
Neven Mijat, Dražen Jurišić, George S. Moschytz
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This paper presents the realization of third-order low-pass active-RC filters using a new Leap-Frog (LF) topol-
ogy. New structure is a simplified LF structure with the elements calculated directly from the transfer function
coefficients. Several versions of the circuits are presented and compared. The comparison to other common third-
order filter sections is done, as well. The new LF filter has the reduced number of components, reduced complexity
and straightforward design procedure compared to classical filters. As an illustration of the efficiency of the pro-
posed new LF filter, the sensitivity analysis using Schoeffler sensitivity measure as well as output thermal noise
analysis was performed on examples with Butterworth and Chebyshev 0.5dB pass-band ripple transfer functions.
Using PSpice with a TL081 opamp model, the filter performance is simulated and the results compared and verified
by measurements on a discrete-component breadboard filter. All equations needed for the step-by-step design are
given.
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Novi aktivni leap-frog filtar trećeg reda. U radu je predstavljena realizacija nisko-propusnog aktivnog-RC fil-
tra trećeg reda koji upotrebljava novu "leap-frog" (LF) topologiju. Nova struktura je pojednostavljena LF struktura
s elementima koji se računaju direktno iz koeficijenata prijenosne funkcije. Nekoliko inačica krugova je prikazano
i obavljena je usporedba. Napravljena je usporedba tako�er i s drugim uobičajenim filtarskim sekcijama trećeg
reda. Novi LF filtar ima smanjeni broj komponenata, smanjenu kompleksnost i jednostavniji postupak projektiranja
u usporedbi s klasičnim filtrima. Za ilustraciju učinkovitosti predstavljenog novog LF filtra, provedena je analiza
osjetljivosti pomoću Schoefflerove mjere osjetljivosti i analiza termičkog šuma na izlazu na primjerima s prijenos-
nim funkcijama po Butterworthu i Chebyshevu s valovitošću u području propuštanja od 0.5 dB. Pomoću PSpice-a
s modelom pojačala TL081, filtarska svojstva su simulirana, uspore�ena i potvr�ena mjerenjima na filtrima real-
iziranim pomoću diskretnih elemenata na štampanoj pločici. U radu su dane sve potrebne jednadžbe u postupku
projektiranja korak po korak.

Ključne riječi: leap-frog filtri, filtarske sekcije trećeg reda, niskoosjetljivi i niskošumni filtri, aktivni RC filtri

1 INTRODUCTION

In each modern mixed analog and digital signal pro-
cessing device there is an ’analog front end’, which, among
other circuits, most frequently includes continuous-time
selective filters. Continuous time filters are unavoidable
as antialiasing devices for sampled data systems, but they
are used for other purposes, as well. In some applica-
tions they have advantages over discrete-time filters be-
cause they do not produce sampling noise, consume less
power, and finally are much simpler. Important represen-
tatives of continuous-time analog filters are active filters,
either as a discrete component circuit, or realized on a chip.

However, active-RC filters very often have a disadvan-
tage in their high sensitivities to component tolerances of
the circuit. Reduction of sensitivities in active filters is

always a good motivation for the proposal of a new low-
sensitive circuit. The sensitivity problem becomes more
pronounced in the design of high-order, highly-selective
filters which inevitably include large transfer function
pole-Q factors.

Any low-pass filter transfer function can be realized us-
ing only one opamp and an RC network of any order [1].
However, this solution is often impractical because of high
sensitivities and tuning difficulties. The problem increases
with increasing pole-Q factors and in the most cases we
prefer to use cascaded design which is also the simplest
filter structure for building high-order filters [2].

Since it was not considered very much in the past,
in this paper we try to emphasize the importance of the
third-order building blocks. To design high-order active-
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RC filters we use various first- and second-order single- or
multiple-amplifier filter sections. If the filter order is even,
only second-order filter building blocks are required. If the
filter order is odd, then we add one first-order (single-pole)
filter section. Sometimes it is more practical to combine
that section with some second-order section within the fil-
ter circuit to obtain a new and compact third-order building
block. It is then expected that the new third-order section
possess smaller circuit complexity and reduced sensitivi-
ties compared to a cascade of first- and second-order sec-
tions. Therefore, instead of a cascade of second- and first-
order filter sections, we can realize a high-order filter as
a cascade of third- and second-order section, and get the
reduction of overall filter sensitivities.

Some authors proposed filter realization procedures us-
ing only third-order sections in order to yield a reduction of
the sensitivities of the overall filter, the reduction in num-
ber of operational amplifiers and, consequently, reduced
power consumption and noise [3]. In these solutions the
emphasis is on approximations of filter transfer function
of any order (both even and odd), by cascading more than
one third-order building block. Same authors [3] also in-
troduced approximation techniques suitable for realization
of high-order filters by cascading third-order filter sections
and, if necessary, second-order sections. The main fea-
ture of this class is the introduction of a multiple real pole,
in order to realize RC-active filters by cascading multiple
third-order sections.

In this paper, we present a new topology of third-order
active-RC filter, which has low sensitivity to component
tolerances, low noise and reduced complexity. The pro-
posed topology is based on leap-frog (LF) structure. The
design procedure of the proposed circuit is simple, because
the element values are calculated directly from the transfer
function coefficients. The early version of the new LF filter
was preliminary presented in [4].

In this paper we also present several new variations of
the third-order LF filter topology. We compare them to
other common third-order single- and multiple-amplifier
filter blocks suitable for medium- and high-pole Q re-
alizations. (The classification of circuits regarding low,
medium, and high pole-Q factors is given in [5].) We
use the sensitivities to component variations of those cir-
cuits as the most important comparison criteria, but output
noise, power consumption and complexity are also taken
into consideration. Multi-parametric Schoeffler sensitivity
measure programmed in Matlab to investigate sensitivity
of various realizations of Butterworth and Chebyshev fil-
ters of third-order is used. Detailed description of Matlab
code for Schoeffler sensitivity is given in [6]. We also use
the Cadence PSpice 16 program [7] to analyze the output
noise with real opamp model.

In Section 2 five different variations of the new third-
order LF filter are presented. Optimization of dynamic
range of the new LF filter is performed numerically us-
ing Matlab Optimization Toolbox [8]. In Section 3 new LF
filter structure is compared to four commonly used third-
order filter sections. Section 4 presents measurement re-
sults, and Section 5 concludes this paper.

2 NEW LEAP-FROG FILTERS

As mentioned above, a third-order building block can
play a very important role in the cascaded design of high-
order low-pass (LP) and high-pass (HP) filters. Therefore
in this section we present several new leap-frog filters suit-
able for realization of low- and high-pole Q factors.

2.1 New leap-frog filter (NLF)
Consider the third-order voltage transfer function of an

allpole low-pass filter given in terms of the polynomial co-
efficients ai (i = 0, 1, 2)

H(s) =
Vout(s)

Vin(s)
=

k · a0

s3 + a2s2 + a1s+ a0
, (1)

and in factored form consider the negative-real pole γ and
the complex-conjugate pole pair given in terms of the pole
frequency ωp and the pole Q, qp,

H(s) =
Vout(s)

Vin(s)
=

k · γω2
p

(s+ γ)
[
s2 +

ωp

qp
s+ ω2

p

] . (2)

Note that k represents the dc-gain. The relationships
between the transfer function coefficients ai (i = 0, 1, 2)
and pole parameters γ, ωp and qp are given by:

a0 = γω2
p; a1 = ω2

p +
γωp
qp

; a2 =
ωp
qp

+ γ. (3)

Third-order transfer function in (1) can be realized by
the new LF third-order filter section shown in Fig. 1. It
is apparent that this is a variation of well-known leap-frog
topology. Since the feedback signals are fed to the positive
inputs of opamps, there is no need for inverting amplifiers
and the circuit has reduced number of opamps compared
to the ordinary LF filter.

Transfer function coefficients ai (i = 0, 1, 2), and the
gain k for the section in Fig. 1 are given by

a0 = α · ω1 · ω2 · ω3;
a1 = (1 + α) · ω2ω3 + ω1ω2;
a2 = (1 + α) · ω3 + ω2;
k = −1/α,

(4)
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Fig. 1. New third-order low-pass LF filter

where ωi are reciprocals of the RC-products, defined by:

ωi = (RiCi)
−1 (i = 1, 2, 3), (5)

and the parameter α = R3/R4. It is obvious that if α = 0,
the resistance R4 becomes infinite, and from (4) a0 = 0,
meaning that the real pole of the transfer function is actu-
ally a pole at the origin. In order to realize negative real
pole, α must always be non-zero and R4 < ∞. The pa-
rameters ωi can be obtained by solving the equations (4).
We can start with finding ω3 first, which gives simpler cal-
culation. For convenience we denote

(1 + α)ω3 = x, (6)

and obtain the following set of equations:

x3 − a2x
2 + a1x− a0

1+α
α = 0⇒ ω3 = x

1+α ;

ω2 = a2 − (1 + α)ω3; ω1 = a0
α·ω2·ω3

.
(7)

Note that α is an arbitrary positive nonzero constant,
which determines the pass-band gain k, as well. Finally,
we have to choose C1, C2 and C3, and from known ωi
resistors Ri (i = 1, 2, 3) readily follow using:

Ri = (ωiCi)
−1 (i = 1, 2, 3). (8)

Examples: As an illustration of the design procedure
above, consider two examples of third-order LP filter trans-
fer functions with the cut-off frequency 1 kHz: (i) But-
terworth, and (ii) Chebyshev with the pass-band ripple
Amax = 0.5 dB. A Butterworth filter has ’maximally flat’
amplitude response and corresponds to the limit case of no
ripple in the filter pass-band. Compared to a Chebyshev
filter of equal order, it has lower pole Qs.

It is well known that the higher the ripple, the higher
are the pole Qs, and consequently the sensitivities to com-
ponent tolerances and noise, as well. Since we investigate
both properties, these two approximation examples are
suitable because they provide two different pole Q-factors:
i.e. qp = 1 (low-Q example for the Butterworth filter), and
qp = 1.70619 (somewhat higher pole-Q value in the exam-
ple for the Chebyshev filter). Coefficients ai (i = 0, 1, 2)

Table 1. Third-order Butterworth and Chebyshev transfer-
function parameters with 1kHz cut-off frequency

Coefficients and pole parameters
Parameter Butterworth Chebyshev 0.5 dB

a0 γ 2.4805·
1011

6.2832·
103

1.7753·
1011

3.3936·
103

a1 ωp 7.8957·
107

6.2832·
103

6.0595·
1011

6.7158·
103

a2 qp 1.2566·
104

1.0 7.8723·
103

1.70619

Table 2. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 1

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R1 C1 5.6055 10 2.1828 10
R2 C2 34.879 10 86.692 10
R3 C3 20.620 10 29.767 10
R4 20.620 29.767 10

and the corresponding pole parameters ωp, qp and γ, and
dc-gain k for these examples are calculated using Matlab
and are given in Table 1. Note that we realize pass-band
gain with k = 1, therefore we choose α = 1.

Starting from parameters in Table 1 and using de-
sign equations from (6) to (8), we choose C1 = C2 =
C3 = CTOT /3 = 10 nF (i.e. we have total capacitance
CTOT = 30 nF) and obtain element values of Butterworth
and Chebyshev filters presented in Table 2.

Both filters are realized by the circuit in Fig. 1 and their
transfer function magnitudes α(ω) = 20 log |H(jω)| [dB]
are shown in Fig. 6(a)–(b) in Section 2.6.

2.2 New leap-frog filter–Variation form 1 (VAR 1)
Alternative way to realize transfer function pole on the

negative real-axis of the s-plane is to introduce a negative
feedback from the output to the input of a circuit from Fig.
1 as shown in Fig. 2 (this requires four opamps).

Transfer function coefficients ai (i = 0, 1, 2), and the
gain k for the section in Fig. 2 are given by

a0 = α · (1 + β) · ω1 · ω2 · ω3;
a1 = ω2ω3 + ω1ω2;
a2 = ω2 + ω3;
k = −β/[α(1 + β)],

(9)

where ωi are defined by (5) above and for this case α =
R5/(R4+R5). Parameters ωi can be calculated by solving
the following equations:

ω3
3 − a2ω

2
3 + a1ω3 − a0

α(1+β) = 0⇒ ω3;

ω2 = a2 − ω3;
ω1 = a0

α(1+β)ω2ω3
.

(10)
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Fig. 2. Third-order low-pass LF filter VAR 1

Table 3. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 2

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R1 C1 15.915 10 8.7272 10
R2 C2 15.915 10 25.405 10
R3 C3 15.915 10 25.405 10

In the design example we choose α = 0.5, β = 1,
C1 = C2 = C3 = 10 nF, i.e. the same CTOT = 30 nF as
in the design of the circuit (in Fig. 1) in Section 2.1. For the
purpose of comparing the noise performance of different
filter circuits we assume the same total capacitance. From
calculated ωi, resistorsRi (i = 1, 2, 3) readily follow from
(8). Finally, we choose R0 = R4 = 10 kΩ and calculate
R5 = R4(1/α − 1) = 10 kΩ. We obtain element values
presented in Table 3.

2.3 New leap-frog filter–Variation form 2 with re-
duced amplifiers (VAR 2)

In the last design a summing amplifier can be thrown
out if we feed the output signal to the negative input of
the first integrator as shown in Fig. 3 (three opamps are
required).

Transfer function coefficients ai (i = 0, 1, 2), and the
gain k for this section are given by

a0 = α · ω1 · ω2 · ω3;
a1 = (1 + α)ω1ω2 + ω2ω3;
a2 = ω2 + ω3;
k = 1/α,

(11)

where ωi are defined by (5). Parameters ωi can be obtained
by solving the following equations:

ω3
3 − a2ω

2
3 + a1ω3 − a0(1+α)

α = 0⇒ ω3;
ω2 = a2 − ω3;
ω1 = a0

αω2ω3
.

(12)

In the design example we choose α = 1, C1 = C2 =
C3 = 10 nF, and from calculated ωi, resistors Ri (i =
1, 2, 3) readily follow from (8). The resulting element val-
ues are given in Table 4.

Fig. 3. Third-order LF filter VAR 2

Table 4. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 3

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R1 C1 11.211 10 4.3656 10
R2 C2 34.879 10 86.629 10
R3 C3 10.310 10 14.884 10

2.4 New leap-frog filter–Weighted feedback solution
with reduced amplifiers (VAR 3)

Sometimes there is a need for reducing the amount of
feedback signals in the LF circuit as shown in Fig. 4. Feed-
back signals are reduced by voltage dividers consisting of
additional resistors R0 and R0i (i = 1, 2), and by that the
feedback is weaker.

Transfer function coefficients ai (i = 0, 1, 2), and the
gain k for the section in Fig. 4 are given by

a0 = α · ω1 · ω2 · ω3;
a1 = β1(1 + α)ω1ω2 + β2ω2ω3;
a2 = β1ω2 + β2ω3;
k = 1/α,

(13)

where β1 = R0/(R0 + R01), β2 = R0/(R0 + R02), and
ωi are defined by (5) above. Parameters ωi can be obtained
by solving the following equations:

ω3
3 − a2

β2
ω2

3 + a1β1

β2
2
ω3 − a0β

2
1(1+α)

αβ2
2

= 0⇒ ω3;

ω2 = a2−β2ω3

β1
;

ω1 = a0
αω2ω3

.

(14)
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Fig. 4. Third-order LF filter VAR 3

Table 5. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 4

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R1 C1 52.451 10 31.627 10
R2 C2 13.712 10 9.7221 10
R3 C3 56.055 10 18.319 10

In the design, the values of β1, β2 and α can be used for
optimization of dynamic range. In this example we choose
α = 1, β1 = β2 = 0.5, C1 = C2 = C3 = 10 nF, and from
calculated ωi resistors Ri (i = 1, 2, 3) readily follow from
(8). Finally, we chooseR0 and calculate feedback resistors
R0i = R0(1/βi − 1) (i = 1, 2). Choosing R0 = 10 kΩ
we have obtained R01 = R02 = 10 kΩ, and the remaining
element values are presented in Table 5.

2.5 Dynamic range optimization of the ’new LF filter’

Consider our new LF filter in Fig. 1 with additional
voltage attenuators (as in Fig. 4) for reduction of the
amount of feedback signals needed for dynamic range op-
timization. Filter circuit with optimization capability is
shown in Fig. 5, where β1 = R0/(R0 + R01), β2 =
R0/(R0 + R02), and the parameter α = R3/R4. In the
sequel β1, β2 and α are used for optimization process. Pre-
liminary results on dynamic range optimization are given
in [9].

Transfer function coefficients ai (i = 0, 1, 2), and the
gain k for the section in Fig. 5 are given by

a0 = αβ1ω1ω2ω3;
a1 = (αβ1 + β2)ω2ω3 + β1ω1ω2;
a2 = (α+ β2)ω3 + β1ω2;
k = −1/(αβ1).

(15)

The parameters ωi (i = 1, 2, 3) can be obtained by
solving the following equations:

ω3
3 − ω2

3
a2

α+β2
+ ω3

a1
X − a0

αX = 0,

where X = (α+ β2/β1) (α+ β2) ;

ω2 = a2−(α+β2)ω3

β1
; ω1 = a0

β1αω2ω3
.

(16)

Fig. 5. Third-order new LF filter with additional resistors
for dynamic range optimization

In the first example we choose C1 = C2 = C3 =
10 nF, and α = 1, β1 = β2 = 1, which provides unity d.c.
gain, i.e. k = 1/(αβ1) = 1. Note that in the case when
β1 = β2 = 1, design equations (16) simplify into (7), and
the filter circuit in Fig. 5 simplifies into the circuit in Fig.
1.

Voltage transfer functions of every opamp output to the
input are defined by:

Hi(s) =
Vi(s)

Vin(s)
=
Ni(s)

D(s)
; (i = 1, 2, 3), (17)

with numerators given by:

N1(s) = −ω1

[
s2 + (β2 + α)ω3s+ ω2ω3β2

]
;

N2(s) = (s+ αω3)ω1ω2;
N3(s) = −ω1ω2ω3.

(18)

Note that all transfer functions in (17) have the same
denominatorD(s) = s3+a2s

2+a1s+a0, with coefficients
ai (i = 1, 2, 3) defined by (15).

The amplitude-frequency characteristics of the transfer
functions in (17), i.e. Ai(ω)[dB] = 20 log |Hi(jω)| (i =
1, 2, 3), were simulated using Cadence PSpice 16 with
TL081/TI opamp model and are shown in Fig. 6(a) and
(b) for Butterworth and Chebyshev examples, respectively.
As can be seen in Fig. 6(a) and (b) the magnitudes of in-
ner opamp outputs have different maximal values than 0dB
(all maximums are designated). Maximum of A3(ω) is at
0dB. Note also that filter circuit behaves well up to 500kHz
where it has attenuation of 150dB.

One criterion that is useful to guarantee maximum dy-
namic range is to specify that the maximum signal level at
any node within the circuit should at no time exceed the
signal level at the input or output. On the other hand if
some of the nodes have much lower signal level than those
at the other nodes, it also deteriorates the dynamic prop-
erties of the filter. Thus, for input signal equal to 1V the
largest signal within the circuit should everywhere in the
circuit (i.e. at every opamp output) be equal to 1V, or in
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other words, the maximum gain of magnitude characteris-
tic must be equal to 0dB.

A simple way of signal level scaling within a circuit is
to scale the corresponding nodes in the equivalent signal–
flow graph (SFG) as shown in [10]. In our case of single-
ended circuit this approach is not possible because the
feedback signals come into the positive opamp inputs (see
Fig. 5). Forward transfer function and feedback function
of each amplifier in the circuit are not the same as it is in
standard LF circuits, and simple rules shown in [10] for
dynamic range optimization are not applicable in this case.
Furthermore, in the SFG method it must be known in ad-
vance by which factors to scale the nodes, whereas, in our
case, scaling factors are calculated at the end of the nu-
merical optimization. Therefore, we must perform an opti-
mization procedure using MATLAB or some other tool.
However, the method using SFG-optimization would be
possible if we constructed the fully balanced circuit with
differential-input-differential-output opamps.

The only way to increase dynamic range is to deter-
mine the free design parameters α, β1, and β2 to obtain
equal maximums ofAi(ω)[dB], using numerical optimiza-
tion procedure. We used the Matlab Optimization Tool-
box [8]. In optimization, we define the quantity ε, which
represents the sum of the squares of distances between
three magnitude maximums and the arithmetical mean of
those maximums defined by z. So the error of the desired
"equal-maximums" will be given by:

ε =

3∑

i=1

(|Hi(jω)|max − z)
2

; z =
1

3

3∑

i=1

|Hi(jω)|max .

(19)

Error εwill be used as a ’goal’ (or ’cost’) function in the
optimization procedure and has to be minimized. Thus, the
optimum design parameters α, β1, and β2 are determined
by searching the minimum of "equal- maximums" error in
(19), i.e.:

xopt = arg min
x
ε, (20)

where:

x =
[
α β1 β2

]T
. (21)

During the optimization iterations, as we approach to
minimum ε, the mean value z in (19) is recalculated every
time, which forces that all three maximums converge to the
same level defined by z.

To find | Hi(jω) |max (i = 1, 2, 3) in (19) we first
have to find frequencies of maximums. Using first deriva-
tives, i.e.

d |Hi(jω)|2
dω

= 0 (i = 1, 2, 3), (22)

and because | Hi(jω) |2= Hi(ω
2) with substitution ω2 =

x we obtain the following equations for the solution of
(22):

x3 +
a22−2a1+3α2ω2

3

2 x2 + α3ω2
3(a2

2 − 2a1)x+

+
α2ω2

3(a21−2a0a2)−a20
2 = 0 (i = 1);

x4 + 2Xx3 + (XY − Z +W )x2+
+2(WY − a2

0)x+WZ −Xa2
0 = 0 (i = 2);

X = ω2
3(α+ β2)2 − 2β2ω2ω3; Y = a2

2 − 2a1;
Z = a2

1 − 2a0a2; W = β2
2ω

2
2ω

2
3

ω = 0 (i = 3).
(23)

Positive and real roots xi yield values ωimax =√
xi (i = 1, 2, 3), that are introduced into the frequency

characteristics of (17) providing the maximum values
| Hi(jω) |max for goal function ε defined by (19).

For searching minimum in (20) a ’Quasi-Newton line
search’ method was used performing the unconstrained
minimization of the goal function (19) (Matlab function
fminunc is used) [11]. Starting with vectors xstart we
obtain solutions xopt:

xstart =




0.9
0.3
0.6


 ,xopt =




0.87223440964
0.28818425973
0.57509193104


 , (24)

for Butterworth, and:

xstart =




0.5
0.3
0.3


 ,xopt =




0.59086092676
0.31040131850
0.23091201839


 , (25)

for Chebyshev functions, respectively. After 12 iterations
the precision of ε ≈ 10−13 was achieved,1 which is more
than sufficient for our optimization problem. All three
maximums converged to z, which represents the d.c. gain
of the final filter circuit. If, for convenience, we denote z in
dB as A0 = 20 log(z) we have: A0Butt = 11.9939 dB for
Butterworth and A0Cheby = 14.7318 dB for Chebyshev
filters, respectively. Depending on the choice of starting
vector xstart we can obtain different solutions for αs and
βs (contained in xopt) and different values of equal max-
imums A0Butt and A0Cheby . It is important that αs and

1It is important to choose good starting point xstart which will lead
to local minimum of ε. In our case, the minimum equal to zero provides
acceptable solution, although there can be many solutions xopt providing
cost ε = 0.
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Fig. 6. PSpice magnitudes response of the new leap-frog third-order LP filters at the opams outputs. (a)–(b) Un-optimized.
(c)–(d) Optimized

βs are positive and real, and βs have to be lower than or
equal to unity. There exists no rule for choosing starting
vector xstart other than ’trial-and-error’. It can also hap-
pen that due to the bad starting vector, the process does not
converge to any minimum (i.e. ε > 0).

To realize maximum 0 dB of the overall transfer func-
tion magnitude, instead obtained A0 dB, input resistor R1

is split into two resistors R11 and R12 and realize voltage
attenuator with:

µ =
R12

R11 +R12
; R1 =

R11R12

R11 +R12
, (26)

where the value of µ readily follows from:

µ = 1/k = 10−A0/20 = αβ1. (27)

Corresponding resistors in the attenuator follow from:

R11 = R1/µ; R12 = R1/(1− µ). (28)

We also choose R0 = 10 kΩ and calculate feedback
resistors R0i = R0(1/βi − 1) (i = 1, 2). The compo-
nent values of optimized filters are listed in Table 6, and
the corresponding transfer function magnitudes of three
opamp outputs are given in Fig. 6(c)–(d) for Butterworth
and Chebyshev examples, respectively. In Fig. 6(c) and
(d) one can clearly see the result of optimization, because
all maximums are equal and at 0 dB.

Table 6. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 5

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R1 C1 4.9453 10 4.6947 10
R2 C2 15.087 10 15.830 10
R3 C3 13.582 10 13.902 10
R4 R01 15.571 24.70 23.528 22.216
R0 R02 10 7.388 10 33.307
R11 R12 19.674 6.606 25.598 5.7490

2.6 Sensitivity and noise analysis of all new LF filter
solutions

According to the classification in [5] all variants of the
new LF filter in this section are suitable for high-pole Q
realizations because of theirs inherent low sensitivities.

A multi-parametric sensitivity analysis based on
Schoeffler sensitivity measure was performed on the five
filter circuits having new LF topology shown in Figs. 1
to 5. If the resistor and capacitor values (in Tables 2 to
6) are assumed to be uncorrelated random variables, with
zero-mean and 1% standard deviation, then the Schoeffler
sensitivity approximates the variance σ2

H of the magnitude
transfer function variations ∆|H(ω)|/|H(ω)|. The stan-
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Fig. 7. Schoeffler sensitivities of new third-order leap-frog filter and its alternative solutions (Matlab simulation). (a)
Butterworth. (b) Chebyshev 0.5dB. (c) Legend

Fig. 8. PSpice output noise spectral density of new third-order leap-frog filter and its alternative solutions (legend is in
Fig. 7). (a) Butterworth. (b) Chebyshev 0.5dB

dard deviation σα(ω)[dB] of the variation of the log gain
∆α = 8.68588∆|H(ω)|/|H(ω)|[dB] was calculated, with
respect to all passive components, and plotted using Mat-
lab for these circuits in Fig. 7.

There are five different plots in Fig. 7(a) and (b) for
Butterwort and Chebyshev approximations, respectively.
Observing Fig. 7, we can conclude that the best (low-
est) sensitivity in the pass-band has the circuit no. 2, i.e.
variation form 1 (VAR 1), whereas in the stop band it has
worst sensitivity. All other examples have similar sensi-
tivities at high and low frequencies except filter no. 5, i.e.
new LF optimized, which possess highest sensitivity in the
pass-band, but low sensitivity in the transient-band (in the
vicinity of the cut-off frequency). In the transition band
the best sensitivity property has the circuit no. 4, i.e. VAR

3—weighted feedback solution with reduced amplifiers.
Using the PSpice program output thermal noise spec-

tral density of 5 filter examples in this Section was gener-
ated and shown in Fig. 8. From Fig. 8 one can conclude
that the minimum noise possesses new LF filter no. 1 and
the highest noise have filters no. 4 and 5, because they have
additional four resistors for scaling opamps output levels.

3 COMPARISON OF NEW THIRD-ORDER LF
FILTERS WITH CONVENTIONAL FILTERS

In this section we compare the most promising solu-
tion of the new third-order leap-frog filter circuit from Sec-
tion 2 to several standard third-order filters. Some of these
examples readily follow from [4] and [12]. The normal-
ized circuits presented in [4] and [12] are denormalized to
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Fig. 9. Standard third-order leap-frog filter

f0 = 1 kHz here, and their sensitivities are compared to
the new circuits presented in this paper.

According to the classification in [5] single-amplifier
(SAK) filter in Section 3.2 belongs to medium-Q filter cir-
cuits, whereas other three common filter circuits in this
Section are suitable for high-Q pole realization.

Compared to other circuits presented in this paper,
SAK circuit has only one amplifier and therefore minimum
power consumption.

3.1 Standard leap-frog filter
The active-RC circuit shown in Fig. 9 is derived start-

ing from the passive-RLC ladder filter, simulating signal-
flow graphs. This circuit is known as the (standard) leap-
frog circuit. We require four opamps to realize the third-
order leap-frog filter in Fig. 9.

Passive ladder-LC filters, terminated with equal resis-
tors at both ends have very low sensitivity to component
tolerances in the pass-band [13]. This property is retained
in the leap-frog topology and because of this performance
standard leap-frog filter in Fig. 9 has low sensitivity to
component tolerances. The new leap-frog filters presented
in Section 2 of this paper possess this low sensitivity prop-
erty, as well.

Normalized element values of ladder-RLC filters fol-
low from filter tables (e.g. [14]) or filter programs
(e.g. [15]). Normalized elements for our two approxima-
tions are given in [4]. In this paper they are denormalized
to the cut-off frequency f0 = 1 kHz and to the resistance
R0. Value of R0 is calculated to provide total capacitance
CTOT = C1+C2+C3 = 30 nF. In the case of Butterworth
filter normalized capacitance values are Cn1 = Cn3 = 1,
and Cn2 = 2, and terminating resistance values are Rn1 =
Rn2 = 1. Denormalized values of capacitors are calcu-
lated from Ci = C0Cni (i = 1, 2, 3), where the denormal-
ization capacitance is C0 = CTOT /(Cn1 +Cn2 +Cn3) =
7.5 nF.

The denormalization resistance follows from R0 =
1/(2πf0C0) = 21.221kΩ. Denormalized resistors are cal-
culated from Ri = R0ni (i = 1, . . . , 9). Element values

Table 7. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 9

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
C1 C3 7.5 7.5 11.165 11.165
C2 R0 15 21.221 7.6705 22.755

Table 8. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 10

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R1 C1 14.066 12.857 22.672 12.857
R2 C2 59.750 4.2857 55.688 4.2857
R3 C3 60.934 1.4286 56.678 1.4286
α β 0.85178 1.17401 0.70124 1.42604

Fig. 10. Single-amplifier third-order filter (SAK)

for both Butterworth and Chebyshev examples are given in
Table 7.

3.2 Single-amplifier third-order filter (SAK)

Voltage transfer function in (1) can also be realized by
the filter circuit shown in Fig. 10 [2]. Transfer function
coefficients ai (i = 0, 1, 2), and the gain k for the circuit
in Fig. 10 are given by:
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Fig. 11. Tow-thomas third-order filter

k = αβ; a0 = 1
R1R2R3C1C2C3

;

a1 = R1C1+(R1+R2+R3)C3+(1−β)C2(R1+R2)
R1R2R3C1C2C3

;

a2 =
R2C3(R1C1+R3C2)+R1R3C3(C1+C2)+(1−β)R1R2C1C2

R1R2R3C1C2C3
;
(29)

where

α =
R12

R11 +R12
; R1 =

R11R12

R11 +R12
; β = 1+

RF
RG

. (30)

This circuit belongs to the class of active-RC filters
with single opamp and positive feedback (Sallen and Key
[SAK] type). Element values of SAK filters readily follow
using well-known design procedure in [2] which is opti-
mal because it provides low-sensitivity filter circuits. To
design optimum filter circuits, the capacitive tapering (by
factor ρ = 3, i.e. C2 = C1/ρ; C3 = C1/ρ

2) with values
R2
∼= R3 is used. Element values for both Butterworth

and Chebyshev examples are given in Table 8. From R1

we calculate R11 = R1/α and R12 = R1/(1 − α). We
also choose RG = 10 kΩ and calculate RF = RG(β − 1).

3.3 Tow-Thomas third-order filter
Voltage transfer functions in (1) can also be realized us-

ing a cascade of a Biquad and an RC section for realization
of a real pole shown in Fig. 11. It uses the Tow-Thomas
Biquad or the multi-amplifier Biquad [5].

Transfer function pole parameters, and the gain k for
the circuit in Fig. 11 are given by:

k = R3

R4
; ωp = 1√

R2R3C1C2
;

qp = R1

√
C1

R2R3C2
; γ = 1

R7C3
.

(31)

The circuit in Fig. 11 has proved to be advantageous
for various reasons including its good dynamic-range prop-
erties, and its excellent tuning properties. To realize the
third-order allpole transfer function this circuit needs four
opamps. Element values, using the design steps in [4] for
both Butterworth and Chebyshev examples, are given in
Table 9.

Table 9. Component values of Butterworth and Chebyshev
examples of the circuit in Fig. 11

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R1,7 C1 15.915 10 25.406 10
R2 C2 15.915 10 15.915 10
R3,4 C3 15.915 10 13.931 10
R5,6 10 10

Table 10. Component values of Butterworth and Cheby-
shev examples of the circuit in Fig. 12

Component values (resistors in kΩ, capacitors in nF)
Component Butterworth Chebyshev 0.5 dB
R0 C1 17.0 10 30 10
R1 C2 21.538 10 92.568 10
R2,6 C3 10 10 10 10
R3 R7 4.8401 48.996 6.4941 28.913

Fig. 12. GIC-based third-order filter

3.4 GIC-based third-order filter

Voltage transfer function in (1) can also be realized
by a cascade of a GIC-based Biquad [5] and an RC sec-
tion for realization of a real pole shown in Fig. 12 (see
also [12]). Note that this circuit uses only two opamps. In
this paper we present the design steps of the third-order
GIC-based filter section. Transfer function coefficients
ai (i = 0, 1, 2), and the gain k for the circuit in Fig. 12
are given by:
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a0 =
R6
R2

R0R3R7C0C1C4
; a1 =

(R0+R7)R3C4+R0R1C0
R6
R2

R0R1R3R7C0C1C4
;

a2 = (R0+R7)R1C1+R0R7C0

R0R1R7C0C1
; k = 1 + R2

R6
.

(32)
There are 9 components to be calculated from 4 con-

ditions. Because there are 5 degrees of freedom the filter
design can be performed in various ways. For the GIC filter
we will choose: R2 = R6 = 10 kΩ (i.e., we assume k = 2
and simplify the calculation because there are 3 conditions
left). Furthermore, we choose C0 = C1 = C4 = 10 nF
and the only free parameter left is R0. If we define a new
quantity called ’design frequency’:

ω0 = 1/(R0C0), (33)

we have a new free parameter ω0 depending on the choice
of R0. We introduce the following notations:

R1 = r1R0, R3 = r3R0, R7 = r7R0, (34)

and
αi =

ai

ω3−i
0

; (i = 0, 1, 2). (35)

By application of (33)–(35) to (32), and after some cal-
culations we obtain:

α0 = a0
ω3

0
= 1

r3r7
; α1 = a1

ω2
0

= r3+r3r7+r1
r1r3r7

;

α2 = a2
ω0

= r1+r1r7+r7
r1r7

.
(36)

Parameters r1, r3, and r7 can then be calculated from
the following equations:

r2
1 (α1 − α0)− α2r1 + 1 = 0⇒ r1 , i.e.,

(r1)1,2 =
α2±
√
α2

2−4(α1−α0)

2(α1−α0) = α2±
√

∆
2(α1−α0) ;

r3 = r1(α1−α0)−1
α0

; r7 = 1
r3α0

.

(37)

It is advisable to choose a larger value for r1 for the
reason that will be explained in the sequel.

Realizability constraints: all solutions for r1, r3 and r7

in (37) must be real and positive. To calculate real solution
for r1 we must have discriminant under the square root
∆ = α2

2 − 4 (α1 − α0) ≥ 0; from this we calculate the
following constraint on the free parameter ω0:

ω0 ≤
4a0

4a1 − a2
2

= ω0 max. (38)

Furthermore, there exists always one positive solution
for r1; and if ω0 > ω0min = a0/a1 then both solutions for
r1 are positive. In the latter case, if we choose the larger

value for r1 we ensure positive solution for r3. This is be-
cause the realizability constraint on the positive value of r3

(if we have chosen larger solution for r1) is upper bounded
by the maximum frequency ωa, which follows from:

−ω3
0 + a2ω

2
0 − a1ω0 + a0 = 0⇒ ωa, (39)

and it is ωa = ω0max. Therefore, in the design, user
can simply choose several values for ω0, with ω0min <
ω0 < ω0max then choose larger solution for r1 (to obtain
all component values real and positive) and select the most
appropriate ω0 until component spread is not too large.

Element values using the above design equations for
both Butterworth and Chebyshev examples are in Table 10.

3.5 Sensitivity and noise analysis of the new LF filter
compared to the standard filter circuits

A multi-parametric sensitivity analysis using Schoef-
fler measure, as above, was performed on the filter exam-
ples in Figs. 9 to 12, having element values in Tables 7 to
10 with 1% tolerances of passive elements. The standard
deviation σα(ω)[dB] of the transfer function magnitude,
for those circuits, was plotted in Fig. 13 using Matlab. The
sensitivity curves for the ’new LF’ and ’optimized new LF’
filters proposed in the Section 2 are also added for the com-
parison. Thus, there exist six different plots in Fig. 13(a)
and (b) for Butterwort and Chebyshev approximations, re-
spectively. Output thermal noise spectral densities of the
same six filters were generated using PSpice and plotted in
Fig. 14.

Observing Fig. 13 we can conclude that the best (low-
est) sensitivity in the pass-band has the circuit no. 4, i.e.
the single-amplifier Biquad. In the stop band no. 1 stan-
dard leap-frog, and no. 2 Tow-Thomas circuits show worst
sensitivity. In the transition band, i.e. in the vicinity of the
cut-off frequency, the lowest sensitivities have circuits no.
5 and 6, i.e. new LF circuits. As expected, the circuit no.
4 with single amplifier (SAK) shows extremely high sen-
sitivity (especially for higher pole-Q Chebyshev example)
in the transient region near the pass-band edge frequency
because it is the only ’medium-Q’ circuit in the paper.

From Fig. 14, one can conclude that minimum noise
possesses new LF filter as shown in Fig. 1 (curve no. 5 in
Fig. 14), which can be used to process low-voltage signals
submerged in noise. On the other hand, when needed for
high-voltage signals this circuit can be modified into the
circuit in Fig. 5, to be optimized for larger dynamic range,
at the cost of larger noise floor (curve no. 6 in Fig. 14).

The poorest noise properties show no. 3 GIC and no. 4.
SAK circuits. To conclude, regarding the minimum noise
and low sensitivity to component tolerances excellent per-
formance in this paper possess the new LF filter shown
in Fig. 1, which can be optimized for maximum dynamic
range when needed.

AUTOMATIKA 54(2013) 2, 217–230 227



A Novel Third-Order Leap-Frog Active Filter N. Mijat, D. Jurišić, G. S. Moschytz

Fig. 13. Schoeffler sensitivities of classical filter blocks in this section, new LF filter, and new LF with optimized dynamic
range (Matlab simulation). (a) Butterworth. (b) Chebyshev 0.5dB. (c) Legend

Fig. 14. PSpice output noise spectral density of classical filter blocks in this section, new LF filter, and new LF with
optimized dynamic range (legend is in Fig. 13). (a) Butterworth. (b) Chebyshev 0.5dB

4 MEASUREMENT RESULTS

Measurements were performed on a Butterworth and a
Chebyshev examples of ’new LF’ filters (in Fig. 1), real-
ized on separate printed circuit boards. Discrete 1% ac-
curate resistors (E96 series) and 10% accurate capacitors
(E12 series) were used together with the TL 081 A CPG4
Texas Instruments JFET input opamp (3MHz GBW prod-
uct).

The two ’new LF filters’ for Butterworth and Cheby-
shev 0.5dB examples were realized as discrete-component
active-RC LP filters with a 1kHz cut-off frequency with
components given in Table 2. For each filter, the out-
put noise spectral density and amplitude-frequency char-
acteristics (Bode diagrams) were measured using a typi-
cal university lab environment. The measurement equip-
ment consisted of a high-quality HP 4195A Network Ana-

lyzer, which measures the spectrum of signals and/or noise
(Spectrum mode), and Bode diagram (Network mode).
Detailed description of measurement procedure and equip-
ment is given in [16].

The measured amplitude-frequency characteristics are
shown in Fig. 15. Observing Fig. 15 (and zoomed curves
in the vicinity of cut-off frequency that are in the inset)
one can conclude about low sensitivity of ’new LF’ filter
which provides accurate magnitude curves in spite of high
tolerances of passive components.

The measured output-noise spectral-density runs of
’new LF’ LP filters are presented in Fig. 16. Compar-
ing the measured results in Fig. 16 with the results ob-
tained from the PSpice simulation shown in Fig. 14 (curve
5) shows very good agreement between the two. This re-
confirms the low-noise performance of the ’new LF’ filter.
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Fig. 15. Measured magnitude response of ’new LF’ third-order low-pass filters (as in Fig. 1) having components given in
Table 2. (a) Butterworth. (b) Chebyshev 0.5dB

Fig. 16. Measured output noise spectral density of ’new LF’ third-order low-pass filters (as in Fig. 1) having components
given in Table 2. (a) Butterworth. (b) Chebyshev 0.5dB

Note that at higher frequencies only the thermal (Johnson)
noise is apparent, i.e. the 1/f noise is too low to appear in
the measurements.

5 CONCLUSION

The design procedures, as well as sensitivity and ther-
mal output noise analyses were given for eight filter cir-
cuits that are suitable for realization of the third-order
transfer function. The best performance showed the circuit
denoted as new LF, which is proposed in this paper. Be-
sides its design procedure, dynamic range numerical opti-
mization was also presented on the modified new LF filter,
which can be optimized for large signals without distor-
tion.
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