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COSYMMEDIAN TRIANGLES IN AN ISOTROPIC
PLANE

Z.KOoLAR BEGOVI¢, R. KOLAR-SUPER AND V. VOLENEC

Abstract. In this paper the concept of cosymmedian triangles in an isotropic
plane is defined. A number of statements about some important properties of
these triangles will be proved. Some analogies with the Euclidean case will also
be considered.

The isotropic (or Galilean) plane is a projective-metric plane, where
the absolute consists of one line, absolute line w, and one point on that
line, the absolute point €2. The lines through the point 2 are isotropic
lines, and the points on the line w are isotropic points (the points at
infinity). Two lines through the same isotropic point are parallel, and
two points on the same isotropic line are parallel points. Therefore, an
isotropic plane is in fact the affine plane with the pointed direction of
isotropic lines and where the principle of duality is valid.

The triangle in an isotropic plane is called allowable if any two of its
vertices are not parallel. Each allowable triangle in an isotropic plane
can be set, by a suitable choice of coordinates, in the so called standard
position, i.e. that its circumscribed circle K has the equation

y = a7, (1)

and its vertices are of the form A = (a,a?), B = (b,b%), C = (¢, ¢?) where
a+b-+c=0. With the labels p = abc, ¢ = be + ca + ab it can be shown
that the equalities ¢ = bc—a?, b> +bc+c? = —q, 2¢—3bc = (c—a)(a—b),
a® 4+ b? + ¢ = —2q are valid.

Key words and phrases: isotropic plane, standard triangle, cosymmedian trian-
gles, symmedian center
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Let 71 = (x1,212) be the point on the circle K, then the tangent 7;
at 11 to the circle K has the equation

y =2z12 — 21> (2)

since from (1) and (2) the equation x? —2z12 + 212 = 0, with the double
solution = z1, follows. Tangent 7; and the tangent 75 to the circle
at the point Ty = (29, z22) with the equation y = 2xoz — 292
the point Tio = (%(xl + z9), mlxg) because of

meet at

2xq - i(xl + .%'2) — .%'12 = I1T2.

Tangents A, B, C to a circle I at the points A, B, C determine the
triangle A; B;C; with the vertices Ay = BNC, By = CNA, Cy = ANB, the
so called tangential triangle of the triangle ABC. Duetoa+b+c¢=0
we have now

A = (—%, bc) , By= (—[2), ca> , Cy= (—g, ab) .

The lines AA;, BBy, CC; are the symmedians of the triangle ABC.
In [2] it is shown that the symmedians of a triangle meet at the point
K, symmedian center of the triangle ABC. In the case of the triangle
ABC in a standard position the point K is given by

(1)

and, for example, the equation of the symmedian AK is

2q q
=—— bc — =. 4
Y= T )
Let T be an arbitrary point. If the lines AT, BT, CT meet the
circumscribed circle of the triangle ABC again at the points L, M,
N (except A, B, C) then the triangle LM N is called circum—Ceva’s
triangle of the point T with respect to the triangle ABC.

Theorem 1. The circum—Ceva’s triangle of the symmedian center K
with respect to the triangle ABC' is the triangle DEF with the vertices
D = (d,d?), E = (e,e?), F = (f, f?), where

2q

_ N B S |
d=—a 3 €= b 3’ f=—c " (5)
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Proof. It is enough to prove that, for example the point D lies on
the symmedian AK with the equation (4). We get

2 2 2
2 et = Q(a+q) fqtar-d
a

3  3a 3a 3
4 4q> 2q 2
2 2
a +3q+9a2 <a+3a>

g

Theorem 2. The triangles ABC and DEF from Theorem 1 have com-
mon symmedians and symmmedian center.

Proof. 1t is enough to prove, for example, that the intersection

D, = (;(e + f), ef>

of the tangents £ and F to the circle K at the points £ and F' lies on
the symmedian AK with the equation (4). By using (5) we obtain

2q 1 4 _ (2 20\ a4 29, 2
ef+3a 2(e+f) bc+3—(b+3b) <c+3c> 3a(b+c+3b+30>

q 29,5, o 4 g 2¢° q
—be+ L= 2y i S O A kA
3= T T e T3 T g0t T3
2q 44> 2q  2¢
= — — — P — 7:0
3bc( )+ 9bc+ 3 + 9bc

The triangles ABC' and DEF' from Theorem 1 and 2 will be called
cosymmedian triangles. Its relationship is symmetric.

In [3] it is shown that Brocard angle of the triangle ABC with the
area A is defined by the formula

VAN

YT BCPYCAT+ AR (6)

It is also proved that for the triangle ABC' in the standard position the
equality
1
w = —@(b—c)(c—a)(a—b) (7)

is valid.
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Theorem 3. If the triangle DEF is cosymmedian to the triangle ABC
given in the standard position, then its area /\' is given by

q
A= —@wga (8)

and the lengths of its sides are given by the formulae

EF=a%w, FD=0%w, DE=c%0, (9)
p p

T IR

where w is the Brocard angle of the triangle ABC.
Proof. Owing to (5) and (7) we get, for example

2% 2 2 b—
N q_q+c_b:(q_1>(b_c>= (2q - 3be)

3c 3b 3bc 3b
a a qw
= —(b-c)c—a)la—b)=—(-3qw) = —a-—
3p( )(c—a)(a—0b) 3p( ) p
and analogously
f—d:—b-%, d—e:—c-%7
p p
wherefrom 5
(e=Nf—d)(d—e)=—5u’ (10)
Now
d d* 1 &
200 =[ e 2 1|= (e~ N - d)d—e) = Lo
forP b
and, for example
EF:—(@—f):agw
p
O
According to (9) it follows
q° 2¢°
EF? 4+ FD*+ DE* = (a® +b° + ¢®) 5 w? = == W,
p p

wherefrom, in accordance with the formula (8), by the analogy to (6)

the formula
AN

~ EF?+ FD? + DE?
holds. This consideration gives us next theorem.

/
w

= w
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Theorem 4. The Brocard angles of the cosymmedian triangles are equal.

According to DELENS ([5]) in the Euclidean geometry cosymmedian
triangles are equibrocardial i.e., they have equal Brocard angles.

For the triangle ABC in a standard position the abscissa of the
midpoint A,, of the side BC' is —5. Therefore the length AA,, = —5 —
a = —%a. It means that the lengths of the medians of the triangle
ABC are proportional to the numbers a, b and ¢. Therefore, according
to (9), the lengths of the sides of the triangle DEF are proportional to
the lengths of the medians of the triangle ABC. In [5] DELENS has the
same statement.

The following interesting statements for the cosymmedian triangles in

an isotropic plane are valid.

Theorem 5. The axis of homology of the cosymmedian triangles is the
common Lemoine line of these triangles.

Proof. The Lemoine line of the triangle ABC' is, according to [2], the
axis of homology of this triangle and its tangential triangle and also the
polar line of the symmedian center of the triangle ABC' with respect
to its circumscribed circle. Cosymmedian triangles have the common
circumscribed circles and common symmedian center and therefore have
also common Lemoine line. By virtue of Theorem 2 in [2] the line BC
meet the Lemoine line at the point (=%, 4 — be). It is enough to prove
that this point lies on the line through the points E = (e, e?) and F =
(f, %), which has the equation y = (e+ f)x—ef. Owing to (5) it follows

q q q q 2q | 2q
N
3 c—(e+f) % +ef 5 ~be 3a<+c+3b+3c>
2q 2¢\ ¢ q bt+c 2¢ 29 o0 oy, 4
+<b+3b>(c+3c)_3 3 0 o PTG
2 | 24 | 2 4q?
=4 T pe)+ L~
3 T o0 T3l 1) T gy =0
O

In the Euclidean geometry the statement of Theorem 5 (without a
proof) can be found in [6].

Theorem 6. If the triangles ABC and DEF are cosymmedian triangles
with the common symmedian center K, then the distances of the point
K to the sides of the hexagon AF BDCE are proportional to the lengths
of these sides, so we have the equalities

area BDK  area DCK  areaCEK

BD? DC? CE?
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area FAK  area AFK  area FBK
EA? AF? FB2

(In the Euclidean geometry CASEY in [7] has this statement without a
proof.)

Proof. Owing to (5) we obtain

—d_p— 2 _ 20 _
BD=d—-b=—-a-0 3, ¢ 3, 3@(2(] 3ac).

The line with the equation y = (b+d)x —bd obviously passes through the
points B = (b,b?) and D = (d, d?). The distance of the point K = (z,y),
given by (3), to this line is equal to

3p 29
b+d bd=—=—|b—a— — —b —
y=(b+dz+ 3 ( 3a> (a+ Sa)
1
= @[anqQ + 9a(a — b)p + 6pg — 6abg — 4bq?
1
6aq ——[—2aq¢® — 9a*c(a + ¢)(2a + ¢) + 6abg(c — a) + 4(a + ¢)¢%]
1
6aq —[4(c — a)q® + 6ag® — 9ac(2a* + 2ac + 2¢% + ac — ¢2) + 6ab(c — a)q]
1
= Sag —[4(c — a)q® + 6ab(c — a)q + 9a*c*(c — a) + 6aq® + 18a°cq]
1
= bag —[(c — a)(4¢* + 6abq + 9a*c*) + 6aq(q + 3ca))
1
= %[(c — a)(4¢* + 6abq + 9a*c?) — 6ag(c — a)?]
= %[4(12 —6a(a + c)q + 9a*c* — 6a(c — a)q]
- B c—a, 5
= S (4q 12acq + 9a*c?) = 6ag ——(2q — 3ca)
%9y 30a)- BD = —(c—a)(a—b)(b—c)- BD = Sw-BD
=5 q— 3ca =2 c—a)la c =5w .

Therefore we obtain, for example

BDK
2 area BDK — ;w.BD-BD, ie. % _ i

Now, we will consider some interesting properties of the points D,
E, F from Theorems 1 — 6. So we have the following theorem.
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Theorem 7. Let L, M, N be the feet of the perpendiculars from T to
the lines BC, CA, AB. Then the point L is the midpoint of the points M
and N, if and only if the point T is parallel to the second intersection D
of the symmedian AK of the triangle ABC with its circumscribed circle.

Proof. In [1] the following equations of the lines BC, C A, AB are
derived
y=—axr —bc, y=—-bxr—ca, y=—cx—ab,

so if x is the abscissa of the point T" then the ordinate of the points L, M,
N are equal to —ax —bc, —bx —ca, —cx—ab. The point L is the midpoint
of the points M and N provided that 2(ax + bc) = (b + ¢)z + ca + ab,
i.e., 3ax = q — 3bc or further 3ax = —3a? — 2¢. Finally, according to
(5)1 we get = =d. O

In the Euclidean geometry CRISTESCU [8] states that L is the mid-
point of M and N, if and only if, T'= D.

If T, = (z;,2;%) (i = 1,2) are the points on the circle (1), then
because (r1 + x2)x; — v179 = ;% the line Ty T, has the equation y =
(x1 4+ w2)x — x172. Referring to [4] the Steiner point of the standard
triangle ABC is of the form S = (s, s%), where s = —%p. The line DS
has the equation y = (d + s)x — ds, i.e. the equation

2 3 3 2
y=— a+£+£ x——p a—&-ﬁ ;
3a q q 3a
and because

2 3 3 2 2 2
a a+—q+—p _— a+£ :bc—q+—q——:—g—bc
3a 3 a 3

it passes through the point A" = (—a, —% — bc). Owing to

the points A = (a,a?) and A’ have the midpoint G = (0, —% q), and it
is according to [1] the centroid of the triangle ABC. We have proved:

Theorem 8. If DEF is the circum—Ceva’s triangle of the symmedian
center of an allowable triangle ABC and if A’, B’, C' are the points
symmetrical to the points A, B, C'" with respect to the centroid G of the
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triangle ABC, then the lines DA', EB', FC' pass through the Steiner
point S of that triangle.

In the Euclidean case MINEUR in [9] and LEEMANS in [10] have this
statetment.

Theorem 9. If DEF is the circum—Ceva’s triangle of the symmedian
center K of an allowable triangle ABC and if D', E', F' are the points
symmetrical to the points D, E, F with respect to the lines BC, C'A,
AB, then the segments BC, CA, AB can be seen from the points D', E’,
F' under the angles —A, —C, —B; —C, —B, —A; —B, —A, —C. The
points D', E', F' are the intersections of the medians AG, BG, CG
of the triangle ABC with the circles symmetrical to the circumscribed
circle of the triangle ABC' with respect to the lines BC, CA, AB.

This theorem generalizes the Euclidean result, see STOLL [11].

Proof. The ordinate of the midpoint of the point D = (d, d?), given
by (5), and the point

is equal to
1 4¢> 1 20\? ¢ be 24
(d?2=—g=be— - i
2 ( 4o 9a2> 2 <“+ 3a) 2 2 942
a® 1 be

so it lies on the line BC' with the equation y = —ax — bc. Owing to [2]
the median AG of the triangle ABC' has the equation

3bc — q 2q
= T — —.
3a 3
It passes through the point D’ because of
— 3b 2 2 2b 2¢> 2
g C-(a—kq)—q——bc%—q—cq 1 d

3a 3a 3 3 3a2 942 3
0, ) o
3 3a2 9a2

4q2

= —g—be— 2T

4-oc 9q2
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The lines AD', BD', C' D' have the slopes

2 2
a2+q+bc+%_2bc+%_ 1 2¢%+9a%(q + a?)
a+a+ 2 20+ 31 3a q + 3a?
1 2¢>+9a%q + 9a* 1 9 2q
= —- =—(29+3a") = — +a,
3a q + 3a? Ba(q ) 3a
b2+q+bc+%_%—c2
b+a+ 2 2 _¢
2q
—37a+c

2
and analogously 3—(] + b. So, we obtain our desired result
a

L(BD',CD') =b— ¢ = —A,
L(CD',AD') =a b= —C,
L(AD',BD') =c—a=—-B.
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