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BREGMAN AND BURBEA-RAO DIVERGENCE FOR

MATRICES

M. ADIL KHAN1, M. NIEZGODA2, AND J. PEČARIĆ1,3

Abstract. In this paper, the Bregman and Burbea-Rao diver-
gences for matrices are investigated. Two mean-value theorems
for the divergences induced by C2-functions are derived. As appli-
cation, certain Cauchy type means of the entries of the matrices
are constructed. By utilizing three classes of parametrized convex
functions, the exponential convexity of the divergences, thought as
a function of the parameter, is proved. The monotonicity of the
corresponding means of Cauchy type is shown. Power means are
also considered.

1. Introduction and summary

For a real convex function φ defined on an interval I ⊂ R, the
Bregman-divergence B and Burbea-Rao divergence J between vectors
x = (x1, . . . , xn) and y = (y1, . . . , yn), where xi, yi ∈ I, (i = 1, 2, ..., n),
are

Bn,φ(x,y) =

n∑
i=1

[
φ(xi) − φ(yi) − φ′(yi)(xi − yi)

]
, if φ is differentiable,

(1)

Jn,φ(x,y) =

n∑
i=1

{
1

2
[φ(xi) + φ(yi)] − φ

(
xi + yi

2

)}
(2)

(cf. [4, 9]).
Assume that I is an interval in R with interior I◦ and φ : I → R is

a convex function on I. It is well known (see e.g. [5]) that then φ is
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continuous on I◦, and, in addition, φ has finite left and right deriva-
tives at each point of I◦. Moreover, if x, y ∈ I◦ and x < y, then
D−φ(x) ≤ D+φ(x) ≤ D−φ(y) ≤ D+φ(y). Therefore both D−φ and
D+φ are nondecreasing functions on I◦. Also, a convex function must
be differentiable except for at most countably many points [7, pp. 271–
272].

For a convex function φ : I → R, the subdifferential of φ, denoted by
∂φ, is the set of all functions ϕ : I → [−∞,∞] such that ϕ (I◦) ⊂ R and

φ(x) ≥ φ(a) + (x− a)ϕ(a) for any x, a ∈ I. (3)

The convexity of φ on I ensures that D−φ,D+φ ∈ ∂φ, which shows that
∂φ is nonempty, and

D−φ(x) ≤ ϕ(x) ≤ D+φ(x) for any x ∈ I◦ and ϕ ∈ ∂φ. (4)

In particular, ϕ is nondecreasing function.
If φ is differentiable convex on I◦, then ∂φ = {φ′}.
The following theorem has been proved in [5].

Theorem 1 ([5]). Let φ : I ⊆ R → R be a convex function on the
interval I, xi, yi ∈ I◦ and pi ≥ 0 (i = 1, ..., n).

If ϕ ∈ ∂φ, then we have the inequality
n∑

i=1

pi [φ(xi)− φ(yi)− ϕ(yi)(xi − yi)] ≥ 0. (5)

If φ is strictly convex on I and pi > 0 (i = 1, ..., n), then the equality
holds in (5) if and only if xi = yi (i = 1, ..., n).

In fact, (5) is an extension of the fact that for convex function φ,
Bn,φ(x, y) ≥ 0.

In this paper, we study the Bregman and Burbea-Rao divergences
for matrices. In Section 2 we investigate properties of the Bregman-
divergence. We begin with an extension of Theorem 1 from n-vectors to
n×m matrices (see Theorem 2). This allows to derive two mean-value
theorems for the divergences induced by C2-functions (see Theorems 3
and 4). As application, we construct certain Cauchy type means of
the entries of the matrices (see Corollary 1 and Remark 1). By utilising
three classes of parametrized convex functions, we prove the exponential
convexity of the divergences, thought as a function of the parameter (see
Theorems 5, 7, 9). In particular, we present a Gram type inequality for
the divergences. We also show that the corresponding means of Cauchy
type are monotone in each variable (see Theorems 6, 8, 10).

In Section 3 we present some corresponding results for the Burbea-
Rao divergence.

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 11-32
M. Adil Khan1, M. Niezgoda2, And J. Pecaric1;3 Bregman and burbea-rao divergence



13

Finally, Section 4 is devoted to power means.

2. Bregman-divergence for matrices

We will denote by [aij ] n × m matrix with entries aij ∈ I (i =
1, 2, ..., n, j = 1, 2, ...,m).

Definition 1. Let φ : I ⊆ R → R be a convex function on the interval
I and ϕ ∈ ∂φ. The Bregman divergence of two matrices X = [xij ]
and Y = [yij ] with weight W = [wij ], where xij , yij ∈ I and wij ≥ 0
(i = 1, 2, ..., n, j = 1, 2, ...,m), is defined by

Bn,m,φ,ϕ(X,Y ;W ) =

n∑
i=1

m∑
j=1

wij [φ(xij) − φ(yij) − ϕ(yij)(xij − yij)] .

(6)

If φ : I ⊆ R → R is a differentiable function (not necessarily a convex
function (see e.g. Theorems 3-4)), then we can rewrite (6) in the form

Bn,m,φ(X,Y ;W ) =

n∑
i=1

m∑
j=1

wij

[
φ(xij) − φ(yij) − φ′(yij)(xij − yij)

]
.

(7)
In particular, if W = [wij ] = [viuj ] and yij =

∑m
j=1 ujxij for i =

1, 2, ..., n, j = 1, 2, ...,m with
∑m

j=1 uj = 1, then from (6) we obtain
Burbea-Rao divergence of the matrix X with weight W as follows:

Jn,m,φ(X,W ) =

n∑
i=1

vi




m∑
j=1

ujφ(xij)− φ




m∑
j=1

ujxij




 . (8)

Moreover, if vi = 1, uj =
1
2 , m = 2, xi1 = xi and xi2 = yi, then from (8)

we get Burbea-Rao divergence (2).

Theorem 2. Let φ : I ⊆ R → R be a convex function on the interval I,
and ϕ ∈ ∂φ.

Then for Bregman–divergence Bn,m,φ,ϕ(X,Y ;W ) of two matrices X =
[xij ], Y = [yij ] with weight W = [wij ], where xij , yij ∈ I and wij ≥ 0
(i = 1, 2, ..., n, j = 1, 2, ..,m), the following inequality holds.

Bn,m,φ,ϕ(X,Y ;W ) ≥ 0. (9)

If φ is strictly convex on I and wij > 0 (i = 1, ..., n, j = 1, 2, ...,m),
then the equality holds in (9) if and only if X = Y .

Proof. If we apply (3) for the choice x = xij , a = yij (i = 1, 2, ..., n, j =
1, 2, ...,m), we may write

φ(xij)− φ(yij)− ϕ(yij)(xij − yij) ≥ 0 (10)
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for any i = 1, 2, ..., n and j = 1, 2, ...,m.
By multiplying (10) by wij ≥ 0 and summing over j from 1 to m and

then summing over i from 1 to n, we obtain (9).
The case of equality for strictly convex functions follows by the fact

that we have equality for such a function in (10) if and only ifX = Y. �

Theorem 3. Let φ ∈ C2(I), where I is a closed interval in R, and let
X, Y and W be matrices as in Theorem 2 with X �= Y and wij > 0
(i = 1, 2, ..., n, j = 1, 2, ...,m).

Then there exists ξ ∈ I such that

Bn,m,φ(X,Y ;W ) =
φ′′(ξ)

2

n∑
i=1

m∑
j=1

wij (xij − yij)
2 . (11)

Proof. Since φ′′ is continuous on I, so m ≤ φ′′(x) ≤ M for x ∈ I, where
m = min

x∈I
φ′′(x) and M = max

x∈I
φ′′(x). Consider the functions φ1 and φ2

defined on I as

φ1(x) =
Mx2

2
− φ(x) and φ2(x) = φ(x)− mx2

2
for x ∈ I.

It is easily seen that

φ′′
1(x) = M − φ′′(x) ≥ 0 and φ′′

2(x) = φ′′(x)−m ≥ 0 for x ∈ I.

So φ1 and φ2 are convex.
Now by applying φ1 for φ in Theorem 2, we have

n∑
i=1

m∑
j=1

wij

[
Mx2ij
2

− φ(xij)−
My2ij
2

+ φ(yij)

−
(
Myij − φ′(yij)

)
(xij − yij)

]
≥ 0.

Hence we get

Bn,m,φ(X,Y ;W ) ≤ 1

2
M

n∑
i=1

m∑
j=1

wij (xij − yij)
2 . (12)

Similarly, by applying φ2 for φ in Theorem 2, we get

Bn,m,φ(X,Y ;W ) ≥ 1

2
m

n∑
i=1

m∑
j=1

wij(xij − yij)
2. (13)

But
∑n

i=1

∑m
j=1wij(xij − yij)

2 > 0 as X �= Y and wij > 0 (i =

1, 2, ..., n, j = 1, 2, ...,m). So, by combining (12) and (13), we obtain

m ≤
2Bn,m,φ(X,Y ;W )∑n

i=1

∑m
j=1wij(xij − yij)2

≤ M.

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 11-32
M. Adil Khan1, M. Niezgoda2, And J. Pecaric1;3 Bregman and burbea-rao divergence



15

Now by using the fact that for m ≤ ρ ≤ M there exists ξ ∈ I such that
φ′′(ξ) = ρ, we get (11). �

Theorem 4. Let φ, ψ ∈ C2(I), where I is a closed interval in R, and
let X, Y and W be matrices as in Theorem 2 with X �= Y and wij > 0
(i = 1, 2, ..., n, j = 1, 2, ...,m).

Then there exists ξ ∈ I such that

φ′′(ξ)

ψ′′(ξ)
=

Bn,m,φ(X,Y ;W )

Bn,m,ψ(X,Y ;W )
(14)

provided that the denominators are nonzero.

Proof. Let the function k ∈ C2(I) be defined by

k = c1φ− c2ψ,

where

c1 = Bn,m,ψ(X,Y ;W ) and c2 = Bn,m,φ(X,Y ;W ). (15)

It is not hard to check that Bn,m,k(X,Y ;W ) = 0.
In consequence, by using Theorem 3 for the function k, we find that

0 =

(
c1φ

′′(ξ)

2
− c2ψ

′′(ξ)

2

) n∑
i=1

m∑
j=1

wij(xij − yij)
2. (16)

Since
∑n

i=1

∑m
j=1wij(xij − yij)

2 > 0, equality (16) gives us

φ′′(ξ)

ψ′′(ξ)
=

c2
c1
,

which together with (15) proves (14). �

Corollary 1. Let X, Y and W be matrices as in Theorem 2 with X �= Y
and wij > 0 (i = 1, 2, ..., n, j = 1, 2, ...,m), where I is a positive closed
interval.

Then for −∞ < v �= 0, 1 �= u < ∞, u �= v, there exists ξ ∈ I such that

ξu−v =
v(v − 1)

∑n
i=1

∑m
j=1wij

[
xuij − uxijy

u−1
ij + yuij(u− 1)

]

u(u− 1)
∑n

i=1

∑m
j=1wij

[
xvij − vxijy

v−1
ij + yvij(v − 1)

] . (17)

Proof. By setting φ(x) = xu and ψ(x) = xv, x ∈ I, in Theorem 4, we
get (17). �

Remark 1. Note that we can consider the interval I = [m,M ], where
m = min{min

i,j
xij ,min

i,j
yij} and M = max{max

i,j
xij ,max

i,j
yij}.
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Since the function ξ → ξu−v with u �= v is invertible, then from (17)
it follows that

m ≤



v(v − 1)

∑n
i=1

∑m
j=1wij

[
xuij − uxijy

u−1
ij + yuij(u− 1)

]

u(u− 1)
∑n

i=1

∑m
j=1wij

[
xvij − vxijy

v−1
ij + yvij(v − 1)

]



1
u−v

≤ M.

(18)
Therefore the expression in the middle of (18) is a mean of xij and yij .

In fact, similar result can also be given for (14). Namely, suppose

that the function φ′′

ψ′′ has inverse function. Then from (14) we have

ξ =

(
φ′′

ψ′′

)−1(Bn,m,φ(X,Y ;W )

Bn,m,ψ(X,Y ;W )

)
. (19)

So, the expression on the right-hand side of (19) is also a mean of the
entries of X and Y .

In the sequel, we need the following lemmas.

Lemma 1 ([11]). Let us define the function

ηt(x) =

{
xt

t(t−1) , t �= 1;

x log x, t = 1
for x > 0, (20)

Then η′′t (x) = xt−2 for x, t > 0, that is ηt is convex on (0,+∞) for
every t ∈ (0,∞).

Lemma 2 ([3]). Let us define the function

ϕt(x) =




xt

t(t−1) , t �= 0, 1;

− log x , t = 0;

x log x , t = 1

for x > 0. (21)

Then ϕ′′
t (x) = xt−2 for x > 0, t ∈ R, that is ϕt is convex on (0,+∞)

for every t ∈ R.

Lemma 3 ([3]). Let us define the function

φt(x) =

{
1
t2
etx , t �= 0;

1
2x

2, t = 0
for x ∈ R. (22)

Then φ′′
t (x) = etx for x, t ∈ R, that is φt is a convex on R. for every

t ∈ R.
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By using (20) in (6) for xij , yij , t > 0 (i = 1, 2, ..., n, j = 1, 2, ...,m),
we get

Bn,m,t(X,Y ;W ) =




1
t(t−1)

∑n
i=1

∑m
j=1wij [x

t
ij − txijy

t−1
ij + (t− 1) ytij ] ,

t �= 1;

∑n
i=1

∑m
j=1wij [xij(log xij − log yij − 1) + yij ] ,

t = 1.

(23)
By applying (21) in (6) for xij , yij > 0 and t ∈ R (i = 1, 2, ..., n, j =

1, 2, ...,m), we obtain

B̃n,m,t(X,Y ;W ) =

{
Bn,m,t(X,Y ;W ) , t �= 0;∑n

i=1

∑m
j=1wij

[
xij−yij

yij
+ log yij − log xij

]
, t = 0.

(24)
Analogously, by utilizing (6) and (22) for xij , yij , t ∈ R (i = 1, 2, ..., n, j =
1, 2, ...,m), we have

Bn,m,t(X,Y ;W ) =




1
t2
∑n

i=1

∑m
j=1wij

[
etxij − etyij − tetyij (xij − yij)

]
,

t �= 0;
1
2

∑n
i=1

∑m
j=1wij

[
x2ij − y2ij − 2yij(xij − yij)

]
,

t = 0.

(25)

Lemma 4 ([10, p. 2]). If φ is convex on an interval I ⊆ R, then
(s3 − s2)φ(s1) + (s1 − s3)φ(s2) + (s2 − s1)φ(s3) ≥ 0 (26)

holds for every s1, s2, s3 ∈ I such that s1 < s2 < s3.

In what follows, the notion of exponential convexity plays an impor-
tant role (see [1] and references therein).

Definition 2 ([1]). A function φ : I → R is said to be exponentially
convex if it is continuous and

n∑
k,l=1

akalφ(xk + xl) ≥ 0

for all n ∈ N, ak ∈ R and xk ∈ I, k = 1, 2, ..., n, such that xk + xl ∈ I,
k, l = 1, 2, ..., n.

Proposition 1 ([1]). Let φ : I → R. Then the following statements are
equivalent.

(i): φ is exponentially convex.
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(ii): φ is continuous and

n∑
k,l=1

akalφ

(
xk + xl

2

)
≥ 0

for all n ∈ N, ak ∈ R, xk ∈ I, k = 1, 2, ..., n.

Corollary 2 ([1]). If φ is an exponentially convex function, then

det

[
φ

(
xk + xl

2

)]n
k,l=1

≥ 0

for all n ∈ N, xk ∈ I, k = 1, 2, ..., n.

Corollary 3 ([1]). If φ : I → (0,∞) is an exponentially convex function,
then φ is a log-convex function that is

φ(λx+ (1− λ)y) ≤ φλ(x)φ1−λ(y), for all x, y ∈ I, λ ∈ [0, 1].

In the remaining part of Section 2, we use in turn the three parametrized
classes of convex functions defined in Lemmas 1-3, respectively, to define
and study related Bregman-divergences and Cauchy type means.

We are now in a position to establish the exponential and logarith-
mic convexity and related properties of the Bregman-divergence t →
Bn,m,t(X,Y ;W ), t > 0, introduced in (23) and connected with Lemma 1.

Theorem 5. Let X, Y and W be matrices as in Theorem 2 with
xij , yij ≥ 0 (i = 1, 2, ..., n, j = 1, 2, ...,m). Denote

Γt = Bn,m,t(X,Y ;W ), t > 0.

Then

(a): for all n ∈ N, pk ∈ R+, k = 1, 2, ..., n, the matrix
[
Γ pk+pl

2

]n
k,l=1

is positive semi-definite. In particular,

det
[
Γ pk+pl

2

]n
k,l=1

≥ 0, (27)

(b): the function t → Γt is exponentially convex,
(c): if Γt > 0, then the function t → Γt is log-convex, i.e.,

(Γs)
t−r ≤ (Γr)

t−s(Γt)
s−r for 0 < r < s < t < ∞. (28)

Proof. (a). As in [8], let us consider the function defined by

µ(x) =
n∑

k,l=1

akalηpkl(x) for x > 0,
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where ak ∈ R for all k = 1, 2, ..., n, and pkl =
pk+pl

2 > 0, k, l = 1, 2, ..., n.
By Lemma 1, it is easily seen that

µ′′(x) =

n∑
k,l=1

akalx
pkl−2 =

(
n∑

k=1

akx
pk−2

2

)2

≥ 0 for x > 0.

Therefore µ(·) is convex on [0,+∞). By using (9) we obtain

Bn,m,µ(X,Y ;W ) ≥ 0.

Hence
n∑

k,l=1

akalΓpkl ≥ 0,

so the matrix
[
Γ pk+pl

2

]n
k,l=1

is positive semi-definite.

(b). Since limt→1 Γt = Γ1, so the function t → Γt is continuous for all
t > 0. By using Proposition 1 and the proved positive semi-definity of

the matrix
[
Γ pk+pl

2

]n
k,l=1

, we obtain exponential convexity of t → Γt.

(c). Let Γt > 0. Then, by Corollary 3, we have that Γt is log-convex,
i.e., t → log Γt is convex. By Lemma 4, we get

(t−s) log Γr+(r− t) log Γs+(s−r) log Γt ≥ 0 for 0 < r < s < t < ∞,

which is equivalent to (28). �

By the inequality (18) we can give the following definition.
Let X, Y and W be matrices as in Theorem 2 with X �= Y and

xij , yij , wij > 0 (i = 1, 2, ..., n, j = 1, 2, ...,m). We define

Mu,v =

(
Γu

Γv

) 1
u−v

for 0 < u �= v < ∞. (29)

Remind that Mu,v are means of xij and yij (see Remark 1). Moreover,
we can extend these means in other cases. So by limit we find that

Mu,u = exp



∑n

i=1

∑m
j=1wij

[
xuij log xij − yuij log yij − yu−1

ij (xij −A
]

∑n
i=1

∑m
j=1wij

[
xuij − uxijyu−1 + yuij(u− 1)

]

− 2u− 1

u(u− 1)

)
, u �= 1,

M1,1 = exp

(∑n
i=1

∑m
j=1wij

[
xij log

2 xij − yij log
2 yij −B

]

2
∑n

i=1

∑m
j=1wij [xij log xij − yij log yij − C]

− 1

)
.
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where A = yij)(u log yij + 1), B = (xij − yij)(log yij + 2) log yij and
C = (xij − yij)(log yij + 1).

Theorem 6. Let t, s, u, v ∈ R+ such that t ≤ u, s ≤ v. Then the
following inequality is valid.

Mt,s ≤ Mu,v. (30)

Proof. Since by Theorem 5, Γt is log-convex, we get

log Γs − log Γt

s− t
≤ log Γv − log Γu

v − u

(see [10, p. 2]). Hence we get (30) for s �= t and u �= v.
For s = t and/or u = v, we have the limiting case. �

We now study properties of the Bregman-divergence t → B̃n,m,t(X,Y ;W ),
t ∈ R, introduced in (24) and related to Lemma 2. We also investigate

the corresponding Cauchy type means M̃u,v.

Theorem 7. Let X, Y and W be matrices as in Theorem 2 with
xij , yij > 0 (i = 1, 2, ..., n, j = 1, 2, ...,m). Denote

Γ̃t = B̃n,m,t(X,Y ;W ), t ∈ R.

Then

(a): for all n ∈ N, pk ∈ R, k = 1, 2, ..., n, the matrix
[
Γ̃ pk+pl

2

]n
k,l=1

is positive semi-definite. In particular,

det
[
Γ̃ pk+pl

2

]n
k,l=1

≥ 0, (31)

(b): the function t → Γ̃t is exponentially convex,

(c): if Γ̃t > 0, then the function t → Γ̃t is log-convex, i.e.,

(Γ̃s)
t−r ≤ (Γ̃r)

t−s(Γ̃t)
s−r for −∞ < r < s < t < ∞. (32)

Proof. The proof is similar to the proof of Theorem 5. �

Let X, Y and W be matrices as in Theorem 2 with X �= Y and
wij , xij , yij > 0 (i = 1, 2, ..., n, j = 1, 2, ...,m). Analogously to (29) we
define

M̃u,v =

(
Γ̃u

Γ̃v

) 1
u−v

for −∞ < u �= v < ∞. (33)
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Also, by limit we have

M̃u,u = exp



∑n

i=1

∑m
j=1wij

[
xuij log xij − yuij log yij −D)

]

∑n
i=1

∑m
j=1wij

[
xuij − uxijyu−1 + yuij(u− 1)

]

− 2u− 1

u(u− 1)

)
, u �= 0, 1,

M̃0,0 = exp




∑n
i=1

∑m
j=1wij

[
log2 xij − log2 yij − E

]

2
∑n

i=1

∑m
j=1wij

[
log xij − log yij − y−1

ij xij + 1
] + 1


 ,

M̃1,1 = exp

(∑n
i=1

∑m
j=1wij

[
xij log

2 xij − yij log
2 yij − F

]

2
∑n

i=1

∑m
j=1wij [xij log xij − yij log yij −G]

− 1

)
,

where D = yu−1
ij (xij − yij)(u log yij + 1, E = 2y−1

ij log yij(xij − yij), F =

(xij − yij)(log yij + 2) log yij , G = (xij − yij)(log yij + 1).

Theorem 8. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v. Then the following
inequality is valid.

M̃t,s ≤ M̃u,v. (34)

Proof. The proof is similar to the proof of Theorem 6. �

Finally, we deal with the Bregman-divergence t → Bn,m,t(X,Y ;W ),
t ∈ R, defined in (25) (see also Lemma 3). We also consider the related
Cauchy type means Mu,v.

Theorem 9. Let X, Y and W be matrices as in Theorem 2. Denote

Γt = Bn,m,t(X,Y ;W ), t ∈ R.

Then

(a): for all n ∈ N, pk ∈ R, k = 1, 2, ..., n, the matrix
[
Γ pk+pl

2

]n
k,l=1

is positive semi-definite. In particular,

det
[
Γ pk+pl

2

]n
k,l=1

≥ 0, (35)

(b): the function t → Γt is exponentially convex,
(c): if Γt > 0, then the function t → Γt is log convex, i.e.,

(Γs)
t−r ≤ (Γr)

t−s(Γt)
s−r for −∞ < r < s < t < ∞. (36)

Proof. The proof is similar to the proof of Theorem 5. �

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 11-32
M. Adil Khan1, M. Niezgoda2, And J. Pecaric1;3 Bregman and burbea-rao divergence



22

Let X, Y and W be matrices as in Theorem 2 with X �= Y and
wij > 0 (i = 1, 2, ..., n, j = 1, 2, ...,m). We define Cauchy type mean

Mu,v of xij and yij as follows:

Mu,v =

(
Γu

Γv

) 1
u−v

for −∞ < u �= v < ∞, (37)

Mu,u = exp

( ∑n
i=1

∑m
j=1wij [xije

uxij − yije
uyij −H]∑n

i=1

∑m
j=1wij [euxij − euyij − ueuyij (xij − yij)]

− 2

u

)
, u �= 0,

M0,0 = exp

( ∑n
i=1

∑m
j=1wij [x

3
ij − y3ij − 3y2ij(xij − yij)]

3
∑n

i=1

∑m
j=1wij [x2ij − y2ij − 2yij(xij − yij)]

)
,

where H = euyij (uyij + 1)(xij − yij).

Theorem 10. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following
inequality is valid.

M t,s ≤ Mu,v. (38)

Proof. The proof is similar to the proof of Theorem 6. �

3. Burbea-Rao divergence for matrices

Remind that the Burbea-Rao divergence Jn,m,φ(X,W ) is a special
case of the Bregman–divergenceBn,m,φ,ϕ(X,Y ;W ) with the settingW =
[wij ] = [viuj ] and yij =

∑m
j=1 ujxij for i = 1, 2, ..., n, j = 1, 2, ...,m and∑m

j=1 uj = 1 (see (8)).
By making use of the results in the previous section, one can easily

derive the forthcoming theorems. Their detailed proofs are omitted.

Theorem 11. Let φ : I ⊆ R → R be a convex function on the interval
I, and let X = [xij ], W = [uivj ] be matrices such that xij ∈ I, uivj ≥ 0
(i = 1, 2, ..., n, j = 1, 2, ...,m) and

∑m
j=1 uj = 1.

Then

Jn,m,φ(X,W ) ≥ 0. (39)

Moreover, if φ is strictly convex on I and uivj > 0 for i = 1, ..., n,
j = 1, 2, ...,m, then we have strict inequality in (39).

Proof. The proof follows from Theorem 2. �

Theorem 12. Let φ ∈ C2(I), where I is closed interval in R, and
let X = [xij ], W = [uivj ] be matrices such that xij ∈ I, uivj > 0
(i = 1, 2, ..., n, j = 1, 2, ...,m) and

∑m
j=1 uj = 1.
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Then there exists ξ ∈ I such that

Jn,m,φ(X,W ) =
φ′′(ξ)

2

n∑
i=1

vi




m∑
j=1

ujx
2
ij −




m∑
j=1

ujxij




2
 . (40)

Proof. Apply Theorem 3. �

Theorem 13. Let φ, ψ ∈ C2(I), where I is closed interval in R, and let
X, W be matrices as in Theorem 12.

Then there exists ξ ∈ I such that

φ′′(ξ)

ψ′′(ξ)
=

Jn,m,φ(X,W )

Jn,m,ψ(X,W )
, (41)

provided that the denominators are nonzero.

Proof. See Theorem 4. �

Corollary 4. Let X, W be matrices as in Theorem 12, where I is a
positive closed interval. Then for −∞ < u �= 0, 1 �= v < ∞, u �= v, there
exists ξ ∈ I such that

ξu−v =
v(v − 1)

∑n
i=1 vi

[∑m
j=1 ujx

u
ij −

(∑m
j=1 ujxij

)u]

u(u− 1)
∑n

i=1 vi

[∑m
j=1 ujx

v
ij −

(∑m
j=1 ujxij

)v] . (42)

Proof. It is sufficient to set φ(x) = xu and ψ(x) = xv, x ∈ I, and to use
Theorem 13. �

Remark 2. Since the function ξ → ξu−v with u �= v is invertible, then
(42) implies

a ≤





v(v − 1)
∑n

i=1 vi

[∑m
j=1 ujx

u
ij −

(∑m
j=1 ujxij

)u]

u(u− 1)
∑n

i=1 vi

[∑m
j=1 ujx

v
ij −

(∑m
j=1 ujxij

)v]



1
u−v

≤ b,

(43)
where a = min

i,j
{xij} and max

i,j
{xij} = b. Thus the expression in the

middle of (43) is a mean of xij .

More generally, if the function φ′′

ψ′′ in (41) has inverse function, then

we deduce that

ξ =

(
φ′′

ψ′′

)−1(Jn,m,φ(X,W )

Jn,m,ψ(X,W )

)
. (44)

In consequence, the expression on the right hand side of (44) is also a
mean of xij .
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LetX,W be matrices as in Theorem 12 with xij > 0 (i = 1, 2, ..., n, j =
1, 2, ...,m). We define Cauchy type mean Lu,v of xij as:

Lu,v =

(
Λu

Λv

) 1
u−v

for 0 < u �= v < ∞, (50)

and by limit we have

Lu,u = exp



∑n

i=1 vi

[∑m
j=1 ujx

u
ij log xij −

(∑m
j=1 ujxij

)u
log

(∑m
j=1 ujxij

)]

∑n
i=1 vi

[∑m
j=1 ujx

u
ij −

(∑m
j=1 ujxij

)u]

− 2u− 1

u(u− 1)

)
, u �= 1,

L1,1 = exp



∑n

i=1 vi

[∑m
j=1 ujxij log

2 xij −
(∑m

j=1 ujxij

)
log2

(∑m
j=1 ujxij

)]

2
∑n

i=1 vi

[∑m
j=1 ujxij log xij −

(∑m
j=1 ujxij

)
log

(∑m
j=1 ujxij

)] − 1


 .

Theorem 15. Let t, s, u, v ∈ R+ such that t ≤ u, s ≤ v, then the
following inequality is valid.

Lt,s ≤ Lu,v. (51)

Proof. Use Theorem 6. �

Theorem 16. Let X, W be matrices as in Theorem 12 with xij > 0 (i =
1, 2, ..., n, j = 1, 2, ...,m). Denote

Λ̃t = J̃n,m,t(X,W ), t ∈ R.

Then

(a): for all n ∈ N, pk ∈ R, k = 1, 2, ..., n, the matrix
[
Λ̃ pk+pl

2

]n
k,l=1

is positive semi-definite. In particular,

det
[
Λ̃ pk+pl

2

]n
k,l=1

≥ 0, (52)

(b): the function t → Λ̃t is exponentially convex,

(c): the function t → Λ̃t is log convex, i.e.,

(Λ̃s)
t−r ≤ (Λ̃r)

t−s(Λ̃t)
s−r for −∞ < r < s < t < ∞. (53)

Proof. The proof is similar to the proof of Theorem 5, but using (39)
instead of (9). �

Combining (20) with (8) for xij , t > 0 (i = 1, 2, ..., n, j = 1, 2, ...,m)
gives

Jn,m,t(X,W ) =




1
t(t−1)

∑n
i=1 vi

[∑m
j=1 ujx

t
ij −

(∑m
j=1 ujxij

)t
]
, t �= 1,

∑n
i=1 vi

[∑m
j=1 ujxij log xij −

∑m
j=1 ujxij log(

∑m
j=1 ujxij)

]
,

t = 1.

(45)
Employing (21) in (8) for xij > 0 and t ∈ R (i = 1, 2, ..., n, j =

1, 2, ...,m) yields

J̃n,m,t(X,W ) =

{
Jn,m,t(X,W ) , t �= 0,∑n

i=1 vi

[
log(

∑m
j=1 ujxij) −

∑m
j=1 uj log xij

]
, t = 0.

(46)
Likewise, using (22) in (8) for xij , t ∈ R (i = 1, 2, ..., n, j = 1, 2, ...,m),
leads to

Jn,m,t(X,W ) =




1
t2
∑n

i=1 vi

[∑m
j=1 uje

txij − et
∑m

j=1 ujxij

]
, t �= 0,

1
2

∑n
i=1 vi

[∑m
j=1 ujx

2
ij −

(∑m
j=1 ujxij

)2
]

, t = 0.

(47)
Analogously as in Section 2, we now present properties of the Burbea-

Rao divergences (45)-(47) and of corresponding Cauchy type means.

Theorem 14. Let X, W be matrices as in Theorem 12 with xij > 0
(i = 1, 2, ..., n, j = 1, 2, ...,m). Denote

Λt = Jn,m,t(X,W ), t > 0.

Then

(a): for all n ∈ N, pk ∈ R+, k = 1, 2, ..., n, the matrix
[
Λ pk+pl

2

]n
k,l=1

is positive semi-definite. In particular,

det
[
Λ pk+pl

2

]n
k,l=1

≥ 0, (48)

(b): the function t → Λt is exponentially convex,
(c): the function t → Λt is log-convex, i.e.,

(Λs)
t−r ≤ (Λr)

t−s(Λt)
s−r for 0 < r < s < t < ∞. (49)

Proof. The proof is similar to the proof of Theorem 5, but using (39)
instead of (9). �
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LetX,W be matrices as in Theorem 12 with xij > 0 (i = 1, 2, ..., n, j =
1, 2, ...,m). We define Cauchy type mean Lu,v of xij as:

Lu,v =

(
Λu

Λv

) 1
u−v

for 0 < u �= v < ∞, (50)

and by limit we have

Lu,u = exp



∑n

i=1 vi

[∑m
j=1 ujx

u
ij log xij −

(∑m
j=1 ujxij

)u
log

(∑m
j=1 ujxij

)]

∑n
i=1 vi

[∑m
j=1 ujx

u
ij −

(∑m
j=1 ujxij

)u]

− 2u− 1

u(u− 1)

)
, u �= 1,

L1,1 = exp



∑n

i=1 vi

[∑m
j=1 ujxij log

2 xij −
(∑m

j=1 ujxij

)
log2

(∑m
j=1 ujxij

)]

2
∑n

i=1 vi

[∑m
j=1 ujxij log xij −

(∑m
j=1 ujxij

)
log

(∑m
j=1 ujxij

)] − 1


 .

Theorem 15. Let t, s, u, v ∈ R+ such that t ≤ u, s ≤ v, then the
following inequality is valid.

Lt,s ≤ Lu,v. (51)

Proof. Use Theorem 6. �

Theorem 16. Let X, W be matrices as in Theorem 12 with xij > 0 (i =
1, 2, ..., n, j = 1, 2, ...,m). Denote

Λ̃t = J̃n,m,t(X,W ), t ∈ R.

Then

(a): for all n ∈ N, pk ∈ R, k = 1, 2, ..., n, the matrix
[
Λ̃ pk+pl

2

]n
k,l=1

is positive semi-definite. In particular,

det
[
Λ̃ pk+pl

2

]n
k,l=1

≥ 0, (52)

(b): the function t → Λ̃t is exponentially convex,

(c): the function t → Λ̃t is log convex, i.e.,

(Λ̃s)
t−r ≤ (Λ̃r)

t−s(Λ̃t)
s−r for −∞ < r < s < t < ∞. (53)

Proof. The proof is similar to the proof of Theorem 5, but using (39)
instead of (9). �
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LetX,W be matrices as in Theorem 12 with xij > 0 (i = 1, 2, ..., n, j =

1, 2, ...,m). We define Cauchy type mean L̃u,v of xij as:

L̃u,v =

(
Λ̃u

Λ̃v

) 1
u−v

for −∞ < u �= v < ∞, (54)

and, by limit,

L̃u,u = exp




∑n
i=1 vi

[∑m
j=1 ujx

u
ij log xij −A1

]

∑n
i=1 vi

[∑m
j=1 ujx

u
ij −

(∑m
j=1 ujxij

)u]

− 2u− 1

u(u− 1)

)
, u �= 0, 1,

L̃0,0 = exp



∑n

i=1 vi

[∑m
j=1 uj log

2 xij − log2
(∑m

j=1 ujxij

)]

2
∑n

i=1 vi

[∑m
j=1 uj log xij − log

(∑m
j=1 ujxij

)] + 1


 ,

L̃1,1 = exp




∑n
i=1 vi

[∑m
j=1 ujxij log

2 xij − B1

]

2
∑n

i=1 vi

[∑m
j=1 ujxij log xij − B2

] − 1


 ,

whereA1 =
(∑m

j=1 ujxij

)u
log

(∑m
j=1 ujxij

)
,
(∑m

j=1 ujxij

)
log2

(∑m
j=1 ujxij

)
,

B2 =
(∑m

j=1 ujxij

)
log

(∑m
j=1 ujxij

)
.

Theorem 17. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v. Then the
following inequality is valid.

L̃t,s ≤ L̃u,v. (55)

Proof. The proof is similar to the proof of Theorem 6. �

Theorem 18. Let X, W be matrices as in Theorem 12. Denote

Λt = Jn,m,t(X,W ), t ∈ R.

Then

(a): for all n ∈ N, pk ∈ R, k = 1, 2, ..., n, the matrix
[
Λ pk+pl

2

]n
k,l=1

is positive semi-definite. In particular,

det
[
Λ pk+pl

2

]n
k,l=1

≥ 0, (56)

(b): the function t → Λt is exponentially convex,
(c): the function t → Λt is log-convex, i.e.,

(Λs)
t−r ≤ (Λr)

t−s(Λt)
s−r for −∞ < r < s < t < ∞. (57)
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Proof. The proof is similar to the proof of Theorem 5, but using (39)
instead of (9). �

Let X and W be matrices as in Theorem 12. We define Cauchy type
mean Lu,v of xij as:

Lu,v =

(
Λu

Λv

) 1
u−v

for −∞ < u �= v < ∞, (58)

Lu,u = exp



∑n

i=1 vi

[∑m
j=1 ujxije

uxij −
∑m

j=1 ujxije
u
∑m

j=1 uxij

]

∑n
i=1 vi

[∑m
j=1 uje

uxij − e
∑m

j=1 ujxij

] − 2

u

)
, u �= 0,

L0,0 = exp

( ∑n
i=1 vi

[∑m
j=1 ujx

3
ij −

(∑m
j=1 ujxij

)3 ]

3
∑n

i=1 vi
[∑m

j=1 ujx
2
ij −

(∑m
j=1 ujxij

)2 ]
)
.

Theorem 19. Let t, s, u, v ∈ R such that t ≤ u, s ≤ v, then the following
inequality is valid.

Lt,s ≤ Lu,v. (59)

Proof. The proof is similar to the proof of Theorem 6. �

We conclude Section 3 with the notion of Rh
φ divergence.

Definition 3. Let φ : I ⊆ R → R be a convex function on interval I and
h be any increasing convex function on R, and X = [xij ] and W = [viuj ]
be two matrices with xij ∈ I, vi, uj ≥ 0 (i = 1, 2, ..., n, j = 1, 2, ...,m)
and

∑m
j=1 uj = 1.

Then the Rh
φ divergence of X with weight W is defined by

Rh
φ(X;W ) =

m∑
j=1

ujh

(
n∑

i=1

viφ(xij)

)
− h




n∑
i=1

viφ
( m∑

j=1

ujxij

) . (60)

Theorem 20. Let φ, h, X and W be as stated in Definition 3. Then
for Rh

φ divergence of the matrix X with weight W , defined as in (60),
the following inequality holds.

Rh
φ(X;W ) ≥ 0. (61)

Proof. Since h is convex, so we can write

h




m∑
j=1

uj

n∑
i=1

viφ(xij)


 ≤

m∑
j=1

ujh

(
n∑

i=1

viφ(xij)

)
.
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Hence, by (60), we find that

Rh
φ(X;W ) ≥ h




m∑
j=1

uj

n∑
i=1

viφ(xij)


− h




n∑
i=1

viφ
( m∑

j=1

ujxij

) . (62)

On the other hand, the convexity of φ gives

φ
( m∑

j=1

ujxij

)
≤

m∑
j=1

ujφ(xij) for all i = 1, 2, ..., n.

Consequently,
n∑

i=1

viφ
( m∑

j=1

ujxij

)
≤

n∑
i=1

vi

m∑
j=1

ujφ(xij).

As h is increasing, we obtain

h




m∑
j=1

uj

n∑
i=1

viφ(xij)


− h




n∑
i=1

viφ
( m∑

j=1

ujxij

)
 ≥ 0. (63)

Now by using (63) in (62), we get Rh
φ(X;W ) ≥ 0, as required. �

4. Power mean and Burbea-Rao divergence

The power mean of order p (p ∈ R) of the positive m-tuple xi =
(xi1, ..., xim) ∈ Rm

+ , for all i = 1, 2, ..., n, with weights u = (u1, ..., um),
where uj > 0 for j = 1, 2, ...,m, is defined by

Mp(xi) =




(∑m
j=1 ujx

p
ij

)1/p
, p �= 0;

∏m
j=1 x

uj

ij , p = 0.

Corollary 5. Let X, W be matrices as in Theorem 12 with uj ≥ 0
(j = 1, 2, ...,m) and with a positive closed interval I. Then for r, s, l ∈ R
such that r �= s �= l �= r, s, r, l �= 0 and xij ∈ I1/s = {ξ1/s : ξ ∈ I}
(i = 1, 2, ..., n, j = 1, 2, ...,m) there exists η ∈ I1/s satisfying∑n

i=1 vi [M
r
r (xi)−M r

s (xi)]∑n
i=1 vi

[
M l

l (xi)−M l
s(xi)

] =
r(r − s)

l(l − s)
ηr−l, (64)

provided that the denominator on the left-hand side of (64) is non-zero.

Proof. By setting φ(x) = x
r
s and ψ(x) = x

l
s , x ∈ I, in (41) (see Theo-

rem 13), and then replacing x
1/s
ij and ξ1/s by xij and η, respectively, we

get (64). �
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From (64), we can get the following

inf
ξ∈I

ξ1/s ≤

(
l(l − s)

r(r − s)

∑n
i=1 vi [M

r
r (xi)−M r

s (xi)]∑n
i=1 vi

[
M l

l (xi)−M l
s(xi)

]
) 1

r−l

≤ sup
ξ∈I

ξ1/s, (65)

where r, l, s ∈ R, r �= l �= s, s, r, l �= 0.
So from (65) we can define a new mean Υs

r,l as follows:

Υs
r,l =

(
l(l−s)
r(r−s)

∑n
i=1 vi[M

r
r (xi)−Mr

s (xi)]∑n
i=1 vi[M l

l (xi)−M l
s(xi)]

) 1
r−l

, l �= r �= s, l, r �= 0;

and in the limiting cases we get the following forms

Υs
r,0 = Υs

0,r =
(

s
∑n

i=1 vi[M
r
r (xi)−Mr

s (xi)]
r(r−s)

∑n
i=1 vi[logMs(xi)−logM0(xi)]

) 1
r
, r �= s, r, s �= 0;

Υs
s,l = Υs

l,s =
(
l(l−s)

s

∑n
i=1 vi[

∑m
j=1 ujx

s
ij log xij−Ms

s (xi) logMs(xi)∑n
i=1 vi[M

l
l (xi)−M l

s(xi)]

) 1
s−l

, l �= s, l, s �= 0;

Υs
s,0 = Υs

0,s =
(∑n

i=1 vi[
∑m

j=1 ujx
s
ij log xij−Ms

s (xi) logMs(xi)]∑n
i=1 vi[logMs(xi)−logM0(xi)]

) 1
s
, s �= 0;

Υ0
r,l =

(
l2

∑n
i=1 vi[M

r
r (xi)−Mr

0 (xi)]

r2
∑n

i=1 vi[M
l
l (xi)−M l

0(xi)]

) 1
r−l

, l, r �= 0;

Υ0
r,0 = Υ0

0,r =
(

2
∑n

i=1 vi[M
r
r (xi)−Mr

0 (xi)]

r2
∑n

i=1 vi[M
2
2 (log xi,µ)−M2

1 (log xi)]

) 1
r
, r �= 0.

Υs
t,t = exp

(∑n
i=1 vi[

∑m
j=1 ujx

t
ij log xij−M t

s(xi) logMs(xi)]∑n
i=1 vi[M

t
t (xi)−M t

s(xi)]
− 2t−s

t(t−s)

)
, t �= s;

Υ0
t,t = exp

(∑n
i=1 vi[

∑m
j=1 ujx

t
ij log xij−M t

0(xi) logM0(xi)∑n
i=1 vi[M

t
t (xi)−M t

0(xi)]
− 2

t

)
, t �= 0;

Υ0
0,0 = exp

( ∑n
i=1 vi[

∑m
j=1 uj log

3 xij)−log3 M0(xi)

3
∑n

i=1 vi[
∑m

j=1 uj log
2 xij−log2 M0(xi)

)
,

Υs
s,s = exp

(∑n
i=1 vi[

∑m
j=1 ujx

s
ij log

2 xij)−Ms
s (xi) log

2 Ms(xi)

2
∑n

i=1 vi[
∑m

j=1 ujxs
ij log xij−Ms

s (xi) logMs(xi)]
− 1

s

)
, s �= 0;

Υs
0,0 = exp

(∑n
i=1 vi[

∑m
j=1 uj log

2 xij−log2 Ms(xi)]

2
∑n

i=1 vi[
∑m

j=1 uj log xij−logMs(xi)]
+ 1

s

)
, s �= 0.

Theorem 21. Let t, r, u, v ∈ R such that t ≤ v, r ≤ u. Then we have

Υs
t,r ≤ Υs

v,u for s ∈ R. (66)
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Proof. For s > 0, by making use of (46) with p/s and xij instead of t

and x
1/s
ij , we get

Λ̃p/s =




s2

p(p−s)

∑n
i=1 vi[M

p
p (xi)−Mp

s (xi)], p �= 0, s,

s
∑n

i=1 vi[logMs(xi)− logM0(xi)], p = 0,

s
∑n

i=1 vi[
∑m

j=1 ujx
s
ij log xij −M s

s (xi) logMs(xi)], p = s.

(67)
Since t/s ≤ v/s, r/s ≤ u/s, t �= r, v �= u, by virtue of Theorem 17 we

can write ( Λ̃t/s

Λ̃r/s

) 1
t−r ≤

( Λ̃v/s

Λ̃u/s

) 1
v−u

. (68)

By combining (67), (68) and the definition of the mean Υs
·,·, we get (66).

For s < 0, the proof of (66) is similar as above.
For s = 0, we can derive our result by taking limit as s → 0 in (66).

Also in this case, we can consider Λt defined as in Theorem 18. By taking
xij in place of log xij in (47), and by using Theorem 19, we conclude
that

Υ0
t,r ≤ Υ0

v,u.

This completes the proof. �

Remark 3. Let us note that the above results are equivalent to related
results for vectors. Namely, observe that for given two matricesX = [xij ]
and Y = [yij ] for i = 1, 2, ..., n, j = 1, 2, ...,m, as in Definition 1, if we
construct the vectors

Vx = (x11, x12, ..., x1m, x21, x22, ..., x2m, ..., xn1, xn2, ..., xnm)

Vy = (y11, y12, ..., y1m, y21, y22, ..., y2m, ..., yn1, yn2, ..., ynm),

we can deduce the above results by using results for vectors.
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COSYMMEDIAN TRIANGLES IN AN ISOTROPIC

PLANE

Z.Kolar–Begović, R.Kolar–Šuper and V.Volenec

Abstract. In this paper the concept of cosymmedian triangles in an isotropic

plane is defined. A number of statements about some important properties of

these triangles will be proved. Some analogies with the Euclidean case will also

be considered.

The isotropic (or Galilean) plane is a projective–metric plane, where
the absolute consists of one line, absolute line ω, and one point on that
line, the absolute point Ω. The lines through the point Ω are isotropic
lines, and the points on the line ω are isotropic points (the points at
infinity). Two lines through the same isotropic point are parallel, and
two points on the same isotropic line are parallel points. Therefore, an
isotropic plane is in fact the affine plane with the pointed direction of
isotropic lines and where the principle of duality is valid.

The triangle in an isotropic plane is called allowable if any two of its
vertices are not parallel. Each allowable triangle in an isotropic plane
can be set, by a suitable choice of coordinates, in the so called standard
position, i.e. that its circumscribed circle K has the equation

y = x2, (1)

and its vertices are of the form A = (a, a2), B = (b, b2), C = (c, c2) where
a+ b+ c = 0. With the labels p = abc, q = bc+ ca+ ab it can be shown
that the equalities q = bc−a2, b2+bc+c2 = −q, 2q−3bc = (c−a)(a−b),
a2 + b2 + c2 = −2q are valid.

Key words and phrases: isotropic plane, standard triangle, cosymmedian trian-
gles, symmedian center


