ON LOGARITHMIC CONVEXITY FOR GIACCARDI'S DIFFERENCE

J. PEČARIĆ AND ATIQ UR REHMAN

Abstract

In this paper, the Giaccardi's difference is considered in some special cases. By utilizing two classes of the convex functions, the logarithmic convexity of the Giaccardi's difference is proved. The positive semi-definiteness of the matrix generated by Giaccardi's difference is shown. Related means of Cauchy type are defined and monotonicity property of these means is proved. The related mean value theorems of Cauchy type are also given.

1. Introduction and preliminaries

The well known Giaccardi's inequality[1] is given in the following result (see also [5, page 153,155$]$).

Theorem 1.1. Let $f: I \rightarrow \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, $\left(p_{1}, \ldots, p_{n}\right)$ be a non-negative n-tuple, $\left(x_{1}, \ldots, x_{n}\right)$ be n-tuple in I^{n} and $x_{0} \in I$ such that $\tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in I$ and

$$
\begin{equation*}
\left(x_{i}-x_{0}\right)\left(\tilde{x}_{n}-x_{i}\right) \geq 0 \text { for } i=1, \ldots, n, \quad \tilde{x}_{n} \neq x_{0} \tag{1}
\end{equation*}
$$

If f is a convex function, then

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} f\left(x_{k}\right) \leq A f\left(\tilde{x}_{n}\right)+B f\left(x_{0}\right) \tag{2}
\end{equation*}
$$

holds, where

$$
\begin{equation*}
A=\frac{\sum_{i=1}^{n} p_{i}\left(x_{i}-x_{0}\right)}{\tilde{x}_{n}-x_{0}}, \quad B=\frac{\left(\sum_{i=1}^{n} p_{i}-1\right) \tilde{x}_{n}}{\tilde{x}_{n}-x_{0}} . \tag{3}
\end{equation*}
$$

Remark 1.2. Condition that f is convex function can be replaced with $\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right)$ is an increasing function, then inequality (2) is also valid [5, pages 152-153].

2000 Mathematics Subject Classification. Primary 26D15, 26D20, 26D99;
Key words and phrases. Convex function, log-convex function, Giaccardi's inequality, mean value theorems.

This research was partially funded by Higher Education Commission, Pakistan. The research of the first author was supported by the Croatian Ministry of Science, Education and Sports under the Research Grant 117-1170889-0888.

Moreover, we proved the following result in [3].
Theorem 1.3. Let $f: I \rightarrow \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, $\left(p_{1}, \ldots, p_{n}\right)$ be a non-negative n-tuple, $\left(x_{1}, \ldots, x_{n}\right)$ be n-tuple in I^{n} and $x_{0} \in I$ such that $\tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in I$ and (1) is satisfied. If $f(x) /\left(x-x_{0}\right)$ is an increasing function on $I \backslash\left\{x_{0}\right\}$, then

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} f\left(x_{k}\right) \leq A f\left(\tilde{x}_{n}\right) \tag{4}
\end{equation*}
$$

holds, where A is the same as in Theorem 1.1.
In the same paper ([3]), we considered the following Giaccardi's type difference,
$\Upsilon_{t}= \begin{cases}\frac{1}{t-1}\left\{A\left(\tilde{x}_{n}-x_{0}\right)^{t}-\sum_{k=1}^{n} p_{k}\left(x_{k}-x_{0}\right)^{t}\right\}, & t \neq 1, \\ A\left(\tilde{x}_{n}-x_{0}\right) \log \left(\tilde{x}_{n}-x_{0}\right)-\sum_{k=1}^{n} p_{k}\left(x_{k}-x_{0}\right) \log \left(x_{k}-x_{0}\right), & t=1,\end{cases}$
where $t \in \mathbb{R}$ and

$$
\begin{equation*}
\tilde{x}_{n} \geq x_{i}>x_{0} \quad \text { for } i=1, \ldots, n \tag{6}
\end{equation*}
$$

If $t \mapsto \Upsilon_{t}$ is a positive valued function, then for $r, s, t \in \mathbb{R}$ such that $r \leq s \leq t$, we proved

$$
\begin{equation*}
\left(\Upsilon_{s}\right)^{t-r} \leq\left(\Upsilon_{r}\right)^{t-s}\left(\Upsilon_{t}\right)^{s-r} \tag{7}
\end{equation*}
$$

An interesting question is to remove the condition (6) i.e. consider the case when for some i we have $x_{i} \leq x_{0}$ and for some $i, x_{i}>x_{0}$. To give an answer to this question, we can consider the case of convex function instead of that in Theorem 1.3. Namely, we can use the following theorem [2].

Theorem 1.4. Let $f: I \rightarrow \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, $\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple, $\left(x_{1}, \ldots, x_{n}\right)$ be n-tuple in I^{n} and $x_{0} \in I$ such that $x_{1} \geq \ldots \geq$ $x_{m} \geq x_{0} \geq x_{m+1} \geq \ldots \geq x_{n}(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in I$ and

$$
\begin{align*}
& \sum_{i=1}^{k} p_{i}\left(\tilde{x}_{n}-x_{i}\right) \geq 0 \quad(1 \leq k \leq m) \\
& \sum_{i=k}^{n} p_{i}\left(\tilde{x}_{n}-x_{i}\right) \leq 0 \quad(m+1 \leq k \leq n) \tag{8}
\end{align*}
$$

Then, for every convex function f on I, the inequality (2) holds. If the reverse inequalities hold in (8), then the reverse inequality holds in (2).

Let us consider the following Giaccardi's difference:

$$
\begin{equation*}
\Phi(\mathbf{x} ; \mathbf{p} ; f)=A f\left(\tilde{x}_{n}\right)-\sum_{k=1}^{n} p_{k} f\left(x_{k}\right)+B f\left(x_{0}\right) \tag{9}
\end{equation*}
$$

In this paper, we consider two classes of parameterized convex functions and give logarithmic convexity of the difference defined in (9), as a function of parameter. We introduce a symmetric matrix generated by the difference and prove that this matrix is positive semi-definite. We construct certain Cauchy type means and show that these means are monotone in each variable. Also we prove related mean value theorems of Cauchy type.

2. Main Results

Lemma 2.1. For all $t \in \mathbb{R}$, let $\phi_{t}:(0, \infty) \rightarrow \mathbb{R}$ be the function defined as

$$
\phi_{t}(x)= \begin{cases}\frac{x^{t}}{t(t-1)}, & t \neq 0,1 \\ -\log x, & t=0 \\ x \log x, & t=1\end{cases}
$$

Then $\phi_{t}(x)$ is convex on $(0, \infty)$.
Proof. Since

$$
\phi_{t}^{\prime \prime}(x)=x^{t-2}>0 \quad \text { for all } \quad x \in(0, \infty), t \in \mathbb{R}
$$

therefore $\phi_{t}(x)$ is convex on $(0, \infty)$ for every $t \in \mathbb{R}$.
Lemma 2.2. [4] A positive function f is log-convex in the Jensen sense on an interval I, that is, for each $s, t \in I$

$$
f(s) f(t) \geq f^{2}\left(\frac{s+t}{2}\right)
$$

if and only if the relation

$$
u^{2} f(s)+2 u w f\left(\frac{s+t}{2}\right)+w^{2} f(t) \geq 0
$$

holds for each real u, w and $s, t \in I$.
The following lemma is equivalent to the definition of convex function [5, page 2].

Lemma 2.3. If $x_{1}, x_{2}, x_{3} \in I$ are such that $x_{1} \leq x_{2} \leq x_{3}$, then the function $f: I \rightarrow \mathbb{R}$ is convex if and only if inequality

$$
\left(x_{3}-x_{2}\right) f\left(x_{1}\right)+\left(x_{1}-x_{3}\right) f\left(x_{2}\right)+\left(x_{2}-x_{1}\right) f\left(x_{3}\right) \geq 0
$$

holds.

Theorem 2.4. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple, $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a positive n-tuple and $x_{0} \in(0, \infty)$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq$ $x_{m+1} \geq \ldots \geq x_{n}(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in(0, \infty)$ and (8) is satisfied. Also let $\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$, where ϕ_{t} is defined by Lemma 2.1, be a positive valued function. Then $t \mapsto \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$ is log-convex on \mathbb{R}.
Also for $r \leq s \leq t$, where $r, s, t \in \mathbb{R}$, we have

$$
\begin{equation*}
\left(\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{s}\right)\right)^{t-r} \leq\left(\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r}\right)\right)^{t-s}\left(\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)\right)^{s-r} . \tag{10}
\end{equation*}
$$

Proof. Let $f(x)=u^{2} \phi_{s}(x)+2 u w \phi_{r}(x)+w^{2} \phi_{t}(x)$ where $r, s, t \in \mathbb{R}$ such that $r=\frac{s+t}{2}$ and $u, w \in \mathbb{R}$. Then we have

$$
\begin{aligned}
f^{\prime \prime}(x) & =u^{2} x^{s-2}+2 u w x^{r-2}+w^{2} x^{t-2} \\
& =\left(u x^{(s-2) / 2}+w x^{(t-2) / 2}\right)^{2} \geq 0 \text { for } x \in(0, \infty)
\end{aligned}
$$

This implies that f is convex on $(0, \infty)$.
By Theorem 1.4, we have

$$
A f\left(\tilde{x}_{n}\right)-\sum_{k=1}^{n} p_{k} f\left(x_{k}\right)+B f\left(x_{0}\right) \geq 0
$$

and hence we obtain

$$
\begin{aligned}
& u^{2}\left(A \phi_{s}\left(\tilde{x}_{n}\right)-\sum_{k=1}^{n} p_{k} \phi_{s}\left(x_{k}\right)+B \phi_{s}\left(x_{0}\right)\right) \\
& +2 u w\left(A \phi_{r}\left(\tilde{x}_{n}\right)-\sum_{k=1}^{n} p_{k} \phi_{r}\left(x_{k}\right)+B \phi_{r}\left(x_{0}\right)\right) \\
& \\
& \quad+w^{2}\left(A \phi_{t}\left(\tilde{x}_{n}\right)-\sum_{k=1}^{n} p_{k} \phi_{t}\left(x_{k}\right)+B \phi_{t}\left(x_{0}\right)\right) \geq 0 .
\end{aligned}
$$

Since

$$
\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)=A \phi_{t}\left(\sum_{k=1}^{n} p_{k} x_{k}\right)-\sum_{k=1}^{n} p_{k} \phi_{t}\left(x_{k}\right)+B \phi_{t}\left(x_{0}\right),
$$

therefore

$$
u^{2} \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{s}\right)+2 u w \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r}\right)+w^{2} \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right) \geq 0 .
$$

Now by Lemma 2.2, we have that $\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$ is log-convex in the Jensen sense.
Since $\lim _{t \rightarrow 1} \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)=\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{1}\right)$ and $\lim _{t \rightarrow 0} \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)=\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{0}\right)$ it follows that $\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$ is continuous for all $t \in \mathbb{R}$, therefore it is a
log-convex function [5, page 6], i.e. $\log \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$ is convex.
Now by Lemma 2.3, we have that, for $r \leq s \leq t$ with $f=\log \Phi$,
$(t-s) \log \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r}\right)+(r-t) \log \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{s}\right)+(s-r) \log \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right) \geq 0$.
This is equivalent to inequality (10).
Remark 2.5. We keep the assumption that the function $t \mapsto \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$, is positive valued in the rest of the paper.

We shall denote a square matrix of order l by $\left[a_{i j}\right]$, with elements $a_{i j}$, $i, j=1, \ldots, l$. Recall that a real symmetric matrix is said to be positive semi-definite provided the quadratic form

$$
Q(x)=\sum_{i, j=1}^{l} a_{i j} x_{i} x_{j}
$$

is non-negative for all non-trivial sets of the real variable x_{i}, i.e. for $\left(x_{1}, \ldots, x_{l}\right) \neq(0, \ldots, 0)$.
Theorem 2.6. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple, $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a positive n-tuple and $x_{0} \in(0, \infty)$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq$ $x_{m+1} \geq \ldots \geq x_{n}(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in(0, \infty)$ and (8) is satisfied. For $l \in \mathbb{N}$, let r_{1}, \ldots, r_{l} be arbitrary real numbers, then the matrix

$$
\left[\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{\frac{r_{i}+r_{j}}{2}}\right)\right], \text { where } 1 \leq i, j \leq l,
$$

is a positive semi-definite matrix. Particularly

$$
\operatorname{det}\left(\left[\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{\frac{r_{i}+r_{j}}{2}}\right)\right]_{i, j=1}^{k}\right) \geq 0 \quad \text { for all } k=1, \ldots, l .
$$

Proof. Define a $l \times l$ matrix $M=\left[\frac{\phi_{r_{i}+r_{j}}}{2}\right]$, where $i, j=1, \ldots, l$, and let $\mathbf{v}=\left(v_{1}, \ldots, v_{l}\right)$ be a nonzero arbitrary vector from \mathbb{R}^{l}.

Consider a function

$$
\lambda(x)=\mathbf{v} M \mathbf{v}^{\tau}=\sum_{i, j=1}^{l} v_{i} v_{j} \phi_{\frac{r_{i}+r_{j}}{2}}(x) .
$$

Now we have

$$
\begin{aligned}
\lambda^{\prime \prime}(x) & =\sum_{i, j=1}^{l} v_{i} v_{j} x^{\frac{r_{i}+r_{j}}{2}-2} \\
& =\left(\sum_{i=1}^{l} v_{i} x^{\frac{r_{i}-2}{2}}\right)^{2} \geq 0 \text { for } x \in(0, \infty) .
\end{aligned}
$$

This implies λ is convex on $(0, \infty)$. Now applying Theorem 1.4 for function λ, we have

$$
0 \leq \Phi(\mathbf{x} ; \mathbf{p} ; \lambda)=\sum_{i, j=1}^{l} v_{i} v_{j} \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{\frac{r_{i}+r_{j}}{2}}^{2}\right)
$$

so the given matrix is positive semi-definite matrix.
Using well-known Sylvester criterion, we get

$$
\left|\begin{array}{ccc}
\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r_{1}}\right) & \cdots & \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{\frac{r_{1}+r_{k}}{2}}\right) \tag{11}\\
\vdots & \ddots & \vdots \\
\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{\frac{r_{k}+r_{1}}{2}}\right) & \cdots & \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r_{k}}\right)
\end{array}\right| \geq 0
$$

for all $k=1, \ldots, l$.
Remark 2.7. Note that, we can again deduce that $t \mapsto \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$ is log-convex function by taking $k=2$ in (11).

Definition 1. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple, $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a positive n-tuple and $x_{0} \in(0, \infty)$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq$ $x_{m+1} \geq \ldots \geq x_{n}(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in(0, \infty)$ and (8) is satisfied. Then for $t, r \in \mathbb{R}$, we define

$$
\begin{aligned}
& M_{t, r}(\mathbf{x} ; \mathbf{p})=\left(\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r}\right)}\right)^{1 /(t-r)}, \quad t \neq r \\
& M_{r, r}(\mathbf{x} ; \mathbf{p})=\exp \left(-\frac{2 r-1}{r(r-1)}-\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r} \phi_{0}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r}\right)}\right), \quad r \neq 0,1 \\
& M_{0,0}(\mathbf{x} ; \mathbf{p})=\exp \left(1-\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{0}^{2}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{0}\right)}\right) \\
& M_{1,1}(\mathbf{x} ; \mathbf{p})=\exp \left(-1-\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{0} \phi_{1}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{1}\right)}\right)
\end{aligned}
$$

Remark 2.8. Note that $\lim _{t \rightarrow r} M_{t, r}(\mathbf{x} ; \mathbf{p})=M_{r, r}(\mathbf{x} ; \mathbf{p}), \lim _{r \rightarrow 1} M_{r, r}(\mathbf{x} ; \mathbf{p})=$ $M_{1,1}(\mathbf{x} ; \mathbf{p})$ and $\lim _{r \rightarrow 0} M_{r, r}(\mathbf{x} ; \mathbf{p})=M_{0,0}(\mathbf{x} ; \mathbf{p})$.

To prove the monotonicity of $M_{t, r}(\mathbf{x} ; \mathbf{p})$, we shall use the following Lemma [4].

Lemma 2.9. Let f be a log-convex function and assume that if $x_{1} \leq y_{1}$, $x_{2} \leq y_{2}, x_{1} \neq x_{2}, y_{1} \neq y_{2}$. Then the following inequality is valid:

$$
\begin{equation*}
\left(\frac{f\left(x_{2}\right)}{f\left(x_{1}\right)}\right)^{\frac{1}{x_{2}-x_{1}}} \leq\left(\frac{f\left(y_{2}\right)}{f\left(y_{1}\right)}\right)^{\frac{1}{y_{2}-y_{1}}} \tag{12}
\end{equation*}
$$

Theorem 2.10. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple, $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a positive n-tuple and $x_{0} \in(0, \infty)$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq$ $x_{m+1} \geq \ldots \geq x_{n}(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n} \in(0, \infty)$ and (8) is satisfied. Also let $t, r, v, u \in \mathbb{R}$ such that $r \leq u, t \leq v$. Then

$$
\begin{equation*}
M_{t, r}(\mathbf{x} ; \mathbf{p}) \leq M_{v, u}(\mathbf{x} ; \mathbf{p}) \tag{13}
\end{equation*}
$$

Proof. As it is proved in Theorem 2.4 that $\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$ is log-convex, so taking $x_{1}=r, x_{2}=t, y_{1}=u, y_{2}=v$, where $r \neq t, v \neq u$ and $f(t)=\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)$ in Lemma 2.9, we have

$$
\begin{equation*}
\left(\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{t}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{r}\right)}\right)^{1 /(t-r)} \leq\left(\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{v}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{u}\right)}\right)^{1 /(v-u)} \tag{14}
\end{equation*}
$$

This is equivalent to (13) for $r \neq t$ and $v \neq u$.
From Remark 2.8, we get (14) is also valid for $r=t$ or $v=u$.
Similarly, we can consider another class of functions:
Lemma 2.11. For all $t \in \mathbb{R}$, let $\tilde{\phi}_{t}: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as

$$
\tilde{\phi}_{t}(x)= \begin{cases}\frac{e^{t x}}{t^{2}}, & t \neq 0 \\ \frac{1}{2} x^{2}, & t=0\end{cases}
$$

Then $\tilde{\phi}_{t}(x)$ is convex on \mathbb{R}.
Proof. Since

$$
\tilde{\phi}_{t}^{\prime \prime}(x)=e^{t x}>0 \quad \text { for all } \quad x, t \in \mathbb{R}
$$

therefore $\tilde{\phi}_{t}(x)$ is convex on \mathbb{R} for each $t \in \mathbb{R}$.
Theorem 2.12. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be two real n tuples, $x_{0} \in \mathbb{R}$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq x_{m+1} \geq \ldots \geq x_{n}$ $(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in \mathbb{R}$ and (8) is satisfied. Also let $\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{t}\right)$, where $\tilde{\phi}_{t}$ is defined by Lemma 2.11, be a positive valued function. Then $t \mapsto \Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{t}\right)$ is log-convex. Also for $r \leq s \leq t$, where $r, s, t \in \mathbb{R}$, we have

$$
\begin{equation*}
\left(\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{s}\right)\right)^{t-r} \leq\left(\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{r}\right)\right)^{t-s}\left(\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{t}\right)\right)^{s-r} \tag{15}
\end{equation*}
$$

Proof. The proof is similar to the proof of Theorem 2.4.
Theorem 2.13. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be two real n tuples, $x_{0} \in \mathbb{R}$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq x_{m+1} \geq \ldots \geq x_{n}$ $(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in \mathbb{R}$ and (8) is satisfied. Also let r_{1}, \ldots, r_{l} be arbitrary real numbers. Then the matrix

$$
\left[\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{\frac{r_{i}+r_{j}}{2}}\right)\right], \text { where } 1 \leq i, j \leq l
$$

is a positive semi-definite matrix. Particularly

$$
\operatorname{det}\left(\left[\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{\frac{r_{i}+r_{j}}{2}}^{2}\right)\right]_{i, j=1}^{k}\right) \geq 0 \quad \text { for all } k=1, \ldots, l .
$$

Proof. The proof is similar to the proof of Theorem 2.6.
Definition 2. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be two real n-tuples, $x_{0} \in \mathbb{R}$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq x_{m+1} \geq \ldots \geq x_{n} \quad(m \in$ $\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in \mathbb{R}$ and (8) is satisfied. Then for $t, r \in \mathbb{R}$,

$$
\begin{aligned}
\tilde{M}_{t, r}(\mathbf{x} ; \mathbf{p}) & =\left(\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{t}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{r}\right)}\right)^{\frac{1}{t-r}}, \quad t \neq r \\
\tilde{M}_{r, r}(\mathbf{x} ; \mathbf{p}) & =\exp \left(-\frac{2}{r}+\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; x \tilde{\phi}_{r}\right)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{r}\right)}\right), \quad r \neq 0 \\
\tilde{M}_{0,0}(\mathbf{x} ; \mathbf{p}) & =\exp \left(\frac{\Phi\left(\mathbf{x} ; \mathbf{p} ; x \tilde{\phi}_{0}\right)}{3 \Phi\left(\mathbf{x} ; \mathbf{p} ; \tilde{\phi}_{0}\right)}\right)
\end{aligned}
$$

Remark 2.14. Note that $\lim _{t \rightarrow r} \tilde{M}_{t, r}(\mathbf{x} ; \mathbf{p})=\tilde{M}_{r, r}(\mathbf{x} ; \mathbf{p})$ and $\lim _{r \rightarrow 0} \tilde{M}_{r, r}(\mathbf{x} ; \mathbf{p})=$ $\tilde{M}_{0,0}(\mathbf{x} ; \mathbf{p})$.

Theorem 2.15. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$, $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be two real n tuples, $x_{0} \in \mathbb{R}$ such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq x_{m+1} \geq \ldots \geq x_{n}$ $(m \in\{0,1,2, \ldots, n\}), \tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in \mathbb{R}$ and (8) is satisfied. Also let $r, t, v, u \in \mathbb{R}$ such that $r \leq u, t \leq v$. Then we have

$$
\begin{equation*}
\tilde{M}_{t, r}(\mathbf{x} ; \mathbf{p}) \leq \tilde{M}_{v, u}(\mathbf{x} ; \mathbf{p}) \tag{16}
\end{equation*}
$$

Proof. The proof is similar to the proof of the Theorem 2.10.

3. Mean value theorems

Lemma 3.1. Let $f \in C^{2}(I)$, where $I \subseteq \mathbb{R}$ is an interval, such that

$$
\begin{equation*}
m \leq f^{\prime \prime}(x) \leq M \quad \text { for all } \quad x \in I \tag{17}
\end{equation*}
$$

Consider the functions ρ_{1}, ρ_{2} defined as,

$$
\begin{aligned}
& \rho_{1}(x)=\frac{M x^{2}}{2}-f(x) \\
& \rho_{2}(x)=f(x)-\frac{m x^{2}}{2}
\end{aligned}
$$

Then $\rho_{i}(x)$ for $i=1,2$ are convex on I.

Proof. We have that

$$
\begin{aligned}
& \rho_{1}^{\prime \prime}(x)=M-f^{\prime \prime}(x) \geq 0 \\
& \rho_{2}^{\prime \prime}(x)=f^{\prime \prime}(x)-m \geq 0
\end{aligned}
$$

that is, $\rho_{i}(x)$ for $i=1,2$ are convex on I.
Theorem 3.2. Let $f: I \rightarrow \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, $\mathbf{p}=$ $\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be n-tuple in I^{n} and $x_{0} \in$ I such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq x_{m+1} \geq \ldots \geq x_{n}(m \in\{0,1,2, \ldots, n\})$, $\tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in I$ and (8) is satisfied. If $f \in C^{2}(I)$, then there exists $\xi \in I$ such that

$$
\begin{equation*}
\Phi(\mathbf{x} ; \mathbf{p} ; f)=f^{\prime \prime}(\xi) \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right) \tag{18}
\end{equation*}
$$

where $\phi_{2}(x)=x^{2} / 2$.
Proof. Suppose that $f^{\prime \prime}$ is bounded and that $m=\inf f^{\prime \prime}$ and $M=\sup f^{\prime \prime}$ $(-\infty<m<M<\infty)$.
In Theorem 1.4, setting $f=\rho_{1}$ and $f=\rho_{2}$ respectively as defined in Lemma 3.1, we get the following inequalities

$$
\begin{align*}
& \Phi(\mathbf{x} ; \mathbf{p} ; f) \leq M \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right) \tag{19}\\
& \Phi(\mathbf{x} ; \mathbf{p} ; f) \geq m \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right) \tag{20}
\end{align*}
$$

Since $\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right)$ is positive by assumption, therefore combining (19) and (20), we get,

$$
\begin{equation*}
m \leq \frac{\Phi(\mathbf{x} ; \mathbf{p} ; f)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right)} \leq M \tag{21}
\end{equation*}
$$

Now by condition (17), there exists $\xi \in I$ such that

$$
\frac{\Phi(\mathbf{x} ; \mathbf{p} ; f)}{\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right)}=f^{\prime \prime}(\xi)
$$

This implies (18). Moreover (19) is valid if (for example) $f^{\prime \prime}$ is bounded from above and hence (18) is valid.
Of course (18) is obvious if $f^{\prime \prime}$ is not bounded.
Theorem 3.3. Let $f, g: I \rightarrow \mathbb{R}$, where $I \subseteq \mathbb{R}$ is an interval, $\mathbf{p}=$ $\left(p_{1}, \ldots, p_{n}\right)$ be a real n-tuple and $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be n-tuple in I^{n} and $x_{0} \in$ I such that $x_{1} \geq \ldots \geq x_{m} \geq x_{0} \geq x_{m+1} \geq \ldots \geq x_{n}(m \in\{0,1,2, \ldots, n\})$, $\tilde{x}_{n}:=\sum_{k=1}^{n} p_{k} x_{k} \in I$ and (8) is satisfied. If $f, g \in C^{2}(I)$, then there exists $\xi \in I$ such that

$$
\begin{equation*}
\frac{\Phi(\mathbf{x} ; \mathbf{p} ; f)}{\Phi(\mathbf{x} ; \mathbf{p} ; g)}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} \tag{22}
\end{equation*}
$$

provided that the denominators are non-zero.

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 1-10
J. Pečarić and Atiq UR Rehman

On Logarithmic Convexity
Proof. Let a function $k \in C^{2}(I)$ be defined as

$$
k=c_{1} f-c_{2} g,
$$

where c_{1} and c_{2} are defined as

$$
\begin{aligned}
& c_{1}=\Phi(\mathbf{x} ; \mathbf{p} ; g), \\
& c_{2}=\Phi(\mathbf{x} ; \mathbf{p} ; f) .
\end{aligned}
$$

Then, using Theorem 3.2 with $f=k$, we have

$$
\begin{equation*}
0=\left(c_{1} f^{\prime \prime}(\xi)-c_{2} g^{\prime \prime}(\xi)\right) \Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right) \tag{23}
\end{equation*}
$$

As $\Phi\left(\mathbf{x} ; \mathbf{p} ; \phi_{2}\right)$ is positive, so we have

$$
\frac{c_{2}}{c_{1}}=\frac{f^{\prime \prime}(\xi)}{g^{\prime \prime}(\xi)} .
$$

After putting values, we get (22).

References

[1] F. Giaccardi, Su alcune disuguaglilianze, Giorn. Mat. Finanz. 1(4), (1953) 139153.
[2] J. Pečarić, On the Petrović inequality for convex functions, Glas. Mat. 18(38), no. 1, (1983) 77-85.
[3] J. Pečarić, and Atiq ur Rehman, On exponential convexity for Giaccardi's type difference, submitted.
[4] J. Pečarić, and Atiq ur Rehman, On logarithmic convexity for power sums and related results, J. Inequal. Appl. 2008, Article ID 389410, (2008), 9 pp.
[5] J. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, New York, 1992.

1 Abdus Salam School of Mathematical Sciences, GC University,68-B, New Muslim Town, Lahore 54600, Pakistan

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia

E-mail address: pecaric@mahazu.hazu.hr
2 Abdus Salam School of Mathematical Sciences, GC University,68-B, New Muslim Town, Lahore 54600, Pakistan

E-mail address: atiq@mathcity.org

