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STRONG SIZE PROPERTIES
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Abstract. We prove that countable aposyndesis, finite-aposyndesis,
continuum chainability, acyclicity (for n ≥ 3), and acyclicity for locally
connected continua are strong size properties. As a consequence of our
results we obtain that arcwise connectedness is a strong size property which
is originally proved by Hosokawa.

1. Introduction

Hosokawa defines strong size maps on the n-fold hyperspace of a
continuum in [5] as a generalization of Whitney maps for the hyperspace
of subcontinua of a continuum and proves the existence of such maps ([5,
Theorem 2.2]). He also proves that local connectedness ([5, Theorem 3.1]),
arcwise connectedness ([5, Theorem 3.3]) and aposyndesis ([5, Theorem 3.4])
are strong size properties. It is natural to ask what other topological
properties are strong size properties. We prove that countable aposyndesis
(Theorem 4.1), finite-aposyndesis (Corollary 4.2), continuum chainability
(Corollary 4.4), acyclicity for n ≥ 3 (Corollary 4.17), and acyclicity for
locally connected continua (Corollary 4.18) are strong size properties. We
note that Corollary 4.2 answers one of the questions asked by Hosokawa ([5,
Question, p. 964]). As a consequence of Theorem 4.3 we obtain that arcwise
connectedness is a strong size property (Corollary 4.5) which is originally
proved by Hosokawa. We end the paper with a theorem about extending
strong size map defined on a closed subset of the n-fold hyperspace of a
continuum to the complete n-fold hyperspace (Theorem 5.4).
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Strong size properties are the natural generalization of Whitney properties
which have been study extensively in [15, Chapter XIV] and [8, Chapter VIII].

2. Definitions and notation

Given a subset A of a metric space Z with metric d, the closure, the
boundary and the interior of A are denoted by ClZ(A), BdZ(A) and IntZ(A),
respectively. Also, Vr(A) denotes the open ball of radius r about A.

Let Z be a metric space. By a deformation we mean a mapH : Z×[0, 1]→
Z such that H((z, 0)) = z for each z ∈ Z. Let A = {H((z, 1)) | z ∈ Z}. If
the map r : Z → A given by r(z) = H((z, 1)) is a retraction from Z onto
A, then H is a deformation retraction from Z onto A. If H is a deformation
retraction from Z onto A and for each a ∈ A and each t ∈ [0, 1], H((a, t)) = a,
then H is a strong deformation retraction from Z onto A. The set A is called
a deformation retract of Z (strong deformation retract of Z, respectively).
A metric space Z is an absolute retract provided that for each embedding
e : Z → X of Z into a metric space X such that e(Z) is closed in X , e(Z) is
a retract of X .

A map is a continuous function. The symbol →→ denotes a surjective map.
A continuum is a nonempty compact connected metric space. A continu-

umX is aposyndetic provided that for each pair of points x1 and x2 ofX , there
exists a subcontinuum W of X such that x1 ∈ IntX(W ) ⊂ W ⊂ X \ {x2}.
The continuum X is finitely aposyndetic (countable aposyndetic) if for each
finite (countable closed) subset F of X and each point x ∈ X \F , there exists
a subcontinuum W of X such that x ∈ IntX(W ) ⊂ W ⊂ X \ F .

Let p and q be two points of the continuum X . A finite collection
{L1, . . . , Lm} of sets is called a chain from p to q provided that p ∈ L1,
q ∈ Lm and Lj ∩ Lk 6= ∅ if and only if |j − k| ≤ 1. A chain is called a
continuum chain if each of its elements is a continuum. A continuum chain
is an ε-continuum chain if the diameter of each of its elements is less than ε.
The continuum X is said to be continuum chainable provided that for each
pair of points p and q of X and each ε > 0, there exists an ε-continuum chain
from p to q in X .

Remark 2.1. Observe that any arcwise connected continuum is a
continuum chainable continuum.

If X is a continuum and n is a positive integer, then Ȟn(X) denotes
the reduced nth Čech cohomology group of X with integer coefficients. A
continuum X is said to be acyclic if Ȟ1(X) is trivial.

Given a continuum X , we consider the following hyperspaces of X :

2X = {A ⊂ X | A is nonempty and closed}

and
Cn(X) = {A ∈ 2X | A has at most n components},
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where n is a positive integer. Cn(X) is called the n-fold hyperspace of X .
These spaces are topologized with the Hausdorff metric defined as follows:

H(A,B) = inf{ε > 0 | A ⊂ Vε(B) and B ⊂ Vε(A)},

H always denotes the Hausdorff metric on 2X . When n = 1, we write C(X)
instead of C1(X). Given an element B of Cn(X), the mesh of B, denoted by
mesh(B), is

mesh(B) = max{diam(K) | K is a component of B}.

The symbol Fn(X) denotes the n-fold symmetric product of X ; that is:

Fn(X) = {A ∈ Cn(X) | A has at most n points}.

Note that, by definition, Fn(X) ⊂ Cn(X). It is known that if X is a
continuum, then 2X and Cn(X) are arcwise connected continua (for 2X and
C(X) see [15, (1.13)]; for Cn(X) and n ≥ 2, see [11, 1.8.12]). Also, Fn(X) is
a continuum for all positive integers n ([1, p. 877]).

Let X be a continuum and let n be a positive integer. An order arc in
Cn(X) is an arc α : [0, 1] → Cn(X) such that if 0 ≤ s < t ≤ 1, then α(s) ⊂ α(t)
and α(s) 6= α(t).

Let B and A be two elements of Cn(X). We say that the pair (B,A)
satisfies property (OA) provided that B ⊂ A and each component of A

intersects B. Let us note that this condition guaratees the existence of an
order arc, in Cn(X), from B to A when B ⊂ A and B 6= A [15, (1.8)].

Let X be a continuum and let n be a positive integer. If B ∈ Cn(X),
define:

Cn(B,X) = {A ∈ Cn(X) | B ⊂ A};

OAn(B,X) = {A ∈ Cn(X) | (B,A) satisfies property (OA)}.

If A ∈ OAn(B,X), then

OAn(B,A) = {D ∈ OAn(B,X) | D ⊂ A}.

A map µ : Cn(X) → [0,∞) is said to be a strong size map provided that:
(1) µ(A) = 0 for every A ∈ Fn(X);
(2) if A ⊂ B, A 6= B and B 6∈ Fn(X), then µ(A) < µ(B).

Since X is nondegenerate, we may assume that µ(X) = 1. By [5, Theorem
2.2], strong size maps exist for each continuum X and each positive integer
n. Note that for n = 1 a strong size map is just a Whitney map.

Each set of the form µ−1(t) for any strong size map µ for Cn(X) and any
t ∈ [0, 1] is called a strong size level of Cn(X).

A topological property P is called a strong size property if whenever X

has property P , so does every strong size level of Cn(X) for each positive
integer n.
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3. Preliminary Results

Lemma 3.1. Let X be a continuum, let n be a positive integer and let

µ : Cn(X)→→[0, 1] be a strong size map. If t > 0 and S = µ−1(t) is a strong

size level for Cn(X), A is a closed subset of S and B ∈ S \A, then there exists

a ε > 0 such that A 6⊂ Vε(B) for any A ∈ A.

Proof. Suppose the result is not true. Then for each positive integer m,
there exists Am ∈ A such that Am ⊂ V 1

m
(B). Since A is closed, without loss

of generality, we assume that the sequence {Am}∞m=1 converges to an element
A of A. Note that A ⊂ B. Since S a strong size level, we have that A = B.
Hence, B ∈ A, a contradiction to the election of B. Therefore, the lemma is
true.

The proof of the following lemma is similar to the one done for a
similar result for Whitney levels ([15, (14.8.1)]); we include the details for
completeness.

Lemma 3.2. Let X be a continuum, let n be a positive integer, let

µ : Cn(X)→→[0, 1] be a strong size map, and let S = µ−1(t) be a strong size

level for Cn(X). Let A,B ∈ S, let A1, . . . , Aℓ be the components of A and let

B1, . . . , Bm be the components of B. If P ∈ Fn(X) is such that P ⊂ A ∩ B,

P ∩ Aj 6= ∅ for each j ∈ {1, . . . , ℓ} and P ∩ Bk 6= ∅ for all k ∈ {1, . . . ,m},
then there exists an arc in S joining A and B.

Proof. Let α, β : [0, 1] → Cn(X) be two order arcs such that α(0) = P ,
α(1) = A, β(0) = P and β(1) = B ([2, Proposition 2.6]). Given s ∈ [0, 1],
define fs : [0, 1] → Cn(X) by fs(r) = α(s) ∪ β(r). Then fs is well defined and
continuous. Since µ(fs(0)) = µ(α(s) ∪ β(0)) = µ(α(s)) ≤ t and µ(fs(1)) =
µ(α(s)∪β(1)) = µ(α(s)∪B) ≥ t, there exists rs ∈ [0, 1] such that µ(fs(rs)) =
t.

Let γ : [0, 1] → S be given by γ(s) = α(s) ∪ β(rs). We show γ is well
defined. To this end, let s ∈ [0, 1] and suppose there exists r ∈ [0, 1] such that
α(s) ∪ β(r) ∈ S. Since β is an order arc, we have that either β(r) ⊂ β(rs)
or β(rs) ⊂ β(r). Without loss of generality we assume that β(r) ⊂ β(rs).
Then α(s)∪β(r) ⊂ α(s)∪β(rs). Since µ is a strong size map, we obtain that
α(s) ∪ β(r) = α(s) ∪ β(rs). Thus, γ is well defined.

To see that γ is continuous, let {sm}∞m=1 be sequence of elements of
[0, 1] converging to an element s of [0, 1]. Then the corresponding sequence
{rsm}∞m=1 has a convergent subsequence {rsmk

}∞k=1. Let r be the limit

of the sequence {rsmk
}∞k=1. Since α and β are continuous, we have that

lim
k→∞

γ(smk
) = lim

k→∞
(α(smk

) ∪ β(rsmk
)) = α(s) ∪ β(r). By definition of γ,

γ(s) = α(s)∪ β(rs). Since both α(s) ∪ β(r) and α(s)∪ β(rs) belong to S and
either α(s) ∪ β(r) ⊂ α(s) ∪ β(rs) or α(s) ∪ β(rs) ⊂ α(s) ∪ β(r), we have that
α(s) ∪ β(r) = α(s) ∪ β(rs). Therefore, γ is continuous.
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It seems that the following lemma is well known but we cannot find a
reference for it.

Lemma 3.3. If X is a continuum, then Ȟ0(X) is trivial.

Proof. The result follows form three the facts: (1) each continuum is an
inverse limit of connected polyhedra ([13, Theorem 2]), (2) the 0th reduced
cohomology group of a connected polyhedron is trivial ([14, 42.2]), and (3)
the continuity theorem for Čech cohomology ([18, Theorem 7–7]).

4. Strong Size Properties

A topological property P is called a strong size property if whenever X

has property P , so does every strong size level of Cn(X) for each positive
integer n.

H. Hosokawa proves in [5, Theorem 3.4] that aposyndesis is a strong size
property, we extend this result to countable aposyndesis.

Theorem 4.1. Countable aposyndesis is a strong size property.

Proof. Let X be a countable aposyndetic continuum and let
µ : Cn(X)→→[0, 1] be a strong size map, let t ∈ [0, 1] and let S = µ−1(t)
be a strong size level for Cn(X). It is known that if n ≥ 2, then Fn(X)
is countable aposyndetic [10, Theorem 8]. Hence, the case t = 0 follows.
Suppose t > 0 and let A be a countable closed subset of S. Let B ∈ S \ A.
By Lemma 3.1, there exists ε > 0 such that A 6⊂ Vε(B) for any A ∈ A. Let
U = X \ ClX(V ε

2
(B)). By [7, Theorem 2.1], there exists a map s : A → X

such that s(A) ∈ A ∩ U for each A ∈ A. Hence, s(A) is a countable closed
subset of X such that s(A) ∩ B = ∅. Then for each b ∈ B, there exists a
subcontinuum Kb of X such that b ∈ IntX(Kb) ⊂ Kb ⊂ X \ s(A). Thus,
{IntX(Kb) | b ∈ B} is an open cover of B. Since B is compact, there exist
b1, . . . , bℓ ∈ B such that B ⊂ ∪ℓ

j=1IntX(Kbj ) ⊂ ∪ℓ
j=1Kbj . Without loss

of generality, we assume that the family {Kb1 , . . . ,Kbℓ} consists of pairwise
disjoint continua. Hence, by [5, Theorem 2.14], 〈Kb1 , . . . ,Kbℓ〉 ∩ S is a
subcontinuum of S. Note that B ∈ IntCn(X)(〈Kb1 , . . . ,Kbℓ〉) ∩ S. Since

for each j ∈ {1, . . . , ℓ}, s(A) ∩ Kbj = ∅, we obtain that A 6⊂ ∪ℓ
j=1Kbj for

any A ∈ A. Hence, (〈Kb1 , . . . ,Kbℓ〉 ∩ S) ∩ A = ∅. Therefore, S is countable
aposyndetic.

The following corollary answers one of the questions of Hosokawa [5,
Question, p. 964].

Corollary 4.2. Finite aposyndesis is a strong size property.

Theorem 4.3. Let X be a continuum chainable continuum, let n be a

positive integer and let µ : Cn(X)→→[0, 1] be a strong size map. If t ∈ (0, 1)
and S = µ−1(t), then S is arcwise connected.
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Proof. Let A and B be two elements of S. Since Cn(X) is compact and
µ is continuous, there exists ε > 0 such that if D ∈ Cn(X) and mesh(D) < ε,
then µ(D) < t. Since t > 0 and A,B ∈ S, at least one of the components of
A and B is nondegenerate. Hence, A and B have uncountably many points.
Let {a1, . . . , an} be a subset of A such that it intersects each component of
A. Similarly, let {b1, . . . , bn} be a subset of B such that it intersects each
component of B.

SinceX is a continuum chainable continuum, for each i ∈ {1, . . . , n}, there
exist subcontinua Di

1, . . . , D
i
ki

of X such that ai ∈ Di
1, bi ∈ Di

ki
, Di

j ∩Di
ℓ 6= ∅

if and only if |j − ℓ| ≤ 1, and diam(Di
j) < ε

n
for j ∈ {1, . . . , ki}. Let k =

max{k1, . . . , kn}. For each j ∈ {1, . . . , k}, let Dj = ∪n
i=1D

i
j , where Di

j = Di
ki

if j ≥ ki. Note that for every j ∈ {1, . . . , k}, Dj ∈ Cn(X) and mesh(Dj) < ε.
Hence, µ(Dj) < t for all j ∈ {1, . . . , k}. For each j ∈ {1, . . . , k − 1}, let
pij ∈ Di

j ∩Di
j+1 and let Pj = {p1j , . . . , p

n
j }.

For each j ∈ {1, . . . , k}, let αj be an order arc from Dj to X and let
D′

j ∈ S be such that {D′
j} = αj ∩ S. Note that A, D′

1 and {a1, . . . , an}
satisfy the hypothesis of Lemma 3.2. Then there exists an arc β1 in S from
A to D′

1. Also note that if j ∈ {1, . . . , k − 1}, then D′
j , D

′
j+1 and Pj satisfy

the hypothesis of Lemma 3.2. Thus, there exists an arc βj+1 in S from D′
j

to D′
j+1. Similarly, by Lemma 3.2, there exists an arc βk+1 in S from D′

k

to B. Hence, ∪k+1
j=1βj contains an arc from A to B. Therefore, S is arcwise

connected.

We have the following:

Corollary 4.4. Being a continuum chainable continuum is a strong size

property.

Proof. Let X be a continuum chainable continuum and let
µ : Cn(X)→→[0, 1] be a strong size map, let t ∈ [0, 1] and let S = µ−1(t) be a
strong size level for Cn(X). It is known that X is continuum chainable if and
only if Fn(X) is continuum chainable for each positive integer n ([2, Theorem
2.9]). Hence, the case t = 0 follows. For t > 0, the result follows from
Remark 2.1 and Theorem 4.3.

As a consequence of Remark 2.1, Theorem 4.3 and [2, Proposition 2.7],
we obtain the following result of Hosokawa ([5, Theorem 3.3]):

Corollary 4.5. Being an arcwise connected continuum is a strong size

property.

Our next goal is to prove that for an integer n ≥ 3, the strong size levels
of Cn(X) are acyclic (Corollary 4.17). To this end, we follow [17]. We include
all the details for the convenience of the reader.

Let us mention that it is known that acyclicity is not a Whitney property
([16, Example 2]) and it is for 1-dimensional continua ([17, Corollary 7]). Since
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we do not ask any additional properties to the continuum X , Theorem 4.16
says that, for n ≥ 3, the levels of strong size maps are much nicer than the
ones of Whitney maps. In particular, Corollary 4.17, tells us the acyclicity is
a strong size property.

A nonempty collection Σ of closed subsets of a continuum X is called a
structure if Σ is closed with respect to finite unions, finite intersections, and
intersections of towers ordered by inclusion. If Σ is a structure on X , then
an element P of Σ is called an indecomposable set provided that whenever
P = A ∪B, for some elements A and B of Σ, we have that P = A or P = B.

Given a continuum X , we consider two structures in Cn(X). If B is a
closed subset of Cn(X), let

M(B) = ∪{OAn(B,X) | B ∈ B}.

Remark 4.6. Note that if B and D are two closed subsets of Cn(X),
then M(B ∪D) = M(B)∪M(D) and M(B) ∩M(D) = M(M(B) ∩M(D)).
Also, if {Bλ}λ∈Λ is a tower ordered by inclusion, then M (∩λ∈ΛM(Bλ)) =
∩λ∈ΛM(Bλ).

Lemma 4.7. Let X be a continuum and let n be a positive integer. If B
is a closed subset of Cn(X), then M(B) is closed in Cn(X).

Proof. Let D ∈ ClCn(X)(M(B)). Then there exists a sequence
{Dm}∞m=1 of elements of M(B) converging to D. For each m, there exists
Bm ∈ B such that Dm ∈ OAn(Bm, X). Since B is compact, there exists
a subsequence {Bmk

}∞k=1 of the sequence {Bm}∞m=1 that converges to an
element B of B. Since Dmk

∈ OAn(Bmk
, X), we have that D ∈ OAn(B,X).

Therefore, M(B) is closed in Cn(X).

For a continuum X and a positive integer n, let

Σ1 = {M(B) | B is a closed subset of Cn(X)}.

By Remark 4.6 and Lemma 4.7, Σ1 is a structure.

Remark 4.8. Note that the indecomposable sets of Σ1 are the sets of
the form M({B}) where B ∈ Cn(X). Since M({B}) is homeomorphic to
OAn(B,X) and this set is an absolute retract ([12, 4.3]), the indecomposable
sets of Σ1 have all its reduced Čech cohomology groups trivial. Hence, all
the reduced Čech cohomology groups of each member of Σ1 are trivial ([17,
Theorem 2]).

The second structure is found in OAn(Z,X), where Z is an arbitrary
point of Cn(X). If B is a closed subset of OAn(Z,X), let

L(B) = ∪{OAn(Z,B) | B ∈ B}.

Remark 4.9. Observe that if B and D are two closed subsets of Cn(X),
then L(B ∪ D) = L(B) ∪ L(D) and L(B) ∩ L(D) = L(L(B) ∩ L(D)). Also, if
{Bλ}λ∈Λ is a tower ordered by inclusion, then L (∩λ∈ΛL(Bλ)) = ∩λ∈ΛL(Bλ).
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Lemma 4.10. Let X be a continuum, let n be a positive integer and let

Z ∈ Cn(X). If B is a closed subset of OAn(Z,X), then L(B) is closed in

Cn(X).

Proof. Let D ∈ ClCn(X)(L(B)). Then there exists a sequence {Dm}∞m=1

of elements of L(B) converging to D. For each m, there exists Bm ∈ B
such that Dm ∈ OAn(Z,Bm). Since OAn(Z,X) is a continuum ([12, 4.3]),
B is compact. Then there exists a subsequence {Bmk

}∞k=1 of the sequence
{Bm}∞m=1 that converges to an element B of B. Since Dmk

∈ OAn(Z,Bmk
),

we obtain that D ∈ OAn(Z,B). Therefore, L(B) is closed in Cn(X).

Let X be a continuum and let n be a positive integer. For an element Z
of Cn(X), let

Σ2 = {L(B) | B is a closed subset of OAn(Z,X)}.

By Remark 4.9 and Lemma 4.10, Σ2 is a structure.

Remark 4.11. Note that the indecomposable sets of Σ2 are the sets of
the form L({B}) where B ∈ OAn(Z,X). Since L({B}) is homeomorphic
to OAn(Z,B) and this set is an absolute retract ([12, 4.3]), all the reduced
Čech cohomology groups of the indecomposable sets of Σ2 are trivial. Thus,
all the reduced Čech cohomology groups of each member of Σ2 are trivial
([17, Theorem 2]).

Let X be a continuum, let n be a positive integer and let µ : Cn(X)→→[0, 1]
be a strong size map. For an element Z of Cn(X) and an element t ∈ [µ(Z), 1],
let

Dn(Z, t) = M({Z}) ∩ µ−1(t).

As a consequence of Lemma 3.2, Dn(Z, t) is an arcwise connected continuum.
The proof of the following theorem is similar to the one given in [17,

Theorem 4].

Theorem 4.12. Let X be a continuum, let n be a positive integer, let

µ : Cn(X)→→[0, 1] be a strong size map and let Z ∈ Cn(X). If t ∈ [µ(Z), 1],
then all the reduced Čech cohomology groups of Dn(Z, t) are trivial.

Proof. Consider the pair {M(Dn(Z, t)),L(Dn(Z, t))} of subsets of
OAn(Z,X). For an integer m ≥ 0, consider the following part of the reduced
Mayer-Vietoris sequence:

Ȟm(M(Dn(Z, t)))⊕ Ȟm(L(Dn(Z, t))) → Ȟm(Dn(Z, t)) → Ȟm+1(OAn(Z,X))

for this pair. By Remarks 4.8 and 4.11, we have that Ȟm(M(Dn(Z, t)))
and Ȟm(L(Dn(Z, t))) are trivial. Since OAn(Z,X) is an absolute retract
([12, 4.3]), Hm+1(OAn(Z,X)) is trivial too. Hence, Ȟm(Dn(Z, t)) is trivial.
Therefore, all the reduced Čech cohomology groups of Dn(Z, t) are trivial.



STRONG SIZE PROPERTIES 111

Let X be a continuum, let n be a positive integer and let µ : Cn(X)→→[0, 1]
be a strong size map. Let s, t ∈ [0, 1] be such that s ≤ t. Define nγ

t
s : µ

−1(s) →
µ−1(t) by nγ

t
s(Z) = Dn(Z, t). The next lemma shows that nγ

t
s is upper

semicontinuous.

Lemma 4.13. Let X be a continuum, let n be a positive integer and let

µ : Cn(X)→→[0, 1] be a strong size map. If s, t ∈ [0, 1] are such that s ≤ t, then

nγ
t
s is upper semicontinuous.

Proof. Let {Zm}∞m=1 be a sequence of elements of µ−1(s) that converges
to an element Z of µ−1(s). Let Y ∈ lim sup nγ

t
s(Zm). Then there exists a

subsequence {mk}∞k=1 of the natural sequence such that for each positive
integer k, there exists Ymk

∈ nγ
t
s(Zmk

) such that the sequence {Ymk
}∞k=1

converges to Y . Since for all k Zmk
⊂ Ymk

and {Zmk
}∞k=1 converges to Z, we

have that Z ⊂ Y . It is easy to see that Y ∈ OAn(Z,X). Hence, Y ∈ nγ
t
s(Z).

Therefore, nγ
t
s is upper semicontinuous.

Theorem 4.14. Let X be a continuum, let n be a positive integer and let

µ : Cn(X)→→[0, 1] be a strong size map. If s, t ∈ [0, 1] are such that s ≤ t, then

nγ
t
s induces a monomorphism (nγ

t
s)

∗ : Ȟ1(µ−1(t)) → Ȟ1(µ−1(s)).

Proof. By Theorem 4.12, all the reduced Čech cohomology groups of

nγ
t
s(Z) are trivial. Suppose t 6= 1, the result is clear for t = 1. Let B ∈

µ−1(t) and suppose that B1, . . . , Bm are the components of B. Note that
(nγ

t
s)

−1(B) = 〈B1, . . . , Bm〉n ∩ µ−1(s) and this set is a proper continuum of
µ−1(s) by [5, Theorem 2.14]. The result now follows from Lemmas 4.13, 3.3
and [17, Theorem 3].

Corollary 4.15. Let X be a continuum, let n be a positive integer and

let µ : Cn(X)→→[0, 1] be a strong size map. If t ∈ [0, 1], then nγ
t
0 induces a

monomorphism (nγ
t
0)

∗ : Ȟ1(µ−1(t)) → Ȟ1(µ−1(0)).

Theorem 4.16. Let X be a continuum, let n ≥ 3 be an integer and let

µ : Cn(X)→→[0, 1] be a strong size map. If S = µ−1(t) is a strong size level,

then S is acyclic.

Proof. By [9, Theorem 8], each map from Fn(X) into the unit circle
in the plane is homotopic to a constant map. This implies, by [3, 8.1], that
Ȟ1(Fn(X)) is trivial; i.e., Fn(X) is acyclic. The theorem now follows from
the fact that µ−1(0) = Fn(X) and Corollary 4.15.

Corollary 4.17. The property of being acyclic is a strong size property

for each integer n ≥ 3.

Corollary 4.18. The property of being acyclic is a strong size property

for locally connected continua.
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Proof. LetX be a locally connected continuum. For n ≥ 3, the corollary
follows from Corollary 4.17. Suppose n = 2. By [4, Satz 1], [20, (7.4)] and
[3, 8.1], we have that F2(X) is acyclic. Hence, since µ−1(0) = F2(X), by
Corollary 4.15, µ−1(t) is acyclic for all t ∈ (0, 1]. If n = 1, the corollary
follows from [6, p. 253], [20, (7.4)] and [3, 8.1]. Therefore, the property of
being acyclic is a strong size property for locally connected continua.

5. Extending Strong Size Maps

Let X be a continuum and let n be a positive integer. We show that if C
is a nonempty closed subset of Cn(X) and µ : C → [0, 1] is a strong size map,
then µ can be extended to a strong size map defined on Cn(X). To this end,
we follow [19].

If P is a partially ordered space and x ∈ P , we write L(x) = {p ∈ P | p ≤
x} and M(x) = {p ∈ P | x ≤ p}, and if A ⊂ P then L(A) = ∪{L(a) | a ∈ A}
and M(A) = ∪{M(a) | a ∈ A}. An element m of a partially ordered space P

is minimal (maximal) if, whenever x ∈ P and x ≤ m (m ≤ x), it follows that
m = x. The set of minimal elements of P is denoted by min(P ) and the set
of maximal elements of P is denoted by max(P ).

Recall that given a nondegenerate continuum X , H. Hosokawa [5] defined
the following order on Cn(X): For A,B ∈ Cn(X), define A < B if A ⊂
B, A 6= B and B 6∈ Fn(X). We denote A ≤ B if A < B or A = B.
Then Cn(X) is a partially ordered space with respect to this order. Clearly
min(Cn(X)) = Fn(X); max(Cn(X)) = {X} and these sets are closed and since
X is a nondegenerate continuum, they are disjoint.

The following three theorems are Theorems 2.2, 2.3 and Lemma 3.2 of
[19]:

Theorem 5.1. If K is a compact subset of a partially ordered space, then

L(K) and M(K) are closed sets.

Theorem 5.2. If x and y are elements of a compact partially ordered

space and if M(x)∩L(y) = ∅, then there are disjoint open sets U and V such

that x ∈ U = M(U) and y ∈ V = L(V ).

Theorem 5.3. Suppose P is a compact partially ordered space such that

min(P ) and max(P ) are disjoint closed sets, Q is a closed subset containing

(min(P )) ∪ (max(P )), and suppose A and B are disjoint nonempty closed

subsets such that A = M(A) and B = L(B). If f : Q → [0, 1] is a continuous

order-preserving function such that f(min(P )) = {0} and f(max(P )) = {1},

then f admits a continuous order-preserving extension f̂ : P → [0, 1] such that

f̂(a) ≥ inf f(A ∩Q) for each a ∈ A and f̂(b) ≤ sup f(B ∩Q) for each b ∈ B.

The proof of the following theorem is similar to the one given for [19,
Theorem 3.1]; we include the appropriate changes for the convenience of the
reader.
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Theorem 5.4. Let X be a continuum and let n be a positive integer. If C

is a nonempty closed subset of Cn(X) and µ : C → [0, 1] is a strong size map,

then µ can be extended to a strong size map µn defined on Cn(X).

Proof. Let C be a nonempty closed subset of Cn(X) and let µ : C → [0, 1]
be a strong size map. Without loss of generality we assume that Fn(X) ∪
{X} ⊂ C (if this is not true, let K = C∪Fn(X)∪{X} and note that µ can be
extended to a strong size map µ′ on K by defining µ′(X) = 1 and µ′(A) = 0
for each A ∈ Fn(X)).

Let U be a countable base for Cn(X) and let

B = {(U ,V) | M(Cl(U)) ∩ L(Cl(V)) = ∅ and U ,V ∈ U}

Then B is countable and we may enumerate its elements B = {(Uk,Vk) |
k is a positive integer}. By Theorem 5.1 the sets M(Cl(U)) and L(Cl(V))
are closed. Hence, by Theorem 5.3, for each positive integer k, there exists a
continuous order-preserving function ωk : Cn(X) → [0, 1] such that ωk|C = µ

and:

ωk(A) ≥ inf µ(M(Cl(Uk)) ∩ C) if A ∈ M(Cl(Uk)),

ωk(B) ≤ maxµ(L(Cl(Vk)) ∩ C) if B ∈ L(Cl(Vk)).

Define µn : Cn(X) → [0, 1] by µn(A) =
∑∞

k=1
1
2k
ωk(A) for all A ∈ Cn(X).

Observe that µn is a continuous extension of µ. Since each ωk is order-
preserving, µn is also order preserving.

We need to show that if A,B ∈ Cn(X) and A < B (in Hosokawa’s sense)
then µn(A) < µn(B). It suffices to prove that there exists a positive integer
k such that ωk(A) < ωk(B).

Let tA = supµ(L(A) ∩ C) and let tB = inf µ(M(B) ∩ C). Since µ is a
strong size map, tA < tB. Let ε > 0 be such that ε < 1

2 (tB − tA). By
Theorem 5.2, there exist two disjoint open subsets U and V of Cn(X) such
that A ∈ V = L(V) and B ∈ U = M(U) and, by compactness, we may assume
that µ(V ∩C) ⊂ [0, tA+ε) and µ(U ∩C) ⊂ (tB −ε, 1]. It follows that there is a
positive integer k such that A ∈ Vk ⊂ Cl(Vk) ⊂ V and B ∈ Uk ⊂ Cl(Uk) ⊂ U ,
from here we obtain:

ωk(A) ≤ tA + ε < tB − ε ≤ ωk(B).

Corollary 5.5. Let X be a continuum. If µ : C(X) → [0, 1] is a Whitney

map, µ can be extended to a strong size map µn defined on Cn(X).
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[13] S. Mardešić and J. Segal, ε-mappings onto polyhedra, Trans. Amer. Math. Soc. 109

(1963), 146–164.
[14] J. R. Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, 1984.
[15] S. B. Nadler, Jr., Hyperspaces of sets, Sociedad Matemática Mexicana, México, 2006.
[16] A. Petrus, Contractibility of Whitney continua in C(X), General Topology Appl. 9

(1978), 275–288.
[17] J. T. Rogers, Jr., Applications of a Vietoris-Begle theorem for multi-valued maps to

the cohomology of hyperspaces, Michigan Math. J. 22 (1975), 315–319.
[18] A. H. Wallace, Algebraic topology, homology and cohomology, W. A. Benjamin, New

York, 1970.

[19] L. E. Ward, Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), 465–469.
[20] G. T. Whyburn, Analytic Topology, AMS, New York, 1942.

S. Maćıas
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México
E-mail : cesarpicman@hotmail.com

Received : 11.1.2012.
Revised : 15.5.2012. & 27.8.2012.


