COMMUTING AUTOMORPHISMS OF SOME FINITE GROUPS

S. FOULADI AND R. ORFI Kharazmi University and Arak University, Iran

ABSTRACT. Let G be a group. An automorphism α of G is called a commuting automorphism if $xx^{\alpha} = x^{\alpha}x$ for all $x \in G$. We denote the set of all commuting automorphisms of G by $\mathcal{A}(G)$. Moreover a group G is called an AC-group if the centralizer of every non-central element of G is abelian. In this paper we show that $\mathcal{A}(G)$ is a subgroup of the automorphism group of G for all finite AC-groups, p-groups of maximal class, and metacyclic p-groups.

1. INTRODUCTION

Let G be a group and Aut(G) be the group of all automorphisms of G. Following [4], we define $\mathcal{A}(G) = \{\alpha \in \operatorname{Aut}(G) | xx^{\alpha} = x^{\alpha}x \text{ for all } x \in G\}$ and any element of this set is called a commuting automorphism. This definition first was considered for rings, see [2], [5] and [11]. Also I. N. Herstein in [8] posed a question: when $\mathcal{A}(G) = 1$? Then T. J. Laffey ([9]) and M. Pettet ([12]) provided extensions of Herstein's result. Moreover we see that $\mathcal{A}(G)$ is a subset of Aut(G) and Aut_c(G), the group of central automorphisms of G is a subset of $\mathcal{A}(G)$. This observation suggests a question which was considered by Deaconescu, Silberberg and Walls in [4]:

Is it true that the set $\mathcal{A}(G)$ is always a subgroup of $\operatorname{Aut}(G)$?

Obviously $\operatorname{Aut}_{c}(G) = \mathcal{A}(G) = \operatorname{Aut}(G)$ when G is abelian. Moreover it is shown in [4] that $\mathcal{A}(G)$ is not always a subgroup of $\operatorname{Aut}(G)$. They constructed a finite non-abelian 2-group G of order 2^{5} such that $\mathcal{A}(G)$ is not a subgroup of $\operatorname{Aut}(G)$. In this paper we answer this question in some families of groups. Specially we show that if G is a finite $\mathcal{A}C$ -group, a finite p-group of maximal

 $^{2010\} Mathematics\ Subject\ Classification.\ 20F28,\ 20D15.$

Key words and phrases. Commuting automorphisms, AC-groups, minimal non-abelian p-groups, metacyclic p-groups, p-groups of maximal class.

⁹¹

class, or a finite metacyclic *p*-group, then $\mathcal{A}(G)$ is a subgroup of $\operatorname{Aut}(G)$ and in some cases $\mathcal{A}(G) = \operatorname{Aut}_c(G)$. We note that a group *G* is called an *AC*-group if the centralizer of every non-central element of *G* is abelian. Therefore we deduce that $\mathcal{A}(G)$ is also a subgroup of $\operatorname{Aut}(G)$ when *G* is a finite minimal non-abelian group, a *p*-group with the central quotient of order less than p^4 , a *p*-group of order less that p^5 or a finite *p*-group with a cyclic maximal subgroup.

Throughout this paper the following notation is used. All groups are assumed to be finite. The letter p denotes a prime number. $C_G(x)$ is the centralizer of an element x in a group G. The nilpotency class of a group Gis denoted by cl(G). A p-group of maximal class is a non-abelian group G of order p^n with cl(G) = n - 1. The terms of the lower central series of G are denoted by $\gamma_i(G)$. If α is an automorphism of G and x is an element of G, we write x^{α} for the image of x under α and $[x, \alpha]$ is $x^{-1}x^{\alpha}$. Also $\operatorname{Aut}_Z^Z(G)$ is the group of central automorphisms of G, which fix Z(G) elementwise. We write [a, b] for $a^{-1}b^{-1}ab$ when $a, b \in G$. Finally \mathbb{Z}_m^n is the direct product of n copies of the cyclic group of order m.

2. AC-groups

In this section we prove that $\mathcal{A}(G) \leq \operatorname{Aut}(G)$ for any AC-group G. As a consequence we see that if G is a minimal non-abelian group, a non-abelian p-group with $|G/Z(G)| \leq p^3$, a p-group (p > 2) with a cyclic maximal subgroup or a p-group of order less that p^5 , then $\mathcal{A}(G) \leq \operatorname{Aut}(G)$. Moreover in some cases we see that $\mathcal{A}(G) = \operatorname{Aut}_c(G)$. First we state two following lemmas that are needed for the main results of the paper.

LEMMA 2.1 ([4, Lemma 2.1]). If $\alpha \in \mathcal{A}(G)$ and $x, y \in G$, then $[x^{\alpha}, y] = [x, y^{\alpha}]$.

LEMMA 2.2 ([4, Lemma 2.4 (vi)]). Let G be a group and α , $\beta \in \mathcal{A}(G)$. Then $\alpha\beta \in \mathcal{A}(G)$ if and only if $[x^{\alpha}, x^{\beta}] = 1$ for all $x \in G$.

LEMMA 2.3. If G is an AC-group, then $\mathcal{A}(G) \leq \operatorname{Aut}(G)$.

PROOF. Let $\alpha, \beta \in \mathcal{A}(G)$. Since $\mathcal{A}(G)$ is finite, it is enough to prove that $\alpha\beta \in \mathcal{A}(G)$ or equivalently $[x^{\alpha}, x^{\beta}] = 1$ for all $x \in G$ by Lemma 2.2. First if $x \in G \setminus Z(G)$, then $\mathcal{C}_G(x)$ is abelian and so $[x^{\alpha}, x^{\beta}] = 1$. Also if $x \in Z(G)$, then $x^{\alpha}, x^{\beta} \in Z(G)$, as desired.

LEMMA 2.4. Let G be a non-abelian p-group with $|G/Z(G)| \leq p^3$. Then G is an AC-group.

PROOF. Let g be a non-central element of G. Then $Z(G) < Z(\mathcal{C}_G(g)) \leq \mathcal{C}_G(g) < G$ since $g \in Z(\mathcal{C}_G(g)) \setminus Z(G)$. This implies that $|\frac{\mathcal{C}_G(g)}{Z(\mathcal{C}_G(g))}|$ divides p. Hence $Z(\mathcal{C}_G(g)) = \mathcal{C}_G(g)$, as desired.

LEMMA 2.5 ([3, Theorem 1.2]). Let G be a group of order p^n with a cyclic maximal subgroup. Then G has one of the following presentations:

(i) $M_{p^n} = \langle a, b | a^{p^{n-1}} = b^p = 1, a^b = a^{1+p^{n-2}} \rangle$, where $n \ge 4$ if p = 2.

- (ii) D_{2^n} , the dihedral group.
- (iii) Q_{2^n} , the generalized quaternion group.
- (iv) SD_{2^n} (n > 3), the semi dihedral group.

COROLLARY 2.6. For any of the following groups, $\mathcal{A}(G)$ is a subgroup of $\operatorname{Aut}(G)$.

- (i) G is a non-abelian p-group with $|G/Z(G)| \le p^3$.
- (ii) G is a p-group of order less than p^5 .
- (iii) G is a p-group with a cyclic maximal subgroup, where p > 2.
- (iv) G is a minimal non-abelian group.

PROOF. (i)-(ii) This follows from lemmas 2.3 and 2.4.

(iv) This is clear by the fact G is an AC-group and Lemma 2.3.

(iii) It is easy to see that $|G/Z(G)| = p^2$ by Lemma 2.5(i). The rest follows from (i).

LEMMA 2.7. If $G = M_{n^n}$, then $\mathcal{A}(G) = \operatorname{Aut}_c(G)$.

PROOF. By Lemma 2.5(i), we see that $C_G(a) = \langle a \rangle$, |G'| = p and $Z(G) = \Phi(G) = \langle a^p \rangle$. Let $\alpha \in \mathcal{A}(G)$, then we may write $a^{\alpha} = a^i b^j$ and $b^{\alpha} = a^r b^s$, where $0 \leq s, j < p$ and $0 \leq i, r < p^{n-1}$. Since $[a^{\alpha}, a] = 1$ we deduce that $b^j \in C_G(a)$. Hence $b^j \in \langle a \rangle \cap \langle b \rangle = 1$ and so (i, p) = 1. Also we have $1 = [b^{\alpha}, b] = [a^r, b] = [a, b]^r$ which implies that p divides r. Therefore $a^r \in Z(G)$. Now by applying [7, Proposition 3, p. 44] and the third relation of the presentation of G we deduce that $1 = [a, b]^{i(s-1)}$ and so p divides s - 1 since (i, p) = 1. Therefore s = 1. Moreover by Lemma 2.1, we have $[a^{\alpha}, b] = [a, b^{\alpha}]$, which yields that $[a, b]^{i-1} = 1$ or equivalently p divides i - 1. Therefore $\alpha \in \operatorname{Aut}_c(G)$, completing the proof.

3. p-groups of maximal class

Let G be a p-group of maximal class and order p^n , where $n \ge 4$. In this section we show that $\mathcal{A}(G) = \operatorname{Aut}_c(G)$. First we give some properties of p-groups of maximal class.

LEMMA 3.1. Let G be a p-group of maximal class and order p^n . Then

- (i) G is purely non-abelian,
- (ii) $\operatorname{Aut}_c(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

PROOF. (i) Assume by the way of contradiction that $G = A \times B$, where A is a non-trivial abelian subgroup of G and B is a purely non-abelian subgroup of G. Then cl(G) = cl(B) = n - 1, which is a contradiction since |B| divides p^{n-1} .

(ii) By (i) and [1, Theorem 1], we have $|\operatorname{Aut}_c(G)| = p^2$ since $G/G' \cong \mathbb{Z}_p \times \mathbb{Z}_p$ and $Z(G) \cong \mathbb{Z}_p$. Moreover

$$\operatorname{Aut}_{Z}^{Z}(G) \cong \operatorname{Hom}(G/Z(G), Z(G)) \cong \operatorname{Hom}(\frac{G/Z(G)}{(G/Z(G))'}, Z(G)) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$$

by [13, Result 1.1], which completes the proof since $\operatorname{Aut}_Z^Z(G) \leq \operatorname{Aut}_c(G)$.

Let G be a p-group of maximal class and order p^n $(n \ge 4)$, where p is a prime. Following [10], we define the 2-step centralizer K_i in G to be the centralizer in G of $\gamma_i(G)/\gamma_{i+2}(G)$ for $2 \le i \le n-2$ and define $P_i = P_i(G)$ by $P_0 = G$, $P_1 = K_2$, $P_i = \gamma_i(G)$ for $2 \le i \le n$. Take $s \in G - \bigcup_{i=2}^{n-2} K_i$, $s_1 \in P_1 - P_2$ and $s_i = [s_{i-1}, s]$ for $2 \le i \le n-1$. It is easily seen that $\{s, s_1\}$ is a generating set for G and $P_i(G) = \langle s_i, \ldots, s_{n-1} \rangle$ for $1 \le i \le n-1$. We note that $P_{n-1} = Z(G)$.

For the rest of this section we fix the above notation.

LEMMA 3.2 ([6, Hilfssatz III. 14.13]). If G is a p-group of maximal class of order p^n and $s \notin K_i$ for $2 \leq i \leq n-2$, then $C_G(s) = \langle s \rangle P_{n-1}(G)$ and $s^p \in P_{n-1}$.

Now we state the following Lemma from [4] that will be used in the sequel.

LEMMA 3.3 ([4, Lemma 2.2]). If $\alpha \in \mathcal{A}(G)$ and $x \in G$, then $[x, \alpha] \in \mathcal{C}_G(G')$.

THEOREM 3.4. Let G be a p-group of maximal class and order p^n , where $n \ge 4$. Then $\mathcal{A}(G) = \operatorname{Aut}_c(G)$.

PROOF. Let $\alpha \in \mathcal{A}(G)$, then we may write $s^{\alpha} = sx$ and $s_1^{\alpha} = s_1y$, where $x, y \in \mathcal{C}_G(G')$ by Lemma 3.3. Now by considering $[s^{\alpha}, s] = 1$ we see that $x \in \mathcal{C}_G(s)$ and so we may assume that $x = s^i z$, where $z \in Z(G)$ and $0 \le i < p$ by Lemma 3.2. We claim that i = 0. Otherwise, since $x \in \mathcal{C}_G(G')$, we have $1 = [s^i z, s_2] = [s^i, s_2]$. Hence $s_3 = [s_2, s] = 1$ since (i, p) = 1. Therefore $P_3(G) = 1$ and so $|G| = p^3$, which is impossible. Therefore $x \in Z(G)$. Moreover $[s^{\alpha}, s_1] = [s, s_1^{\alpha}]$ by Lemma 2.1, which implies that $y \in \mathcal{C}_G(s)$ by using the fact that $y \in \mathcal{C}_G(G')$. Hence by the same argument as above we conclude that $y \in Z(G)$ and so $\alpha \in \operatorname{Aut}_c(G)$, as desired.

COROLLARY 3.5. Let G be a group of order p^n with a cyclic maximal subgroup. Then $\mathcal{A}(G) = \operatorname{Aut}_c(G)$.

PROOF. If $G = D_8$ or Q_8 , then it is easy to check that $\mathcal{A}(G) = \operatorname{Aut}_c(G)$. Therefore the proof follows from lemmas 2.5, 2.7 and Theorem 3.4.

4. Metacyclic *p*-groups

Let G be a non-abelian metacyclic p-group. In this section we show that $\mathcal{A}(G) \leq \operatorname{Aut}(G)$. We know that there exists a normal cyclic subgroup $\langle a \rangle$ of G such that $G/\langle a \rangle$ is cyclic. Therefore we may choose an element $b \in G$ and a number $1 \leq k < |a|$ such that $G = \langle b, a \rangle$ and $b^{-1}ab = a^k$ and so any element of G has the form $b^j a^i$ for $j, i \geq 0$.

For the rest of the paper we fix the above notation.

LEMMA 4.1. Let G be a non-abelian metacyclic p-group.

- (i) $k \equiv 1 \pmod{p}$,
- (ii) $[a^i, b] = [a, b]^i = a^{(k-1)i}$ and $[b^n, a] = [b, a]^{1+k+\dots+k^{n-1}}$ for $i, n \ge 1$,
- (iii) $G' = \langle [a, b] \rangle$,
- (iv) if $b^{s-1} \in \mathcal{C}_G(G')$, where $s \ge 1$, then $[b^{ns}, a] = [b^s, a]^{1+k+\dots+k^{n-1}}$ for any $n \ge 1$.

PROOF. (i) Obviously $G' \leq \langle a \rangle$ and $\langle a^{k-1} \rangle \leq G'$. Now if (p, k-1) = 1, then $G' = \langle a \rangle$ and so G/G' is cyclic which is a contradiction.

(ii) This follows from $b^{-1}ab = a^k$.

(iii) We have $G' = \langle [x, y] | x, y \in G \rangle$ which completes the proof by using (ii).

(iv) We use induction on n and the fact that $[b^{ns}, a]^b = [b^{ns}, a]^k$ since $[b^{ns}, a] \in \langle a \rangle$ and $b^{-1}ab = a^k$.

THEOREM 4.2. Let G be a non-abelian metacyclic p-group. Then

$$\mathcal{A}(G) \leq \operatorname{Aut}(G).$$

PROOF. Let $\alpha \in \mathcal{A}(G)$, then we may write $a^{\alpha} = a^{i}b^{j}$ and $b^{\alpha} = b^{s}a^{l}$. Therefore b^{j} , $a^{l} \in Z(G)$ by the definition of $\mathcal{A}(G)$. Hence we may assume that $a^{\alpha} = a^{i}z_{1}$ and $b^{\alpha} = b^{s}z_{2}$, where $z_{1}, z_{2} \in Z(G)$. Consequently for $\beta \in \mathcal{A}(G)$ we have $a^{\beta} = a^{i'}z'_{1}$ and $b^{\beta} = b^{s'}z'_{2}$, where $z'_{1}, z'_{2} \in Z(G)$. Now if $g \in G$, then we may write $g = b^{r}a^{t}$. Therefore $[g^{\alpha}, g^{\beta}] = [b^{sr}, a]^{i't}[b^{s'r}, a]^{-it}$ by Lemma 4.1(ii). Moreover by Lemma 3.3, $b^{-1}b^{\alpha}$ and $b^{-1}b^{\beta} \in \mathcal{C}_{G}(G')$ or equivalently $b^{s-1}, b^{s'-1} \in \mathcal{C}_{G}(G')$. Also by Lemma 2.1, we see that $[b, a^{i}] = [b^{s}, a]$ and $[b, a^{i'}] = [b^{s'}, a]$. This implies that $[g^{\alpha}, g^{\beta}] = 1$ by Lemma 4.1(iv) and (ii), which completes the proof by Lemma 2.2.

References

- J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137–143.
- H. E. Bell and W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92–101.
- [3] Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin, 2008.
- [4] M. Deaconescu, G. Silberberg and G. L. Walls, On commuting automorphisms of groups, Arch. Math. (Basel) 79 (2002), 423–429.

- [5] N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III. 49 (1955), 19–22.
- [6] B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin–New York, 1967.
- [7] D. L. Johnson, Presentation of groups, 2nd ed., Cambridge University Press, Cambridge, 1997.
- [8] I. N. Herstein, J. L. Brenner and W. A. Newcomb, Problems and solutions: elementary problems: E3039-E3040, Amer. Math. Monthly 91 (1984), 203.
- [9] I. N. Herstein, T. J. Laffey, and J. Thomas, Problems and solutions: solutions of elementary problems: E3039, Amer. Math. Monthly 93 (1986), 816–817.
- [10] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, Oxford University Press, Oxford, 2002.
- [11] J. Luh, A note on commuting automorphisms of rings, Amer. Math. Monthly 77 (1970), 61–62.
- [12] M. Pettet, Personal communication.
- [13] P. Schmid, Normal p-subgroups in the group of outer automorphisms of a finite pgroup, Math. Z. 147 (1976), 271–277.

S. Fouladi Faculty of Mathematical Sciences and Computer Kharazmi University 50 Taleghani Ave., Tehran 1561836314 Iran *E-mail*: s_fouladi@tmu.ac.ir

R. Orfi Department of Mathematics Faculty of Science, Arak University Arak 38156-8-8349 Iran *E-mail*: r-orfi@araku.ac.ir *Received*: 13.8.2012.