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Abstract. Let G be a group. An automorphism α of G is called a
commuting automorphism if xxα = xαx for all x ∈ G. We denote the set of
all commuting automorphisms of G by A(G). Moreover a group G is called
an AC-group if the centralizer of every non-central element of G is abelian.
In this paper we show that A(G) is a subgroup of the automorphism group
of G for all finite AC-groups, p-groups of maximal class, and metacyclic
p-groups.

1. Introduction

Let G be a group and Aut(G) be the group of all automorphisms of G.
Following [4], we define A(G) = {α ∈ Aut(G)|xxα = xαx for all x ∈ G} and
any element of this set is called a commuting automorphism. This definition
first was considered for rings, see [2], [5] and [11]. Also I. N. Herstein in [8]
posed a question: when A(G) = 1? Then T. J. Laffey ([9]) and M. Pettet
([12]) provided extensions of Herstein’s result. Moreover we see that A(G) is
a subset of Aut(G) and Autc(G), the group of central automorphisms of G is
a subset of A(G). This observation suggests a question which was considered
by Deaconescu, Silberberg and Walls in [4]:

Is it true that the set A(G) is always a subgroup of Aut(G)?

Obviously Autc(G) = A(G) = Aut(G) when G is abelian. Moreover it is
shown in [4] that A(G) is not always a subgroup of Aut(G). They constructed
a finite non-abelian 2-group G of order 25 such that A(G) is not a subgroup
of Aut(G). In this paper we answer this question in some families of groups.
Specially we show that if G is a finite AC-group, a finite p-group of maximal
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class, or a finite metacyclic p-group, then A(G) is a subgroup of Aut(G) and in
some cases A(G) = Autc(G). We note that a group G is called an AC-group
if the centralizer of every non-central element of G is abelian. Therefore we
deduce that A(G) is also a subgroup of Aut(G) when G is a finite minimal
non-abelian group, a p-group with the central quotient of order less than
p4, a p-group of order less that p5 or a finite p-group with a cyclic maximal
subgroup.

Throughout this paper the following notation is used. All groups are
assumed to be finite. The letter p denotes a prime number. CG(x) is the
centralizer of an element x in a group G. The nilpotency class of a group G
is denoted by cl(G). A p-group of maximal class is a non-abelian group G of
order pn with cl(G) = n − 1. The terms of the lower central series of G are
denoted by γi(G). If α is an automorphism of G and x is an element of G,

we write xα for the image of x under α and [x, α] is x−1xα. Also AutZZ(G)
is the group of central automorphisms of G, which fix Z(G) elementwise. We
write [a, b] for a−1b−1ab when a, b ∈ G. Finally Zm

n is the direct product of
n copies of the cyclic group of order m.

2. AC-groups

In this section we prove that A(G) ≤ Aut(G) for any AC-group G. As a
consequence we see that if G is a minimal non-abelian group, a non-abelian p-
group with |G/Z(G)| ≤ p3, a p-group (p > 2) with a cyclic maximal subgroup
or a p-group of order less that p5 , then A(G) ≤ Aut(G). Moreover in some
cases we see that A(G) = Autc(G). First we state two following lemmas that
are needed for the main results of the paper.

Lemma 2.1 ([4, Lemma 2.1]). If α ∈ A(G) and x, y ∈ G, then [xα, y] =
[x, yα].

Lemma 2.2 ([4, Lemma 2.4 (vi)]). Let G be a group and α, β ∈ A(G).
Then αβ ∈ A(G) if and only if [xα, xβ ] = 1 for all x ∈ G.

Lemma 2.3. If G is an AC-group, then A(G) ≤ Aut(G).

Proof. Let α, β ∈ A(G). Since A(G) is finite, it is enough to prove that
αβ ∈ A(G) or equivalently [xα, xβ ] = 1 for all x ∈ G by Lemma 2.2. First if
x ∈ G \ Z(G), then CG(x) is abelian and so [xα, xβ ] = 1. Also if x ∈ Z(G),
then xα, xβ ∈ Z(G), as desired.

Lemma 2.4. Let G be a non-abelian p-group with |G/Z(G)| ≤ p3. Then

G is an AC-group.

Proof. Let g be a non-central element of G. Then Z(G) < Z(CG(g)) ≤

CG(g) < G since g ∈ Z(CG(g)) \ Z(G). This implies that | CG(g)
Z(CG(g)) | divides p.

Hence Z(CG(g)) = CG(g), as desired.
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Lemma 2.5 ([3, Theorem 1.2]). Let G be a group of order pn with a cyclic

maximal subgroup. Then G has one of the following presentations:

(i) Mpn = 〈a, b|ap
n−1

= bp = 1, ab = a1+pn−2

〉, where n ≥ 4 if p = 2.
(ii) D2n, the dihedral group.

(iii) Q2n, the generalized quaternion group.

(iv) SD2n (n > 3), the semi dihedral group.

Corollary 2.6. For any of the following groups, A(G) is a subgroup of

Aut(G).

(i) G is a non-abelian p-group with |G/Z(G)| ≤ p3.
(ii) G is a p-group of order less than p5.
(iii) G is a p-group with a cyclic maximal subgroup, where p > 2.
(iv) G is a minimal non-abelian group.

Proof. (i)-(ii) This follows from lemmas 2.3 and 2.4.
(iii) It is easy to see that |G/Z(G)| = p2 by Lemma 2.5(i). The rest follows
from (i).
(iv) This is clear by the fact G is an AC-group and Lemma 2.3.

Lemma 2.7. If G = Mpn , then A(G) = Autc(G).

Proof. By Lemma 2.5(i), we see that CG(a) = 〈a〉, |G′| = p and Z(G) =
Φ(G) = 〈ap〉. Let α ∈ A(G), then we may write aα = aibj and bα = arbs,
where 0 ≤ s, j < p and 0 ≤ i, r < pn−1. Since [aα, a] = 1 we deduce
that bj ∈ CG(a). Hence bj ∈ 〈a〉 ∩ 〈b〉 = 1 and so (i, p) = 1. Also we
have 1 = [bα, b] = [ar, b] = [a, b]r which implies that p divides r. Therefore
ar ∈ Z(G). Now by applying [7, Proposition 3, p. 44] and the third relation
of the presentation of G we deduce that 1 = [a, b]i(s−1) and so p divides
s − 1 since (i, p) = 1. Therefore s = 1. Moreover by Lemma 2.1, we have
[aα, b] = [a, bα], which yields that [a, b]i−1 = 1 or equivalently p divides i− 1.
Therefore α ∈ Autc(G), completing the proof.

3. p-groups of maximal class

Let G be a p-group of maximal class and order pn, where n ≥ 4. In
this section we show that A(G) = Autc(G). First we give some properties of
p-groups of maximal class.

Lemma 3.1. Let G be a p-group of maximal class and order pn. Then

(i) G is purely non-abelian,

(ii) Autc(G) ∼= Zp × Zp.

Proof. (i) Assume by the way of contradiction that G = A×B, where A
is a non-trivial abelian subgroup of G and B is a purely non-abelian subgroup
of G. Then cl(G) = cl(B) = n− 1, which is a contradiction since |B| divides
pn−1.
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(ii) By (i) and [1, Theorem 1], we have |Autc(G)| = p2 since G/G′ ∼= Zp ×Zp

and Z(G) ∼= Zp. Moreover

AutZZ(G) ∼= Hom(G/Z(G), Z(G)) ∼= Hom(
G/Z(G)

(G/Z(G))′
, Z(G)) ∼= Zp × Zp

by [13, Result 1.1], which completes the proof since AutZZ(G) ≤ Autc(G).

Let G be a p-group of maximal class and order pn (n ≥ 4), where p is
a prime. Following [10], we define the 2-step centralizer Ki in G to be the
centralizer in G of γi(G)/γi+2(G) for 2 ≤ i ≤ n − 2 and define Pi = Pi(G)

by P0 = G, P1 = K2, Pi = γi(G) for 2 ≤ i ≤ n. Take s ∈ G −
⋃n−2

i=2 Ki,
s1 ∈ P1 − P2 and si = [si−1, s] for 2 ≤ i ≤ n− 1. It is easily seen that {s, s1}
is a generating set for G and Pi(G) = 〈si, . . . , sn−1〉 for 1 ≤ i ≤ n − 1. We
note that Pn−1 = Z(G).

For the rest of this section we fix the above notation.

Lemma 3.2 ([6, Hilfssatz III. 14.13]). If G is a p-group of maximal class

of order pn and s /∈ Ki for 2 ≤ i ≤ n − 2, then CG(s) = 〈s〉Pn−1(G) and

sp ∈ Pn−1.

Now we state the following Lemma from [4] that will be used in the sequel.

Lemma 3.3 ([4, Lemma 2.2]). If α ∈ A(G) and x ∈ G, then [x, α] ∈
CG(G

′).

Theorem 3.4. Let G be a p-group of maximal class and order pn, where
n ≥ 4. Then A(G) = Autc(G).

Proof. Let α ∈ A(G), then we may write sα = sx and sα1 = s1y, where
x, y ∈ CG(G

′) by Lemma 3.3. Now by considering [sα, s] = 1 we see that
x ∈ CG(s) and so we may assume that x = siz, where z ∈ Z(G) and 0 ≤ i < p
by Lemma 3.2. We claim that i = 0. Otherwise, since x ∈ CG(G

′), we have
1 = [siz, s2] = [si, s2]. Hence s3 = [s2, s] = 1 since (i, p) = 1 . Therefore
P3(G) = 1 and so |G| = p3, which is impossible. Therefore x ∈ Z(G).
Moreover [sα, s1] = [s, sα1 ] by Lemma 2.1, which implies that y ∈ CG(s) by
using the fact that y ∈ CG(G

′). Hence by the same argument as above we
conclude that y ∈ Z(G) and so α ∈ Autc(G), as desired.

Corollary 3.5. Let G be a group of order pn with a cyclic maximal

subgroup. Then A(G) = Autc(G).

Proof. If G = D8 or Q8, then it is easy to check that A(G) = Autc(G).
Therefore the proof follows from lemmas 2.5, 2.7 and Theorem 3.4.



COMMUTING AUTOMORPHISMS OF SOME FINITE GROUPS 95

4. Metacyclic p-groups

Let G be a non-abelian metacyclic p-group. In this section we show that
A(G) ≤ Aut(G). We know that there exists a normal cyclic subgroup 〈a〉 of
G such that G/〈a〉 is cyclic. Therefore we may choose an element b ∈ G and a
number 1 ≤ k < |a| such that G = 〈b, a〉 and b−1ab = ak and so any element
of G has the form bjai for j, i ≥ 0.

For the rest of the paper we fix the above notation.

Lemma 4.1. Let G be a non-abelian metacyclic p-group.

(i) k ≡ 1 (mod p),

(ii) [ai, b] = [a, b]i = a(k−1)i and [bn, a] = [b, a]1+k+···+kn−1

for i, n ≥ 1,
(iii) G′ = 〈[a, b]〉,

(iv) if bs−1 ∈ CG(G
′), where s ≥ 1, then [bns, a] = [bs, a]1+k+···+kn−1

for any n ≥ 1.

Proof. (i) Obviously G′ ≤ 〈a〉 and 〈ak−1〉 ≤ G′. Now if (p, k − 1) = 1,
then G′ = 〈a〉 and so G/G′ is cyclic which is a contradiction.

(ii) This follows from b−1ab = ak.
(iii) We have G′ = 〈[x, y]|x, y ∈ G〉 which completes the proof by using

(ii).
(iv) We use induction on n and the fact that [bns, a]b = [bns, a]k since

[bns, a] ∈ 〈a〉 and b−1ab = ak.

Theorem 4.2. Let G be a non-abelian metacyclic p-group. Then

A(G) ≤ Aut(G).

Proof. Let α ∈ A(G), then we may write aα = aibj and bα = bsal.
Therefore bj , al ∈ Z(G) by the definition of A(G). Hence we may assume that
aα = aiz1 and bα = bsz2, where z1, z2 ∈ Z(G). Consequently for β ∈ A(G)

we have aβ = ai
′

z′1 and bβ = bs
′

z′2, where z′1, z
′
2 ∈ Z(G). Now if g ∈ G, then

we may write g = brat. Therefore [gα, gβ] = [bsr, a]i
′t[bs

′r, a]−it by Lemma
4.1(ii). Moreover by Lemma 3.3, b−1bα and b−1bβ ∈ CG(G

′) or equivalently

bs−1, bs
′
−1 ∈ CG(G

′). Also by Lemma 2.1, we see that [b, ai] = [bs, a] and

[b, ai
′

] = [bs
′

, a]. This implies that [gα, gβ ] = 1 by Lemma 4.1(iv) and (ii),
which completes the proof by Lemma 2.2.
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