑

σ∈S3

yσ(1)yσ(2)
[

xπ(1)xπ(2), yσ(3)
]

D(xπ(3))

+
∑

π∈S3

∑

σ∈S3

yσ(1)yσ(2)xπ(1)xπ(2)D
[

xπ(3), yσ(3)
]

.

It follows from both (10) and (11) that
(12)

0 =
∑

π∈S3

∑

σ∈S3

(D
[

xπ(1)xπ(2), yσ(1)yσ(2)
]

+D(yσ(1)yσ(2))xπ(1)xπ(2) −D(xπ(1)xπ(2))yσ(1)yσ(2)

− xπ(1)xπ(2)D(yσ(1)yσ(2)) + yσ(1)yσ(2)D(xπ(1)xπ(2)))yσ(3)xπ(3)

+
∑

π∈S3

∑

σ∈S3

(xπ(1)xπ(2)D(yσ(1)yσ(2))−D
[

xπ(1)xπ(2), yσ(1)yσ(2)
]

+D(xπ(1)xπ(2))yσ(1)yσ(2) −D(yσ(1)yσ(2))xπ(1)xπ(2)

− yσ(1)yσ(2)D(xπ(1)xπ(2)))xπ(3)yσ(3)

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)(yσ(1)yσ(2)D(yσ(3))xπ(3) − yσ(1)yσ(2)xπ(3)D(yσ(3))

+ yσ(1)yσ(2)D
[

xπ(3), yσ(3)
]

+ yσ(1)yσ(2)yσ(3)D(xπ(3))

− yσ(1)yσ(2)D(xπ(3))yσ(3))
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+
∑

π∈S3

∑

σ∈S3

yσ(1)yσ(2)(xπ(1)xπ(2)D(xπ(3))yσ(3) − xπ(1)xπ(2)D(yσ(3))xπ(3)

− xπ(1)xπ(2)yσ(3)D(xπ(3))− xπ(1)xπ(2)D
[

xπ(3), yσ(3)
]

+ xπ(1)xπ(2)xπ(3)D(yσ(3)))

for all x1, x2, x3, y1, y2, y3 ∈ L. Define mappings E,F : L4 → R by

E(u1, u2, u3, u4) = D [u1u2, u3u4] +D(u3u4)u1u2 −D(u1u2)u3u4

− u1u2D(u3u4) + u3u4D(u1u2)

and

F (u1, u2, u3, u4) = u1u2D(u3)u4 − u1u2D(u4)u3 − u1u2u4D(u3)

− u1u2D [u3, u4] + u1u2u3D(u4)

for all ū4 ∈ L4. Accordingly, (12) can be rewritten as

0 =
∑

π∈S3

∑

σ∈S3

E(xπ(1), xπ(2), yσ(1), yσ(2))yσ(3)xπ(3)

+
∑

π∈S3

∑

σ∈S3

E(xπ(1), xπ(2), yσ(1), yσ(2))xπ(3)yσ(3)

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)F (xπ(3), yσ(1), yσ(2), yσ(3))

+
∑

π∈S3

∑

σ∈S3

yσ(1)yσ(2)F (xπ(1), xπ(2), xπ(3), yσ(3))

for all x1, x2, x3, y1, y2, y3 ∈ L. Further, let s : Z → Z be a mapping defined
by s(i) = i− 3. For each σ ∈ S3 the mapping s−1σs : {4, 5, 6} → {4, 5, 6} will
be denoted by σ̄. Then the last identity can be rewritten as

0 =
∑

π∈S3

∑

σ∈S3

E(xπ(1), xπ(2), xσ̄(4), xσ̄(5))xσ̄(6)xπ(3)

+
∑

π∈S3

∑

σ∈S3

E(xπ(1), xπ(2), xσ̄(4), xσ̄(5))xπ(3)xσ̄(6)

+
∑

π∈S3

∑

σ∈S3

xπ(1)xπ(2)F (xπ(3), xσ̄(4), xσ̄(5), xσ̄(6))

+
∑

π∈S3

∑

σ∈S3

xσ̄(4)xσ̄(5)F (xπ(1), xπ(2), xπ(3), xσ̄(6))

for all x1, . . . , x6 ∈ L. Now we simply apply the definition of 6-freeness L.
There exist mappings p6,j : L4 → R, j = 1, . . . , 5, and λ6 : L5 → C(L) such
that

(13)
∑

π∈S3
π(1)=1

∑

σ∈S3

xπ(2)F (xπ(3), xσ̄(4), xσ̄(5), xσ̄(6)) =

5
∑

j=1

p6,j(x̄
j
5)xj + λ6(x̄5)
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for all x̄5 ∈ L5. Note that (13) can be rewritten as

(14)

5
∑

i=1

xi(
∑

π∈S3

π(1)=1
π(2)=i

∑

σ∈S3

F (xπ(3), xσ̄(4), xσ̄(5), xσ̄(6)))−

5
∑

j=1

p6,j(x̄
j
5)xj ∈ C(L)

for all x̄5 ∈ L5. Recalling the definition of a mapping F and using (14) we
get

∑

π∈S3

π(1)=1
π(2)=2

∑

σ∈S3

(xσ̄(4)xσ̄(5)D(xσ̄(6))xπ(3) − xσ̄(4)xσ̄(5)xπ(3)D(xσ̄(6))

− xσ̄(4)xσ̄(5)D
[

xπ(3), xσ̄(6)

]

+ xσ̄(4)xσ̄(5)xσ̄(6)D(xπ(3))

− xσ̄(4)xσ̄(5)D(xπ(3))xσ̄(6))−

4
∑

j=1

p5,j(x̄
j
4)xj ∈ C(L)

for all x̄4 ∈ L4 and some mappings p5,j : L3 → R. Since L is 6-free, after a
finite number of steps we arrive at

D(x)y −D(y)x− yD(x) +D [y, x] + xD(y) = f(x)y + g(y)x+ µ(x, y)

for all x, y ∈ L, where f, g : L → R and µ : L2 → C(L). Hence

(15) D [x, y] = D(x)y −D(y)x− yD(x) + xD(y) − f(x)y − g(y)x− µ(x, y).

If we replace the roles of denotations x and y in (15) and compare so obtained
identities we arrive at 0 = −f(x)y− g(y)x−µ(x, y)− f(y)x− g(x)y−µ(y, x).
Since L is a 6-free subset of R we have −f(x) − g(x) = 0 for all x ∈ L. We
also obtain µ(x, x) = 0 and µ(x, y)+µ(y, x) = 0 for all x, y ∈ L. From (15) it
follows that D

[

x2, x
]

= 0. Hence

(16)
0 = D(x2)x −D(x)x2 − xD(x2) + x2D(x)

− f(x2)x+ f(x)x2 − µ(x2, x)

for all x ∈ L. After a complete linearization of this identity we arrive at

(17) −D(xy)−D(yx) + xD(y) + yD(x) = h(x)y + k(y)x+ µ′(x, y)

and also

(18) −D(yx)−D(xy) + yD(x) + xD(y) = h(y)x+ k(x)y + µ′(y, x)

for all x, y ∈ L, where h, k : L → R and µ′ : L2 → C(L). From the last two
identities we obtain 0 = h(x)y + k(y)x − h(y)x − k(x)y + µ′(x, y) − µ′(y, x),
which yields h(x) = k(x), µ′(x, y) = µ′(y, x) for all x, y ∈ L. If y = x in (17)
we have

(19) 2D(x2) = 2xD(x)− 2h(x)x− µ′(x, x).

Using this identity in (16) we obtain

(20) f(x2)x = xD(x)x − h(x)x2 −D(x)x2 + f(x)x2 + xh(x)x − µ(x2, x).
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Replacing y for x and x for x2 in (17) and using (5) and (19) we arrive at

(21) 2h(x2)x = 2h(x)x2 − 2xh(x)x − 4xD(x)x − 2µ′(x2, x) + µ′(x, x)x.

From (17) we get D(yx) = −D(xy)+xD(y)+yD(x)−h(x)y−h(y)x−µ′(x, y).
Using this relation in (15) we get

(22)
2D(xy) = D(x)y −D(y)x+ 2xD(y)− f(x)y + f(y)x

− h(x)y − h(y)x− µ(x, y)− µ′(x, y).

From (22) we get

2D(x4) = D(x)x3 −D(x3)x+ 2xD(x3)− f(x)x3 + f(x3)x

− h(x)x3 − h(x3)x− µ(x, x3)− µ′(x, x3)

and also

(23)
2D(x4) = D(x3)x−D(x)x3 + 2x3D(x) − f(x3)x+ f(x)x3

− h(x3)x− h(x)x3 − µ(x3, x)− µ′(x3, x).

Comparing these two identities, using (5), (19) and (20) we obtain

(24) f(x3)x = f(x2)x2 + µ(x2, x)x − µ(x3, x).

From (19) we arrive at 2D(x4) = 2x2D(x2)−2h(x2)x2−µ′(x2, x2). Comparing
this relation with (23), using (5), (19), (20), (21) and (24) we get

(25)
2h(x3)x = 2x2D(x)x + 2h(x)x3 − 6xh(x)x2 + 4x2h(x)x − 8xD(x)x2

− 2µ′(x3, x) + 3µ′(x, x)x2 − 4µ′(x2, x)x+ 2µ′(x2, x2).

From (5) we get 2D(x6) = 2D(x4)x2 + 2x4D(x2). On the other hand from
(19) we obtain 2D(x6) = 2x3D(x3)− 2h(x3)x3 −µ′(x3, x3). Comparing these
two identities and using (5), (19), (21) and (25) we get

0 = − 2x2h(x)x3 + 4xD(x)x4 + 4xh(x)x4 − 2x2D(x)x3 + 2x4D(x)x

− 2x3h(x)x2 − 2x3D(x)x2 + 2x4h(x)x − µ′(x, x)x4

− µ′(x2, x2)x2 + 2µ′(x3, x)x2 + 2µ′(x2, x)x3 − µ′(x3, x3).

After a complete linearization of the last identity, we use the 6-freeness of L
and then replace all xi for x, where i = 1, . . . , 6. Therefore

(26)

0 = − 2xh(x)x2 + 4D(x)x3 + 4h(x)x3 − 2xD(x)x2

+ 2x3D(x)− 2x2h(x)x− 2x2D(x)x + 2x3h(x)

+ 2µ′(x3, x) + 2µ′(x2, x)x − µ′(x, x)x2 − µ′(x2, x2).

Since L is a 6-free subset of R, it is easy to verify that 4h(x) + 4D(x) =
xp + λ(x), for all x ∈ L, where p ∈ R and λ : L → C(L). Using 4h(x) =
−4D(x) + xp+ λ(x) in (19) we get

(27) 4D(x2) = 4xD(x) + 4D(x)x − xpx− λ(x)x − 2µ′(x, x).
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From (21) we obtain

− 4D(x2)x + x2px+ λ(x2)x

=− 4D(x)x2 + xpx2 + λ(x)x2 + 4xD(x)x

− x2px− λ(x)x2 − 8xD(x)x − 4µ′(x2, x) + 2µ′(x, x)x.

Using (27) in the last identity we obtain −2x2px = x2λ(x) + xλ(x2) +
4µ′(x2, x). Since L is a 6-free subset of R we get −2px = λ(x) and then
−2px ∈ C(L) for all x ∈ R. Thus pz [x, y] = 0 for all x, y, z ∈ R. Since R is a
prime ring it follows that p = 0 or R is commutative. If p = 0, we get λ = 0
and then 4h(x) + 4D(x) = 0. If R is commutative we can prove the same.
Consequently from (20) we obtain f(x2)x = f(x)x2 − µ(x2, x) and then from
(16) also D(x2)x + x2D(x) = D(x)x2 + xD(x2). We use this identity and
h(x) = −D(x) in (17) and obtain 2D(x3) = 2D(x2)x + 2x2D(x) − µ′(x2, x).
On the other hand from (5) we have 2D(x3) = 2D(x2)x + 2x2D(x). It
follows that µ′(x2, x) = 0. We use this identity and h(x) = −D(x)
in (26), which implies −µ′(x, x)x2 − µ′(x2, x2) + 2µ′(x3, x) = 0. Thus
∑

π∈S4
µ′(xπ(1), xπ(2))xπ(3)xπ(4) ∈ C(L). We use the 6-freeness of L and

obtain µ′(x, y) = 0 for all x, y ∈ L. Consequently from (19) it follows that
D is a Jordan derivation. By Herstein’s theorem ([11]) D is a derivation.
Thereby the proof is completed.

We are now in the position to prove Theorem 3.

Proof of Theorem 3. The complete linearization of (5) gives us (8).
Assume first thatR is not a PI ring. According to Theorem 4D is a derivation.

Now suppose that R is a PI ring. It is well-known that in this case R

has a nonzero center (see [12]). Let c be a nonzero central element. Pick any
x ∈ R and set x1 = x2 = cx and x3 = x in (8). Hence we obtain

3D(c2x3) = D(c2x2)x+ 2D(cx2)cx+ c2x2D(x) + 2cx2D(cx).

Next, setting x1 = x2 = c and x3 = x3 in (8) we arrive at

3D(c2x3) = D(c2)x3 + 2D(cx3)c+ c2D(x3) + 2cx3D(c)

= D(c2)x3 + 2D(cx3)c+ c2(D(x2)x + x2D(x)) + 2cx3D(c)

for all x ∈ R. Comparing both identities we get

(28)
D(c2x2)x+ 2D(cx2)cx+ 2cx2D(cx)

=D(c2)x3 + 2D(cx3)c+ c2D(x2)x+ 2cx3D(c)

for all x ∈ R. Setting x1 = x and x2 = x3 = c in the complete linearization
of (28) we get

(29) c2D(c)x+ 2D(c2x)c+ 2cxD(c2) = 2D(c3x) + 3xc2D(c)
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for all x ∈ R. Then substituting x for cx in relation (29) we obtain

D(c)c3x+ 2D(c3x)c+ 2c2xD(c2) = 2D(c4x) + 3c3xD(c).

Multiplying identity (29) by c we get

(30) D(c)c3x+ 2D(c2x)c2 + 2c2xD(c2) = 2D(c3x)c+ 3c3xD(c).

Comparing the last two identities, we have

(31) 2D(c3x)c = D(c4x) +D(c2x)c2.

for all x ∈ R. Substituting x by cx in (5) we get

3D(c3x3) = 3D(c2x2)cx+ 3c2x2D(cx)

for all x ∈ R. Next, setting x1 = x2 = c and x3 = cx3 in the complete
linearization of (5) we have

3D(c3x3) = D(c2)cx3 + 2cD(c2x3) + c2D(cx3) + 2c2x3D(c).

Comparing the last two identities we see that

(32) 3D(c2x2)x+ 3cx2D(cx) = D(c2)x3 + 2D(c2x3) + cD(cx3) + 2cx3D(c).

Setting x1 = x2 = c and x3 = x in the complete linearization of (32) and
using (31) we get

D(c2)cx+D(cx)c2 + 2xD(c2)c+ 2D(c2x)c = 3D(c3x) + 2xD(c)c2.

Using the last identity and (30) we obtain

(33) D(c2)cx+D(cx)c2 + xD(c)c2 = D(c3x) +D(c)xc2

and so
D(c3x) = D(cx)c2 +D(c2)cx+ [x,D(c)] c2

for all x ∈ R. Setting x1 = x2 = c and x3 = cx in (8) we arrive at

6D(c3x) = 2D(c2)cx+ 4D(c2x)c+ 2c2D(cx) + 4c2xD(c).

Comparing the last two identities we obtain

(34) 2D(cx)c+ 2D(c2)cx+ 3 [x,D(c)] c = 2D(c2x) + 2cxD(c)

and use (33) in (34) we get

(35) 2D(c2x) − 2D(cx)c = D(c)xc+ xcD(c).

Substituting x for cx in (33), using (31) and (34) we have

D(c2)c2x = 2D(c)c3x

for all x ∈ R. If x = c, we get D(c2) = 2D(c)c and then from (35) also
D(c3) = 3D(c)c2. Next we set x1 = x2 = c and x3 = x in (8). This yields

(36) 6D(c2x) = 2D(c2)x+ 4D(cx)c+ 2c2D(x) + 4cxD(c).

Using (35) we obtain

(37) 2D(cx)− 2D(x)c = D(c)x+ xD(c)
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and so

(38) 2D(cx2)− 2D(x2)c = D(c)x2 + x2D(c)

for all x ∈ R. Setting x1 = x2 = x and x3 = c in (8), using (37) and (38) we
have

(39)

6D(cx2) = 2D(x2)c+ 4D(cx)x + 2x2D(c) + 4cxD(x)

= (2D(cx2)−D(c)x2 − x2D(c))

+ 4D(cx)x+ 2x(xD(c) + 2cD(x))

= 2D(cx2)−D(c)x2 − x2D(c)

+ 4D(cx)x+ 4xD(cx) − 2xD(c)x.

Comparing this identity and (38) we get

4D(cx)x+ 4xD(cx) − 2xD(c)x = 3D(c)x2 + 3x2D(c) + 4D(x2)c

and so

(40) 4D(x2)c = 4(D(cx)x+ xD(cx)) − 3(D(c)x2 + x2D(c))− 2xD(c)x.

Then we use (38) in this relation and we obtain

3D(cx2)−D(x2)c = 2D(cx)x+ 2xD(cx)− xD(c)x.

But on the other hand we use (37), (38) in (39) we have

2D(cx2) + 2D(x2)c = 4D(x)xc+ 4xD(x)c+ 2xD(c)x.

Again comparing the last two identities we obtain

(41) 2D(cx2) = D(cx)x + xD(cx) +D(x)xc + xcD(x)

for all x ∈ R. From the first line of identity (39) we get

(42) D(x2)c = 3D(cx2)− 2D(cx)x− x2D(c)− 2cxD(x).

Then we use (37), (41) in (42) and obtain

2D(x2)c = 3D(cx)x + 3xD(cx) + 3D(x)xc + 3xD(x)c

− 4D(cx)x − 2x(xD(c) + 2cD(x))

= 3xD(cx) + 3D(x)xc+ 3xD(x)c

−D(cx)x − 2x(2D(cx)−D(c)x)

= 3(D(x)x + xD(x))c − (D(cx)x + xD(cx)) + 2xD(c)x.

Using the last two identities in (38) we arrive at

(43) D(c)x2+x2D(c) = 2(D(cx)x+xD(cx))−2(D(x)xc+xcD(x))−2xD(c)x.

Then we use (37) in (40) and we get

(44) 4D(x2)c = 4(D(x)xc+ cxD(x)) − (D(c)x2 + x2D(c)) + 2xD(c)x
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and also

4D(x2)c2 = 4(D(x)xc2 + c2xD(x)) − (D(c2)x2 + x2D(c2)) + 2xD(c2)x.

Multiplying identity (44) by c we have

4D(x2)c2 = 4(D(x)xc2 + c2xD(x)) − (D(c)x2c+ cx2D(c)) + 2xD(c)cx.

Comparing the last two identities we have

(45) D(c)x2 + x2D(c) = 2xD(c)x.

Using this in (43) we get

D(cx)x + xD(cx) = D(x)xc + cxD(x) + 2xD(c)x.

Now we use the last identity and (45) in (40) and we obtain D(x2) = D(x)x+
xD(x) for all x ∈ R. In other words, D is a Jordan derivation. By Herstein’s
theorem D is a derivation. The proof of the theorem is complete. The proof
in case we have the relation (6) goes through in a similar way and will be
omitted.
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