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ABSTRACT. Let G be a group. An automorphism « of G is called a
commuting automorphism if xx® = z%z for all z € G. We denote the set of
all commuting automorphisms of G by A(G). Moreover a group G is called
an AC-group if the centralizer of every non-central element of GG is abelian.
In this paper we show that A(G) is a subgroup of the automorphism group
of G for all finite AC-groups, p-groups of maximal class, and metacyclic
p-groups.

1. INTRODUCTION

Let G be a group and Aut(G) be the group of all automorphisms of G.
Following [4], we define A(G) = {a € Aut(G)|zx® = 2%« for all z € G} and
any element of this set is called a commuting automorphism. This definition
first was considered for rings, see [2], [5] and [11]. Also I. N. Herstein in [8]
posed a question: when A(G) = 1?7 Then T. J. Laffey ([9]) and M. Pettet
([12]) provided extensions of Herstein’s result. Moreover we see that A(G) is
a subset of Aut(G) and Aut.(G), the group of central automorphisms of G is
a subset of A(G). This observation suggests a question which was considered
by Deaconescu, Silberberg and Walls in [4]:

Is it true that the set A(G) is always a subgroup of Aut(G)?
Obviously Aut.(G) = A(G) = Aut(G) when G is abelian. Moreover it is
shown in [4] that A(G) is not always a subgroup of Aut(G). They constructed
a finite non-abelian 2-group G of order 2° such that A(G) is not a subgroup
of Aut(G). In this paper we answer this question in some families of groups.
Specially we show that if G is a finite AC-group, a finite p-group of maximal
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class, or a finite metacyclic p-group, then A(G) is a subgroup of Aut(G) and in
some cases A(G) = Aut.(G). We note that a group G is called an AC-group
if the centralizer of every non-central element of GG is abelian. Therefore we
deduce that A(G) is also a subgroup of Aut(G) when G is a finite minimal
non-abelian group, a p-group with the central quotient of order less than
p*, a p-group of order less that p® or a finite p-group with a cyclic maximal
subgroup.

Throughout this paper the following notation is used. All groups are
assumed to be finite. The letter p denotes a prime number. Cg(z) is the
centralizer of an element z in a group G. The nilpotency class of a group G
is denoted by cl(G). A p-group of maximal class is a non-abelian group G of
order p" with cl(G) = n — 1. The terms of the lower central series of G are
denoted by 7;(G). If « is an automorphism of G and z is an element of G,
we write z® for the image of z under o and [z, ] is z~'2®. Also AutZ(G)
is the group of central automorphisms of G, which fix Z(G) elementwise. We
write [a,b] for a=1b~tab when a,b € G. Finally Z,," is the direct product of
n copies of the cyclic group of order m.

2. AC-GROUPS

In this section we prove that A(G) < Aut(G) for any AC-group G. As a
consequence we see that if G is a minimal non-abelian group, a non-abelian p-
group with |G/Z(G)| < p3, a p-group (p > 2) with a cyclic maximal subgroup
or a p-group of order less that p° , then A(G) < Aut(G). Moreover in some
cases we see that A(G) = Aut.(G). First we state two following lemmas that
are needed for the main results of the paper.

LEMMA 2.1 ([4, Lemma 2.1]). If o € A(G) and z,y € G, then [z%,y] =
[z, y®].

LEMMA 2.2 ([4, Lemma 2.4 (vi)]). Let G be a group and o, B € A(G).
Then a3 € A(G) if and only if [x*,2°] =1 for all v € G.

LEMMA 2.3. If G is an AC-group, then A(G) < Aut(G).

PROOF. Let «, 5 € A(G). Since A(G) is finite, it is enough to prove that
af € A(G) or equivalently [z, z°] = 1 for all x € G by Lemma 2.2. First if
r € G\ Z(G), then Cg(z) is abelian and so [z*,2°] = 1. Also if » € Z(G),
then 2%, 2 € Z(G), as desired. O

LEMMA 2.4. Let G be a non-abelian p-group with |G/Z(G)| < p3. Then
G is an AC-group.

PROOF. Let g be a non-central element of G. Then Z(G) < Z(Ca(g)) <

Cc(g) < G since g € Z(Ca(g)) \ Z(G). This implies that |Z(CCGG(?;))| divides p.

Hence Z(Cc(g)) = Ca(g), as desired. O
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LEMMA 2.5 ([3, Theorem 1.2]). Let G be a group of order p™ with a cyclic
maximal subgroup. Then G has one of the following presentations:
(i) Myn = (a,bla?" " =bP =1,a® = a'*?" "), where n >4 if p = 2.
(ii) Dan, the dihedral group.
(iil) Qan, the generalized quaternion group.
(iv) SDan (n > 3), the semi dihedral group.

COROLLARY 2.6. For any of the following groups, A(G) is a subgroup of
Aut(G).
(i) G is a non-abelian p-group with |G/Z(G)| < p3.
(ii) G is a p-group of order less than p°.
(iii) G is a p-group with a cyclic mazimal subgroup, where p > 2.
(iv) G is a minimal non-abelian group.

PROOF. (i)-(ii) This follows from lemmas 2.3 and 2.4.
(iii) It is easy to see that |G/Z(G)| = p? by Lemma 2.5(i). The rest follows
from (i).
(iv) This is clear by the fact G is an AC-group and Lemma 2.3. O

LEMMA 2.7. If G = Mpn, then A(G) = Aut.(G).

PRrROOF. By Lemma 2.5(i), we see that Cg(a) = (a), |G'| =p and Z(G) =
®(G) = (aP). Let a € A(G), then we may write a® = a't’ and b™ = a"b*,
where 0 < 5,57 < pand 0 < 4,7 < p"~ L. Since [a% a] = 1 we deduce
that o € Cg(a). Hence b € (a) N (b) = 1 and so (i,p) = 1. Also we
have 1 = [b*,b] = [a",b] = [a,b]” which implies that p divides r. Therefore
a” € Z(G). Now by applying [7, Proposition 3, p. 44] and the third relation
of the presentation of G we deduce that 1 = [a,b]"®* 1) and so p divides
s — 1 since (i,p) = 1. Therefore s = 1. Moreover by Lemma 2.1, we have
[a®,b] = [a,b*], which yields that [a,b]""! = 1 or equivalently p divides i — 1.
Therefore o € Aut.(G), completing the proof. O

3. p-GROUPS OF MAXIMAL CLASS

Let G be a p-group of maximal class and order p™, where n > 4. In
this section we show that A(G) = Aut.(G). First we give some properties of
p-groups of maximal class.

LEMMA 3.1. Let G be a p-group of maximal class and order p™. Then
(i) G is purely non-abelian,
(ii) Aute(Q) 2 Zy x Zy.

PROOF. (i) Assume by the way of contradiction that G = A x B, where A
is a non-trivial abelian subgroup of G and B is a purely non-abelian subgroup
of G. Then cl(G) = cl(B) = n — 1, which is a contradiction since |B| divides

n—1
prT.
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(ii) By (i) and [1, Theorem 1], we have [Aut.(G)| = p? since G/G’ = Z, x Z,,
and Z(G) = Z,. Moreover

G/Z(G)

Autf(G) = Hom(G/Z(G), Z(G)) = Hom(rz s

Z(G) 2 Z, X Ly
by [13, Result 1.1], which completes the proof since AutZ(G) < Aut.(G). 0O

Let G be a p-group of maximal class and order p™ (n > 4), where p is
a prime. Following [10], we define the 2-step centralizer K; in G to be the
centralizer in G of v;(G)/vi+2(G) for 2 < i < n — 2 and define P, = P;(G)
by Py = G, PL = Ky, P, = 4(G) for 2 < i < n. Take s € G — =) Ki,
s1 € P — Py and s; = [s;-1, 8] for 2 <i <n—1. It is easily seen that {s, s1}
is a generating set for G and P;(G) = (s;,...,8p-1) for 1 <i <n—1. We
note that P,_1 = Z(G).

For the rest of this section we fix the above notation.

LeEmMA 3.2 ([6, Hilfssatz III. 14.13)). If G is a p-group of mazimal class
of order p" and s ¢ K; for 2 < i < n — 2, then Cg(s) = (s)Pn,-1(G) and
sP e P,_1.

Now we state the following Lemma from [4] that will be used in the sequel.

LEMMA 3.3 ([4, Lemma 2.2]). If « € A(G) and = € G, then [z,a] €
Ca(@).

THEOREM 3.4. Let G be a p-group of mazimal class and order p™, where
n > 4. Then A(G) = Aut.(G).

PROOF. Let o € A(G), then we may write s® = sz and s§ = s1y, where
z,y € Cg(G’) by Lemma 3.3. Now by considering [s%,s] = 1 we see that
x € Cge(s) and so we may assume that x = s'z, where z € Z(G) and 0 <i < p
by Lemma 3.2. We claim that ¢ = 0. Otherwise, since x € Cq(G’), we have
1 = [s'z,82] = [s%,s2). Hence s3 = [s2,s] = 1 since (i,p) = 1 . Therefore
P3(G) = 1 and so |G| = p?, which is impossible. Therefore * € Z(G).
Moreover [s%,s1] = [s,s§] by Lemma 2.1, which implies that y € Cg(s) by
using the fact that y € Co(G’). Hence by the same argument as above we
conclude that y € Z(G) and so o € Aut.(G), as desired. O

COROLLARY 3.5. Let G be a group of order p"™ with a cyclic mazimal
subgroup. Then A(G) = Aut.(G).

PRrROOF. If G = Dg or Qg, then it is easy to check that A(G) = Aut.(G).
Therefore the proof follows from lemmas 2.5, 2.7 and Theorem 3.4. O
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4. METACYCLIC p-GROUPS

Let G be a non-abelian metacyclic p-group. In this section we show that
A(G) < Aut(G). We know that there exists a normal cyclic subgroup (a) of
G such that G/{a) is cyclic. Therefore we may choose an element b € G and a
number 1 < k < |a| such that G = (b, a) and b~'ab = a* and so any element
of G has the form ba’ for j,i > 0.

For the rest of the paper we fix the above notation.

LEMMA 4.1. Let G be a non-abelian metacyclic p-group.

(i) k=1 (mod p),

(ii) [ b] = [a,b] = a*=Vi and [b",a] = [b,a] FEHTRET foriin > 1,

(iif) G" = ([a, b)),

(iv) if b*=1 € Ca(G'), where s > 1, then [b"%,a) = [b, o] TR+ +F"""
for any n > 1.

PRrOOF. (i) Obviously G’ < (a) and (a*~!) < G’. Now if (p,k — 1) = 1,
then G’ = (a) and so G/G’ is cyclic which is a contradiction.

(ii) This follows from b~tab = a*.

(iii) We have G’ = ([z,y]|z,y € G) which completes the proof by using
(ii).

(iv) We use induction on n and the fact that [b"° a]® = [b",a]* since
[b"* a] € (a) and b~ tab = a*. O

THEOREM 4.2. Let G be a non-abelian metacyclic p-group. Then
A(G) < Aut(G).

PROOF. Let a € A(G), then we may write a® = @'t/ and b* = b%al.
Therefore b/, a! € Z(G) by the definition of A(G). Hence we may assume that
a® = a'z; and b* = b%z9, where 21,29 € Z(G). Consequently for § € A(G)
we have af = a? 2| and b° = b*' 2}, where 2}, 2}, € Z(G). Now if g € G, then
we may write g = b"at. Therefore [g®, ¢%] = [b*",a]"t[b*"",a] " by Lemma
4.1(ii). Moreover by Lemma 3.3, b1 and b~'0% € C(G’) or equivalently
b= b5 1 € Cu(G'). Also by Lemma 2.1, we see that [b,a’] = [b%,a] and
[b,a’] = [b*',a]. This implies that [¢*,¢’] = 1 by Lemma 4.1(iv) and (i),
which completes the proof by Lemma 2.2. O
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