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Vol. 48(68)(2013), 185 – 210

ASYMPTOTIC ANALYSIS AND EXPLICIT ESTIMATION

OF A CLASS OF STOCHASTIC VOLATILITY MODELS

WITH JUMPS USING THE MARTINGALE ESTIMATING

FUNCTION APPROACH

Friedrich Hubalek and Petra Posedel

Vienna University of Technology, Austria and Zagreb School of Economics
and Management, Croatia

Abstract. We provide and analyze explicit estimators for a class
of discretely observed continuous-time stochastic volatility models with
jumps. In particular we consider the class of non-Gaussian Ornstein-
Uhlenbeck based models, as introduced by Barndorff-Nielsen and Shephard.

We develop in detail the martingale estimating function approach for
this kind of processes, which are bivariate Markov processes, that are not
diffusions, but admit jumps. We assume that the bivariate process is
observed on a discrete grid of fixed width, and the observation horizon
tends to infinity.

We prove rigorously consistency and asymptotic normality based on
the single assumption that all moments of the stationary distribution of the
variance process are finite, and give explicit expressions for the asymptotic
covariance matrix.

As an illustration we provide a simulation study for daily increments,
but the method applies unchanged for any time-scale, including high-
frequency observations, without introducing any discretization error.

1. Introduction

Barndorff-Nielsen and Shephard introduced in their seminal paper
[BNS01] a class of continuous-time stochastic volatility models that allow
flexible modelling, capture many stylized facts of financial time series, and yet
are of great analytical tractability. Here the volatility, or rather more precisely,
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the instantaneous variance follows an Ornstein-Uhlenbeck type process driven
by an increasing Lévy process, and thus exhibits jumps.

BNS-models, as we will call them from now on, are affine models in the
sense of [DPS00] and [DFS03], and associated with Riccati type equations
that can be solved up to quadrature in general. In several concrete cases the
integration can be performed explicitly in closed form in terms of elementary
functions, see [NV03] and [Ven01], and it is this property that turns out to be
extremely useful not only for option pricing, but as we will show below, also
for estimation purposes.

BNS-models have been studied from various points of view in mathe-
matical finance and related fields. In [NV03] option pricing and structure
preserving martingale measures are studied and in [KMKV11] pricing options
on variance is analyzed. Multivariate extensions and option pricing is studied
in [MKPS10]. In [BK05,BMB05,BG05,RS06] the minimal entropy martingale
measure is investigated. The papers [BKR03, Lin06] address the portfolio
optimization problem.1 Bayesian/MCMC/computer intensive estimation is
already in the seminal paper [BNS01], and in the works [RPD04, tH03,GS06,
FSS09]. BNS models are also treated in the textbooks [CT04,Sch03].

Unfortunately, it seems that statistical estimation of the model is the
most difficult problem, and most of the work in that area is focused on
computationally intensive methods. We will show in the present paper that
this is not the only possibility and that an explicit estimator for this class of
stochastic volatility models with jumps can be obtained. Our contributions
are as follows:

• Firstly we develop the closed form estimator using the martingale
estimating function approach. Our approach is based on the general
theory and framework in [Sø99] and [Sø97]. Our work differs from a
large part of the existing literature in so far as we deal with a bivariate
process, the process is not a diffusion, and we do not approximate
transition probabilities, but can use exact expressions.

• Secondly, we prove consistency and asymptotic normality for the
estimator. In doing so we compute explicitly the asymptotic covariance
matrix and develop to that purpose formulas for arbitrary bivariate
integer moments of returns and variance. Since the joint conditional

1Although the model captures several stylized facts of financial data, there have been
some criticisms in that respect as well. The principal objection against the model is that
jumps of returns and volatility are exactly the same, up to a multiplicative factor, and jumps
in returns are one-sided. The turbo Bates model [Bat00] allows more flexible jumpmodelling
while still being affine, which makes the application of the martingale estimating function
approach feasible. Nevertheless, we prefer to present our analysis for the structurally slightly
simple BNS models.

Some results on quantitative end empirical research on the relation of jumps of returns
and volatility can be found in [JT10] and [JKG12].
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moment-generating function of returns X and variance V is known in
closed form we obtain closed form expressions for the joint conditional
moments up to any desired order which yields a sequence of martingale
differences. We employ then the large sample properties and a
multivariate martingale central limit theorem.

• Thirdly we provide a detailed application of the theory of martingale
estimating functions in a non-diffusion setting, including numerical
illustrations.

In the diffusion setting the major difficulty is that the transition
probabilities are not known and are difficult to compute. In contrast to
that, the characteristic function of the transition probability is known
in closed form for many BNS models and the transition probability
can be computed with Fourier methods with high precision. Yet the
model exhibits other peculiarities, see the remarks in Section 2.3.

• The present paper provides the basis and a benchmark for [HP11],
where an empirical application, implementation issues, and some
modifications of our approach are discussed.

This paper is organized as follows: In Section 2.1 we describe the class of
BNS stochastic volatility models in continuous time and present two concrete
examples, the Γ−OU and IG-OU model. In Section 2.2 we introduce the
quantities observed in discrete time that are used for estimation. Section 2.3
contains some remarks of particular features of the model and its estimation.
In Section 3 we present the estimating equations, their explicit solution which
is our estimator and prove its consistency and asymptotic normality. In
Section 4 we present numerical illustrations. In conclusion, further and
alternative developments are discussed, in particular considering the issue
that volatility is typically not observed in discrete time. Explicit moment
calculations of any order can be found in Appendix A.

Let us conclude the introduction by providing for the readers’ convenience
further references on stochastic volatility models, their applications and
estimation in a broader context.

For an overview and key references for the role of stochastic volatility in
modern time series econometrics, applications for modelling, decision making
and prediction on financial markets we refer the reader to [She05] and [AS09].

Derivatives pricing, hedging, and risk management with stochastic
volatility can be found in [Lew00]. Prominent stochastic volatility models
of diffusion type, thus exhibiting continuous sample paths for return and
volatility processes, are for example [HW87,SS91,Hes93]. In the last decade
several continuous-time stochastic volatility models that exhibit jumps both
in return and volatility processes have been suggested and studied, such as
[Bat96]. Further information on BNS model is given in [BNNS02].
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For the general theory and powerful methods to analyze the nature and
relation of jumps in returns and volatility we refer the reader to the works of
Jacod and Ait-Sahalia [ASJ07,ASJ09].

The literature on estimation for discretely observed diffusions is vast, we
just mention the books [PR99], [Kut04] and the works [MR03, Jac02,KS99,
BS95]. In particular, the martingale estimating function approach is used,
developed and studied for example in [Sø99], [Sø00], and [Sø97].

2. The model

2.1. The continuous time model.
2.1.1. The general setting. As in Barndorff-Nielsen and Shephard, see

[BNS01], we assume that the price process of an asset S is defined on
some filtered probability space (Ω,F , (Ft)t≥0, P ) and is given by S(t) =
S0 exp(X(t)) with S0 > 0 a constant. The process of logarithmic returns X
and the instantaneous variance process V satisfy

dX(t) = (µ+ βV (t−))dt+
√

V (t−)dW + ρdZλ(t), X(0) = 0

and

(2.1) dV (t) = −λV (t−)dt+ dZλ(t), V (0) = V0,

where the parameters µ, β, ρ and λ are real constants with λ > 0. The process
W is a standard Brownian motion, the process Z is an increasing Lévy
process, and we define Zλ(t) = Z(λt) for notational simplicity. Adopting
the terminology introduced by Barndorff-Nielsen and Shephard, we will refer
to Z as the background driving Lévy process (BDLP). The Brownian motion
W and the BDLP Z are independent and (Ft) is assumed to be the usual
augmentation of the filtration generated by the pair (W,Zλ). The random
variable V0 has a self-decomposable distribution corresponding to the BDLP
such that the process V is strictly stationary and

E[V0] = ζ, Var[V0] = η.

To shorten the notation we introduce the parameter vector

θ = (λ, ζ, η, µ, β, ρ)⊤,

and the bivariate process

X = (X,V ).

If the distribution of V0 is from a particular class D then X is called a BNS-
DOU(θ) model. For example, in Section 2.1.2 D is the class of Γ distributions
and in Section 2.1.3 D is the class of inverse Gaussian distributions. For
a general discussion of DOU and OUD processes, see [BNS01, Section 2.3.,
p.173]. The bivariate process X is clearly Markovian.
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2.1.2. The Γ-OU model. The Γ-OU model is obtained by constructing
the BNS-model with stationary gamma distribution, V0 ∼ Γ(ν, α), where the
parameters are ν > 0 and α > 0. The corresponding background driving Lévy
process Z is a compound Poisson processes with intensity ν and jumps from
the exponential distribution with parameter α. Consequently both processes
Z and V have a finite number of jumps in any finite time interval.

For the Γ-OU model it is more convenient to work with the parameters
ν and α. The connection to the generic parameters used in our general
development is given by

(2.2) ζ =
ν

α
, η =

ν

α2
.

As the gamma distribution admits exponential moments, we have integer
moments of all orders and our Assumption 1 below is satisfied.

2.1.3. The IG-OU model. The IG-OU model is obtained by constructing
the BNS-model with stationary inverse Gaussian distribution, V0 ∼ (δ, γ),
with parameters δ > 0 and γ > 0.

The corresponding background driving Lévy process is the sum of an
IG(δ/2, γ) process and an independent compound Poisson process with
intensity δγ/2 and jumps from an Γ(1/2, γ2/2) distribution. Consequently
both processes Z and V have infinitely many jumps in any finite time interval.

For the IG-OU model it is more convenient to work with the parameters
δ and γ. The connection to the generic parameters used in our general
development is given by

(2.3) ζ =
δ

γ
, η =

δ

γ3
.

As the inverse Gaussian distribution admits exponential moments, we have
integer moments of all orders and our Assumption 1 below is satisfied.

2.2. Discrete observations. We observe returns and the variance process
on a discrete grid of points in time,

0 = t0 < t1 < . . . < tn.

This implies

V (ti) = V (ti−1)e
−λ(ti−ti−1) +

∫ ti

ti−1

e−λ(ti−s)dZλ(s).

Using

(2.4) Vi := V (ti), Ui :=

∫ ti

ti−1

e−λ(ti−s)dZλ(s)

we have that (Ui)i≥1 is a sequence of independent random variables, and it is
independent of V0. If the grid is equidistant, then (Ui)i≥1 are iid. Observing
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the returns X on the grid we have

X(ti)−X(ti−1) = µ(ti − ti−1) + β(Y (ti)− Y (ti−1))

+

∫ ti

ti−1

√

V (s−)dW (s) + ρ(Zλ(ti)− Zλ(ti−1)),

where

Y (t) =

∫ t

0

V (s−)ds

is the integrated variance process. This suggests introducing the discrete time
quantities

(2.5) Xi = X(ti)−X(ti−1), Yi = Y (ti)− Y (ti−1), Zi = Zλ(ti)− Zλ(ti−1)

and

Wi =
1√
Yi

∫ ti

ti−1

√

V (s−)dW (s).

Furthermore, it is also convenient to introduce the discrete quantity

(2.6) Si =
1

λ
(Zi − Ui).

It is not difficult to see (conditioning!) that (Wi)i≥1 is an iid N(0, 1) sequence
independent from all discrete quantities derived from the BDLP alone, in
particular (Zi)i≥1 and (Ui)i≥1. We note also that (Ui, Zi)i≥1 is a bivariate iid
sequence, but Ui and Zi are obviously dependent.

From now on, for notational simplicity, we consider the equidistant grid
with tk = k∆, where ∆ > 0 is fixed. This implies

(2.7) Vi = γVi−1 + Ui

and

(2.8) Yi = ǫVi−1 + Si,

where

γ = e−λ∆, ǫ =
1− γ

λ
.

Furthermore,

(2.9) Xi = µ∆+ βYi +
√

YiWi + ρZi.

The sequence (Xi, Vi)i≥0 is clearly Markovian. From now on we assume all
moments of the stationary distribution of V0 exist.

Assumption 1. E[V n0 ] <∞ ∀n ∈ N.

In the estimating context we assume all moments are finite with respect
to all probability measures Pθ, θ ∈ Θ under consideration, where Θ is the
parameter space.
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No other assumptions are made, and all conditions required for consistency
and asymptotic normality of our estimator will be proven rigorously from that
assumption.

Proposition 2.1. We have for all n ∈ N that

E[Zn1 ] <∞, E[Un1 ] <∞, E[Sn1 ] <∞,

and
E[Y n1 ] <∞, E[Wn

1 ] <∞, E[Xn
1 ] <∞.

Consequently the expectation of any (multivariate) polynomial in Z1, U1, S1,√
Y1, W1, X1 exists under Pθ.

Proof. We will use repeatedly the well-known relation between the
existence of moments and the differentiability of the characteristic function of
a random variable, see [CT97, Theorem 8.4.1, p.295f], for example.

Let φ(t) denote the characteristic function of V0. By assumption E[V n0 ] <
∞ for all n ∈ N. Thus φ(t) is arbitrarily many times differentiable. The law
of V0 is self-decomposable, thus infinitely divisible and φ(t) 6= 0 for all t ∈ R.
Thus the Fourier cumulant function κ(t) = logφ(t) is arbitrarily many times
differentiable. It follows from [BNS01, equation (12)], that the characteristic
function of Z(1) is ψ(t) = exp(tκ′(t)). Thus ψ(t) is arbitrarily many times
differentiable and consequently E[Z(1)n] <∞, for all n ∈ N. As Z is a Lévy
process this implies E[Z(λ∆)n] < ∞, and as Z1 = Z(λ∆) we have shown
E[Zn1 ] <∞, for all n ∈ N.

From (2.4) and (2.6) we have U1 ≤ Z1 and S1 ≤ λ−1Z1 so E[Un1 ] <∞ and
E[Sn1 ] <∞ for all n ∈ N. AsW1 has a standard normal distribution it follows
trivially E[Wn

1 ] <∞ for all n ∈ N. Repeated application of the binomial resp.
multinomial theorem, the Hölder and the Cauchy-Schwarz inequalities yields
E[Y n1 ] < ∞ and E[Xn

1 ] < ∞ for all n ∈ N, and the final conclusion for
polynomials.

Let us remark that, by stationarity, the above result holds also for
Zi, Ui, Si,

√
Yi,Wi, Xi instead of Z1, U1, S1,

√
Y1,W1, X1, where i ∈ N is

arbitrary.

2.3. Some remarks. Most work on estimating functions is developed for
diffusions, see for example [MR03, Jac02,Kes00, Sør97], although it is often
remarked that the results extend to Markov chains. Yet the models under
consideration here display several peculiarities.

One assumption that is usually made is that the transition probabilities
under Pθ have the same support for each θ. Typically the support of the
conditional distribution of V1 in a BNS model given V0 = v is (ve−λ∆,+∞)
under Pθ, thus depends on θ. This does not affect our analysis.

If the BDLP is a compound Poisson process, as in the Γ−OU case, we
have the atom of the conditional distribution of V1 given V0 = v under Pθ
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at the parameter dependent position ve−λ∆. Consequently no dominating
measure exists and maximum likelihood cannot be defined in the usual way.
There is an alternative definition covering that case, see [KW56, Joh78], but
for the purpose of our analysis that direction is not exploited further. For
a related problem see also [NS03]. This problem does not appear with an
infinite activity BDLP such as in the IG-OU model and standard maximum
likelihood estimation could be studied.

The description given in Sections 2.1 and 2.2 provides a BNS model for
each θ, but not a statistical experiment as it is taken as a starting point in
Section 3. The reason is that the processes X and V will depend on θ. This
can be avoided by introducing a statistical experiment generated by a BNS
model. In analogy to the statistical experiment generated by a diffusion, see
[SS00]. This means we take the distribution ofX and V on the Skorohod space
(

D(R)2,D(R2)
)

, where D(R2) is the Borel σ−algebra on D(R)2 with respect
to the Skorohod topology, under each Pθ as a starting point, see [JS03].

3. The explicit estimator

3.1. The estimating equations and their explicit solution. For estimation
purposes we consider a probability space on which a parameterized family of
probability measures is given:

(

Ω,F ,
{

Pθ : θ ∈ Θ
})

,

where Θ = {θ ∈ R
6 : θ1 > 0, θ2 > 0, θ3 > 0}. The data is generated under

the true probability measure Pθ0 with some θ0 ∈ Θ. The expectation with
respect to Pθ is denoted by Eθ[.] and with respect to Pθ0 simply by E[.].

We assume there is a process X that is BNS-DOU(θ) under Pθ and that
satisfies Assumption 1 for all θ ∈ Θ.We want to find an estimator for θ0 using
observations X1, . . . , Xn, V1, . . . , Vn and we are interested in asymptotics as
n → ∞. To that purpose let us consider the vector estimating function
Gn(θ) =

(

G1
n(θ), . . . , G

6
n(θ)

)

with the following martingale estimating functi-
ons:

(3.1)

G1
n(θ) =

∑n
k=1

[

Vk − f1(Vk−1, θ)
]

, f1(v, θ) = Eθ[V1|V0 = v],

G2
n(θ) =

∑n
k=1

[

VkVk−1 − f2(Vk−1, θ)
]

, f2(v, θ) = Eθ[V1V0|V0 = v],

G3
n(θ) =

∑n
k=1

[

V 2
k − f3(Vk−1, θ)

]

, f3(v, θ) = Eθ[V
2
1 |V0 = v],

G4
n(θ) =

∑n
k=1

[

Xk − f4(Vk−1, θ)
]

, f4(v, θ) = Eθ[X1|V0 = v],

G5
n(θ) =

∑n
k=1

[

XkVk−1 − f5(Vk−1, θ)
]

, f5(v, θ) = Eθ[X1V0|V0 = v],

G6
n(θ) =

∑n
k=1

[

XkVk − f6(Vk−1, θ)
]

, f6(v, θ) = Eθ[X1V1|V0 = v].
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Lemma 3.1. We have the explicit expressions

(3.2)

f1(v, θ) = γv + (1 − γ)ζ,

f2(v, θ) = γv2 + (1− γ)ζv,

f3(v, θ) = γ2v2 + 2γ(1− γ)ζv + (1− γ)2ζ2 + (1− γ2)η,

f4(v, θ) = βǫv + µ∆+ β(∆ − ǫ)ζ + ρλζ∆,

f5(v, θ) = βǫv2 + (µ∆+ β(∆− ǫ)ζ + ρλζ∆)v,

f6(v, θ) = 2ǫηλρ+∆(γv + ζǫλ)(µ + λρζ)

+ β(ǫ2ηλ+ (γv + ζǫλ)(ǫ(v − ζ) + ∆ζ)).

Proof. The formulas are special cases of the general moment calculations
given in Appendix A. Proofs of the statements for two special cases that show
the basic calculation idea are given in [HP07].

The estimator θ̂n is obtained by solving the estimating equationGn(θ) = 0
and it turns out that this equation has an explicit solution.

Proposition 3.2. The estimating equation Gn(θ̂n) = 0 admits for every
n ≥ 2 on the event

Cn =
{

ξ2n − ξ1nυ
1
n > 0, υ2n − (υ1n)

2 > 0
}

a unique solution θ̂n = (λn, ζn, ηn, µn, βn, ρn) that is given by
(3.3)

γn = (ξ2n − ξ1nυ
1
n)/(υ

2
n − (υ1n)

2),

ζn = (ξ1n − γnυ
1
n)/(1− γn),

ηn = ((ξ3n − (ξ1n)
2)− γ2n(υ

2
n − (υ1n)

2))/(1− γ2n),

λn = − log(γn)/∆,

ǫn = (1− γn)/λn,

βn = (ξ5n − υ1nξ
4
n)/(ǫn(υ

2
n − (υ1n)

2)),

ρn = (ξ6n − ξ4nξ
1
n − βnǫn(ηn(1− γn) + γn(υ

2
n − (υ1n)

2)))/(2(1− γn)ηn),

µn = (ξ4n − βnǫn(υ
1
n − ζn))/∆− (βn + λnρn)ζn,

where

(3.4)
ξ1n = 1

n

n
∑

i=1

Vi, ξ2n = 1
n

n
∑

i=1

ViVi−1, ξ3n = 1
n

n
∑

i=1

V 2
i ,

ξ4n = 1
n

n
∑

i=1

Xi, ξ5n = 1
n

n
∑

i=1

XiVi−1, ξ6n = 1
n

n
∑

i=1

XiVi
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and

(3.5) υ1n = 1
n

n
∑

i=1

Vi−1, υ2n = 1
n

n
∑

i=1

V 2
i−1.

Proof. The first three equations Gjn(θ) = 0, for j = 1, 2, 3 contain only
the unknowns ζ, η, λ and are easily solved. In fact we get a familiar estimator
for the first two moments and the autocorrelation coefficient of an AR(1)
process. The last three equations Gjn(θ) = 0, for j = 4, 5, 6 can be seen as a
linear system for the unknowns µ, β, ρ, once the other parameters have been
determined.

Remark 3.3. The exceptional set Cn could be simplified to

C′
n =

{

ξ2n − ξ1nυ
1
n > 0

}

.

Since the jump times and the jump sizes of the BDLP are independent, and
the former have an exponential distribution it follows that V0, . . . , Vn is with
probability one not constant, so P [υ2n − (υ1n)

2 > 0] = 1. But although it
can be shown that the probability of Cn tends to one, for finite n we have
P [ξ2n−ξ1nυ1n ≤ 0] > 0. This is the common phenomenon that sample moments
do not share all properties of their theoretical counterparts. For definiteness

we put θ̂n = 0 outside Cn.

3.2. Consistency. In this section we investigate the consistency of the
estimator from the previous section. First, we will need the following lemma.

Lemma 3.4. For every k ≥ 1 and p > 0

V kn
np

a.s.−→ 0 as n→ ∞.

Proof. The random variables
{

Vn, n ≥ 1
}

are identically distributed

and mk = E[|V k1 |] < ∞ for all k ≥ 1. Thus we are in the situation of [Sto74,
Exercise 2.1.2(i), p.14].

Let k ≥ 1 and ǫ > 0 be arbitrarily chosen. Taking any integer α > 1/p
and using the Chebyshev inequality we obtain

P

(∣

∣

∣

∣

V kn
np

∣

∣

∣

∣

> ǫ

)

≤
∞
∑

n=1

E
∣

∣V kn |α
nαpǫα

≤
∞
∑

n=1

mkα

nαpǫα
<∞.

Therefore from the Borel-Cantelli lemma it follows that P
(

lim supn n
−p|V kn | >

ǫ
)

= 0.

In Lemma 3.5 and Lemma 3.6 we provide the strong law of large numbers
for
(

V pi , i ≥ 1) and for more general sequences
(

Xp
i V

q
i V

r
i−1, i ≥ 1). The proofs

of Lemma 3.5 and Lemma 3.6 are omitted since the results follow directly from
the Birkhoff’s ergodic theorem. Indeed, the sequence of R3-valued variables

Ti = (Vi−1, Vi, Xi) is strictly stationary, so 1
n

∑n
i=1 g(Ti)

a.s.−→ E(g(T1)) for any
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function g such that g(T1) ∈ L
1. More elementary proofs, which do not use

any ergodicity arguments, but employ a law of large numbers by Rajchman
([Raj32]) can be found in [HP07].

Lemma 3.5. We have for all k ∈ N that

1

n

n
∑

i=1

V ki
a.s.−→ E[V k1 ],

as n→ ∞.

Lemma 3.6. For all integers p, q, r ≥ 0 we have

1

n

n
∑

i=1

Xp
i V

q
i V

r
i−1

a.s.−→ E
[

Xp
1V

q
1 V

r
0

]

as n→ ∞.

Theorem 3.7. We have P (Cn) → 1 when n → ∞ and the estimator θ̂n
is consistent on Cn, namely

θ̂n1Cn

a.s.−→ θ0

as n→ ∞, where 1(·) denotes the indicator function.

Proof. Using the results of Lemma 3.5 it easily follows that

ξ2n − ξ1nυ
1
n → Cov(V1, V0) > 0,

so P (Cn) → 1 as n→ ∞.
Using again the results of Lemma 3.5 it follows that the empirical

moments in (3.4) and (3.5) converge to their theoretical counterparts, ξin
a.s.−→

ξi and υin
a.s.−→ υi, where

ξ1 = ζ,

ξ2 = ζ2 + γη,

ξ3 = ζ2 + η,

ξ4 = µ+ (β + λρ)ζ,

ξ5 = µζ + (β + λρ)ζ2 + βǫη,

ξ6 = µζ + (β + λρ)ζ2 + (β + 2ρλ)ǫη,

υ1 = ζ,

υ2 = ζ2 + η.

Plugging the limits into (3.3) shows, after a short mechanical calculation, that
the estimator is in fact consistent.

3.3. Asymptotic normality. For a concise vector notation we introduce

Ξk = (Vk, VkVk−1, V
2
k , Xk, XkVk−1, XkVk)

⊤,

and write the estimating equations in the form

Gin(θ) =

n
∑

k=1

[

Ξik − f i(Vk−1, θ)
]

, i = 1, . . . , 6
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and f i(v, θ) given by (3.2). We write

(3.6) f i(v, θ) =

pi+ri+qi
∑

ℓ=ri

φiℓ(θ)v
ℓ.

with

p = (0, 0, 0, 1, 1, 1), q = (1, 1, 1, 0, 0, 1), r = (0, 1, 0, 0, 1, 0)

and

φ12(θ) = 0, φ11(θ) = γ, φ10(θ) = (1− γ)ζ,

φ22(θ) = γ, φ21(θ) = (1− γ)ζ,

φ32(θ) = γ2, φ31(θ) = 2γ(1− γ)ζ, φ30(θ) = (1 − γ)2ζ2 + (1− γ2)η,

φ42(θ) = 0, φ41(θ) = βǫ, φ40(θ) = µ+ β(1− ǫ)ζ + ρλζ,

φ52(θ) = βǫ, φ51(θ) = µ+ β(1 − ǫ)ζ + ρλζ,

φ62(θ) = βǫγ, φ61(θ) = (µ+ β(1 − ǫ)ζ + ρλζ)γ + βǫ(1− γ)ζ,

φ60(θ) = (1− ǫ)(1− γ)ζ2 + ǫ2λη.

We will use, that f i(v, θ) is a polynomial in v, and that its coefficients2 φ are
smooth functions in θ.

We shall first prove the central limit theorem for the estimating functions.
The main tool that we use to that purpose is the multivariate martingale
central limit theorem that is given in [HP07], which we recall here. For a
vector a, ‖a‖ denotes the Euclidean norm.

Lemma 3.8. Suppose (Xn,k) is a martingale difference array such that
for every ǫ > 0

n
∑

k=1

E
[

‖Xn,k‖21{‖Xn,k‖>ǫ}|Fk−1

] P−→ 0

and
n
∑

k=1

[

Xn,kX
⊤
n,k|Fk−1

] P−→ Υ

as n→ ∞. Then
n
∑

k=1

Xn,k
D−→ N(0,Υ).

Proposition 3.9. We have

(3.7)
1√
n
Gn(θ0)

D−→ N(0,Υ),

2φ1
2 and φ4

2 are not used in (3.6), but in (3.10).
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as n→ ∞, where
Υij = E

[

Cov(Ξi1,Ξ
j
1|V0)

]

.

Proof. To show the above result, we use Lemma 3.8. To that purpose
we introduce the vector martingale difference array

(3.8) χ
(i)
n,k =

1√
n

[

Ξik − f i(Vk−1, θ0)
]

.

We have to show the two assumptions from Lemma 3.8. First, we prove
a multivariate Lyapuonov condition which implies the Lindeberg condition.

From (3.8) it follows that
√
nχ

(i)
n,k is of the form p(Vk−1, Vk, Xk) where

p(v0, v1, x1) is a polynomial in v0, v1, x1 which does not depend on n. Thus,
n2‖χn,k‖4 has the same property and from the explicit moment expression
from Appendix A it follows that

E
[

‖χn,k‖4|Fk−1

]

=
1

n2
q(Vk−1),

where q(v0) is a polynomial in v0. From Lemma 3.5 it thus follows

1

n

n
∑

k=1

q(Vk−1)
a.s.−→ E[q(V0)],

where the expression on the righthand side exists and is finite. Thus the
first condition of the martingale central limit theorem is satisfied. In order
to verify the second condition of the same theorem we consider the (i, j)−th
element of the matrix χn,kχ

⊤
n,k which is given by

1

n

(

Ξik − f i(Vk−1, θ0)
)(

Ξjk − f j(Vk−1, θ0)
)

.

This is again a polynomial in Vk−1, Vk and Xk so by Lemma 3.6 it follows
that

1

n

n
∑

k=1

(

Ξik − f i(Vk−1, θ0)
)(

Ξjk − f j(Vk−1, θ0)
)

a.s.−→ E
[(

Ξik − f i(Vk−1, θ0)
)(

Ξjk − f j(Vk−1, θ0)
)]

as n→ ∞.

Remark 3.10. A systematic method to evaluate Υ is given in Appendix
A.

Lemma 3.11. We have

(3.9)
√
n
[

ξn − ξ
] D−→ N(0,Σ),

where
Σ = P−1Υ(P−1)⊤

and

(3.10) Pij = δij − φi1δ1j − φi2δ3j
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with δij denoting the Kronecker delta.

Proof. We can write

1√
n
Gn(θ0) = P

√
n(ξn − ξ) +Qn,

with

(3.11) Qin =
1√
n

[

φi1(Vn − V0) + φi2(V
2
n − V 2

0 )
]

.

In view of Lemma 3.4 above we see, that the remainder term Qn goes to zero
in probability as n → ∞. As P has determinant (1 − γ)2(1 + γ) > 0 it is
invertible, and we have

√
n(ξn − ξ) = P−1

(

1√
n
Gn(θ0)

)

+Rn

with Rn = −P−1Qn going to zero in probability as n → ∞. The expression
P−1

(

n−1/2Gn(θ0)
)

is asymptotically normal with mean 0 and covariance
matrix Σ. An application of Slutsky’s Theorem proves the lemma.

Finally, we have all the ingredients for proving the following result.

Theorem 3.12. The estimator

θ̂n = (λn, ζn, ηn, µn, βn, ρn)

is asymptotically normal, namely

(3.12)
√
n
[

θ̂n − θ0
] D−→ N(0, T ),

as n→ ∞, where

T = DΣDT

and D is explicitly given according to (3.13).

Proof. We observe from (3.3) that θ̂n = g(ξn, υn), where g is well defined
and continuously differentiable in a neighborhood of (ξ, υ). Using the Taylor

expansion in the last two variables we have θ̂n = h(ξn) + Sn, where h is well
defined and continuously differentiable in a neighborhood of ξ, and Sn goes to
zero in probability in view of Lemma 3.4. Thus it can be neglected according
to Slutsky’s Theorem. We apply the delta method, see [Leh99] for example,
and compute the Jacobian matrix D with

(3.13) Dij =
∂hi
∂xj

(ξ), i, j = 1, . . . , 6.

A lengthy elementary calculation shows that the matrix has determinant
λ/
(

2(1− γ)2γη3
)

, thus it is invertible.
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Remark 3.13. For comparison it is instructive to study our estimator
in the general framework of [Sø99] where the properties of the estimator are
studied without exploiting the fact that the estimating equation allows an
explicit solution. This is done in [HP07] where the theory is extended in the
case of a bivariate Markov process and Condition 2.6 of [Sø99] is proven in
order to use his Corollary 2.7 and Theorem 2.8.

4. Numerical illustrations

4.1. Description of the model and its parameter values. To illustrate the
results from the previous sections numerically, we consider the Γ-OU model
from Section 2.1.2, where the variance V has a stationary gamma distribution.
We use as time unit one year consisting of 250 trading days. The true
parameters are

ν = 2.56, α = 64, λ = 256, β = −0.5, ρ = −0.1, µ = 1.2.

The parameters imply that there are on average 2.6 jumps per day and the
jumps in the BDLP and in the volatility are exponentially distributed with
mean 0.0156. The interpretation is, that typically every day two or three
new pieces of information arrive and make the variance process jump. The
stationary mean of the variance is 0.04. Hence, if we define instantaneous
volatility to be the square root of the variance, it will fluctuate around 20%
in our example. The half-life of the autocorrelation of variance is about half
a day.

In our example annual log returns have (unconditional) mean 15.6%
and annual volatility 20%. Figure 1 displays a simulation of one year
of daily observations from the background driving Lévy process, from the
instantaneous variance process, and log returns, or more precisely, simulated
realizations of Zi, Vi, and Xi for i = 1, . . . , 250. Other scenarios can be
considered, for example, small jumps arriving every minute, with fast decaying
autocorrelation, or few jumps per year, corresponding to exceptional news
with heavy impact on the variance process.

4.2. The asymptotic covariance matrix of the estimator. As our goal is
an analysis of the estimator, and not an empirical study, we do not estimate
the asymptotic covariance, but evaluate the explicit expression using the true
parameters. Denoting the vector of asymptotic standard deviations of the
estimates and the correlation matrix by s/

√
n resp. r we have

s =

















4.86
125
650
7.36
253
0.526

















, r =

















1 0.89 0.41 0.03 0.09 −0.02
0.89 1 0.4 0.03 0.09 −0.03
0.41 0.4 1 0.06 0.22 0
0.03 0.03 0.06 1 −0.75 0.06
0.09 0.09 0.22 −0.75 1 −0.57
−0.02 −0.03 0 0.06 −0.57 1
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Figure 1. Daily observations Zi, Vi, Xi.

The correlations among parameters related to the returns distribution, namely
µ, β and ρ, are rather small except for those relating to the risk premium
parameter β. In contrast to that, correlations among the instantaneous
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variance parameters, namely ν, α and λ are rather high. This phenomenon
can be related to the particular and common parametrization of the gamma
distribution and discussed in more detail in [HP11, Sec.4.3]. Theoretically,
the issue of high correlation can be addressed using the optimal martingale
estimating function approach, see Section 5 for developments in this direction.

4.3. Distribution of the estimates. Figure 2 illustrates the empirical and
asymptotic distribution of the estimators for the Γ-OUmodel. The histograms
are produced fromm = 10000 replications consisting of n = 8000 observations
each, corresponding to 32 years with 250 daily observations per year. We see
from the graphs that in our illustration the parameters ν, α, λ, and µ can
be estimated quite accurately, in the sense that the usual confidence intervals
yield one or two significant digits at least. The estimate for ρ is not as accurate
and the accuracy for the estimate for β is unsatisfactory.

The bad quality of the estimator for β is neither surprising nor very
troublesome. It has little impact on the model. The main reason for including
the parameter β in the specification of BNS models is for derivatives pricing:
A risk-neutral BNS-model must have β = −1/2. In most applications working
under a physical probability measure β = 0 can be assumed without much
loss of generality or flexibility.

5. Conclusion and further and alternative developments

We provide an explicit estimator for discretely observed Barndorff-Nielsen
and Shephard stochastic volatility models, prove its consistency and asymp-
totic normality based on the single assumption that all moments of the
stationary distribution of the variance process are finite. Explicit expressions
for the asymptotic covariance matrix are given and we develop in detail the
martingale estimating function approach for a bivariate model that is not a
diffusion, but admits jumps. In this way we create a framework that opens a
new and tractable approach for estimating stochastic volatility models.

Although on one hand large parts of the material are completely standard,
on the other hand there is a new feature in the sense that the estimation of the
model is not a truly parametric problem, since it is not necessary to specify
the law of Z, only the first two moments of Z1 must be specified. Nevertheless,√
n convergence and asymptotic normality are still true, and in that sense the

results of the paper do not trivially follow from known results on estimation
for ergodic Markov chains.

Our choice of estimating functions is natural, but, mathematically
speaking, somewhat arbitrary. In ongoing work [HP09] we show, that the
optimal quadratic estimating function based on the moments of V1, X1, V

2
1 ,

V1X1, X
2
1 can be computed explicitly, though the corresponding estimator has

to be determined numerically. Our proposed and explicit estimator can be
used as a starting point for an iterative root-finding procedure showing in this
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Figure 2. Empirical and asymptotic distribution of the
estimators for the Γ-OUmodel. The histograms are produced
from m = 10000 replications consisting of n = 8000
observations each, corresponding to 32 years with 250 daily
observations per year. The true values are ν = 2.56, α = 64,
λ = 256, µ = 1.2, β = −0.5, ρ = −0.1. The standard
deviations used for the normal curves are taken from the
explicit asymptotic results, not estimated.

way its potential usefulness also for practical applications. Consistency and
asymptotic normality can be shown using the general theory as presented in
[Sø99] along the lines of the present paper, although the expressions involved
are slightly more complicated.

More efficient estimators than provided by the optimal quadratic esti-
mating function can be obtained by incorporating further moments. As we
provided explicit computations for arbitrary integer moments and conditional
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moments, our method allows the extension of the procedure to that situation.
We might even have the number of moments tend to infinity with the number
of observations, and obtain an estimator that is asymptotically equivalent
to the maximum likelihood estimator, when the latter exists resp. can be
defined, see Section 2.3. Although very high moments are not reliable
for empirical investigations, BNS-models allow also explicit computation
of the characteristic function and thus of conditional and unconditional
trigonometric moments E[ei(ξkV1+ψkX1)] and E[ei(ξkV1+ψkX1)|V0] for arbitrary
constants ξk and ψk, that could be used instead for constructing estimating
functions. See [AS02] for diffusions, [Sch05] for Lévy type processes, and
[Sin01] for affine models.

Our approach is based on the explicit calculation of conditional and
unconditional moments. Those calculations can be done for BNS-models on
arbitrary time intervals. Hence our analysis is not restricted to a fixed time
grid with the number of observation intervals tending to infinity, but could be
performed also on a fixed horizon, with the number of intra-day observations
increasing to infinity. The resulting estimators should then be compared to
power-variation methods, see also [Tod11].

Finally, we address the issue that volatility, or instantaneous variance,
is not directly observable in discrete time. As a practical solution to the
problem we suggest to use our estimation framework with the unobservable
instantaneous variance replaced by a suitable observable substitute. An
attractive candidate could be realized variance, multipower variation, or
related measures for non-parametric volatility estimation, see [BNSW06,
BNGJ+06,Jac08] and the references therein. From a practical and empirical
point of view this approach was implemented and analyzed in [CP10], where
the incorporation of information from option prices is also analyzed. They find
that the results can be sensitive to the choice of the substitute, in particular
when considering different time increments ∆. Power variation of the returns
was also used by [Tod09] to perform indirect inference on the volatility.
However, the method as it is is a benchmark, implementation in practice
will require the use of proxies, for example the popular realized volatility, and
although consistency is preserved the rates will change. A detailed analysis
of the modified scheme is left open for future research.

As a second approach, we suggest to replace the unobservable instanta-
neous variance by some measure of trading intensity. In [Lin05] it is reported,
that the number of trades is an excellent choice for statistical purposes. For
a theoretical analysis, a joint model for the prices and number of trades has
to be specified, possibly leading to more parameters describing the relation of
number of trades and volatility in a concrete way. In [HP11] implementation
issues and some modifications of the framework from the present paper are
used, and it is shown that the development of an explicit estimator and its
rigorous asymptotic analysis is still feasible. This demonstrates that our
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method allows an explicit and tractable estimation procedure for a class of
stochastic volatility models with jumps, making the approach suitable for
practical applications.

Another direction would be to adapt the implied state method (IS-GMM)
as introduced in [Pan02] to our martingale estimating function approach: We
replace the unobserved Vi in the estimating equations by the model-implied
variance Vi(θ) that is obtained from option prices, assuming that the dynamics
are governed by BNS-models both under the physical probability measure Pθ0
and a risk-neutral measure Pθ̃0 . The resulting estimating function will not be
a martingale estimating function anymore, and the bias has to be accounted
for in a rigorous analysis.

Appendix A. Explicit moment calculations

This section is about computing explicitly E[Xn
1 V

m
1 |V0 = v] and

E[Xn
1 V

m
1 ]. All moments below will be given in terms of the cumulants of

the stationary distribution, denoted by Kn. We set

ζ = K1, η = K2.

If the stationary distribution is determined by the two parameters, ζ and η,
the higher cumulants are obviously functions of ζ and η, but the formulae
hold in more general cases.

The calculations exploit the analytical tractability of the BNS-model,
namely conditional Gaussianity of the logarithmic returns X and the linear
structure of the OU-type process V . From that it follows, and it is well-known,
that univariate and multivariate cumulants can be computed. It remains
to transform multivariate cumulants to multivariate moments and explicit
expressions involve the multivariate Faa di Bruno formula, multivariate Bell
polynomials and integer partitions, see for example [McC87].

We have chosen to use simple recursions in order to implement them
on a computer algebra system, in particular, since the expressions, though
completely explicit, are rather lengthy when it comes to evaluating moments of
order four for the asymptotic covariance matrix. For the reader’s convenience,
we give the details in this appendix.

A.1. Preliminaries. Let us recapitulate the variables and notation from
Section 2.2, that are required in the following calculations. We use

γ = e−λ∆, ǫ =
1− e−λ∆

λ
.

We have

(A.1) V1 = γV0 + U1, Y1 = ǫV0 + S1
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where

U1 =

∫ ∆

0

e−λ(∆−s)dZλs, S1 =

∫ ∆

0

λ−1(1− e−λ(∆−s))dZλs.

Note, that we have the simpler formula S1 = (Z1 − U1)/λ, but the integral
above is sometimes notationally more convenient. We have

(A.2) X1 = A1 +
√

Y1W1, A1 = µ∆+ βY1 + ρZ1.

A.2. Stationary moments. We use the well-known recursion to compute
moments from cumulants

E[V n0 ] = δn0 +

n−1
∑

i=0

(

n− 1

i

)

Ki+1E[V n−1−i
0 ].

Alternatively we have E[V n0 ] = Yn(K1, . . . ,Kn), where Yn(x1, . . . , xn) denotes
the complete Bell polynomials. Explicit non-recursive expressions can be
given, but we do not use them.

A.3. Trivariate cumulants. From the key formula for Wiener-type in-
tegrals with Lévy process integrator, it follows that the joint cumulants of
(S1, U1, Z1) are given by

Knmℓ = λǫnm(n+m+ ℓ)Kn+m+ℓ,

with

ǫij =























λ−i

(

1 +
i
∑

k=1

(

i

k

)

(−1)k
1− γk

kλ

)

, j = 0,

λ−i

(

1− γj

jλ
+

i
∑

k=1

(

i

k

)

(−1)k
1− γk

kλ

)

, j > 0.

A.4. Trivariate Moments. Trivariate moments can be computed recursi-
vely from trivariate cumulants

E[Sn1U
m
1 Z

ℓ
1] =

n−1
∑

i=0

m
∑

j=0

ℓ
∑

k=0

(

n− 1

i

)(

m

j

)(

ℓ

k

)

Ki+1,j,kE[Sn−1−i
1 Um−j

1 Zℓ−k1 ],

E[Sn1U
m
1 Z

ℓ
1] =

n
∑

i=0

m−1
∑

j=0

ℓ
∑

k=0

(

n

i

)(

m− 1

j

)(

ℓ

k

)

Ki,j+1,kE[Sn−i1 Um−1−j
1 Zℓ−k1 ],

E[Sn1U
m
1 Z

ℓ
1] =

n
∑

i=0

m
∑

j=0

ℓ−1
∑

k=0

(

n

i

)(

m

j

)(

ℓ − 1

k

)

Ki,j,k+1E[Sn−i1 Um−j
1 Zℓ−1−k

1 ].

Alternatively, we can express E[Sn1U
m
1 Z

ℓ
1] as trivariate complete Bell polyno-

mials Ynmℓ evaluated at the trivariate cumulants of S1, U1, Z1, and explicit
non-recursive expressions are available, but not very useful for us.
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A.5. Some conditional expectations. Using (A.1) gives

E[Y n1 V
m
1 Zℓ1|V0 = v] =

n
∑

i=0

m
∑

j=0

(

n

i

)(

m

j

)

ǫiγjE[Sn−i1 Um−j
1 Zℓ1] · vi+j .

Collecting powers of v gives

E[Y n1 V
m
1 Zℓ1|V0 = v] =

n+m
∑

k=0

ξnmℓkv
k

with

ξnmℓk =

m∧k
∑

j=0

(

n

k − j

)(

m

j

)

ǫk−jγjE[Sn−k+j1 Um−j
1 Zℓ1].

Then using (A.2) and conditioning gives

E[An1Y
m
1 V ℓ1 |V0 = v] =

n
∑

i=0

n−i
∑

j=0

(

n

i

)(

n− i

j

)

βiρjµn−i−jE[Y m+i
1 V ℓ1 Z

j
1 |V0 = v].

Collecting powers of v gives

E[An1Y
m
1 V ℓ1 |V0 = v] =

n+m+ℓ
∑

k=0

ψnmℓkv
k

with

ψnmℓk =

n
∑

i=(k−m−l)+

n−i
∑

j=0

(

n

i

)(

n− i

j

)

βiρjµn−i−jξm+i,ℓ,j,k.

Finally using (A.2) and the Gaussian moments gives

E[Xn
1 V

m
1 |V0 = v] =

⌊n/2⌋
∑

i=0

(

n

2i

)

(2i)!

2ii!
E[An−2i

1 Y i1V
m
1 |V0 = v].

Collecting powers of v gives

E[Xn
1 V

m
1 |V0 = v] =

n+m
∑

k=0

φnmkv
k

with

φnmk =

(n+m−k)∧⌊n
2
⌋

∑

i=0

(

n

2i

)

(2i)!

2ii!
ψn−2i,i,m,k.

It follows from the calculations above that φnmk are polynomials in γ, ǫ, µ, β, ρ.
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A.6. Some unconditional expectations. The same structure pertains for
the unconditional expectations,

E[Y n1 V
m
1 Zℓ1] =

n
∑

i=0

m
∑

j=0

(

n

i

)(

m

j

)

ǫiγjE[Sn−i1 Um−j
1 Zℓ1]E[V i+j0 ],

then

E[An1Y
m
1 V ℓ1 ] =

n
∑

i=0

n−i
∑

j=0

(

n

i

)(

n− i

j

)

βiρjµn−i−jE[Y m+i
1 V ℓ1 Z

j
1 ]

and finally

E[Xn
1 V

m
1 ] =

⌊n/2⌋
∑

i=0

(

n

2i

)

(2i)!

2ii!
E[An−2i

1 Y i1V
m
1 ].
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