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EXPONENTIAL CONVEXITY, EULER-RADAU
EXPANSIONS AND STOLARSKY MEANS

J. JAKSETIC AND J. PECARIC

ABSTRACT. We use Euler and Radau two-point formulas in order
to generalize Cauchy means defined in [5] that are closely related
to Stolarsky means. The gain of this approach is twofold. First,
we are able to construct exponentially convex functions that are
an essential ingredient of our new means since this fact leads to
proof of monotonicity of constructed Cauchy means. Second, con-
structed exponentially convex functions are added as non-trivial to
sparse examples of exponentially convex functions since invention
of exponential convexity back to 1929.

1. INTRODUCTION

Stolarsky means are defined in a well-known paper [8]:

(7“1’“””?) ) M=) pa(p—q)7#0;
p(y?—=z%) '
y?—at ) /e p=0,q7#0;
(11) qu(:c,y) — r(lny—Inx) >
' —l xzq 1/(xq_yq) o )
e 4 (W) , P=aF0;
VY, p=4=0.

where x and y are positive real numbers = # y, p and ¢ are any real
numbers but 0.

Stolarsky proved that the function E,,(z,y) is increasing in both pa-
rameters p and ¢ i.e. for p < wu and g < v, we have

(1.2) E,q(x,y) < Eyy(z,y).

In the recent paper [5] further generalizations are made using mean-
value theorems for both sides of Hadamard’s inequality from [6]. Two
new means of Stolarsky type defined in [5] are
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P —yP (z+y)1’—1 p%q
1 _ [ (a=1)(g=2) pla—y) "\ 2
(1.3) Ep,q(%?J) = ((p_l)(p_Q) P _(x-&-y)Q1>
q(z—y) 2
and
1
wpfl_'_ypfl -~ g;P_yP qu
2 _ [ (g=1)(¢=2) 2 p(z—y)
(1.4) Em(as,y) = <(p_1)(p_2) pa1iga-1_ 27—yt ) )
2 a(z—y)

x,y >0, z#y, p,qg#0,1,2, p+# q (appropriate continuous extensions
can be found in [5]).

The same monotonicity properties are valid in both cases i.e. fori = 1,2
we have

By (2.y) < By, (2,y),
for p <wand g <w.

In the sequel we show that two means defined in (1.3) and (1.4) can
be integrated into lager class of means using Euler and Radau two-point
formulas from [4] and [6], but first we have to introduce a notion of
exponential convexity.

2. EXPONENTIALLY CONVEX FUNCTIONS

Exponentially convex functions are invented by Bernstein in [2] as a
subclass of convex functions in a given open interval. These functions
have many nice properties, for example, they are analytical on their do-
main. Although we will need only few of these properties we point here
that very good reference on general results about exponential convexity
is [1].

In the later text I stands for an open interval in R.

Definition 1. A function b : I — R is exponentially convex if it is

continuous and
n
> g (252) =0

i,7=1

for allm € N and all choices & € R, x; €1, i=1,...,n.

From Definition 1 we get the following corollary.
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Corollary 2.1. If v is exponentially convex on I then the matriz

2,
P

1s positive semi-definite. Particularly

s (5] 20
ij=1

for everyn e Nyx; €I, i=1,....n

Corollary 2.2. Ifv : I — (0,00) is exponentially convex function, then
Y is a log-conver function:

¥ (A + (1= Ny) < (@) (),
for all x,y € I and any X € [0, 1].

The following lemma will play great role in next sections.

Lemma 2.3. Let f be log-convex function and let x1 < yi, x2 <
Yo, T1 F Ta, Y1 7# y2. Then the following inequality is valid:

f(x2)>1/(902961) (f(yQ))l/(yle)
>y (75 = ) '
Proof. This follows from [7], Remark 1.2. O

3. EULER TWO-POINT FORMULAE FOR STOLARSKY-TYPE MEANS
In the paper [6] can be found Euler two-point formulae:

Theorem 3.1. Let f : [0,1] — R be such that f' is a continuous function
of bounded variation on [0,1]. Then for each s € [0,1/2]

1 1 [t
B0 [ swa=3ue o=+ [ Bo,
where
2t2, 0<t<s
(3.2) F5(t)y=¢ 22 -2t +2s, s<t<l-s
—4t+2, 1-s<t<1
Proof. See, [6] p. 558. O

Theorem 3.2. Let ¢ € C?[x,y]. Then for each t € {x} U [*Y, %]
there exist some & € [x,y], such that

py A= L [ = (O RG.pet)

2
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where
6t2 — 6t(x 4+ y) + 22 + 9% + 4oy
12 ’
Proof. We apply Theorem 3.1 for f : [0,1] = R, f(u) := ¢((1—u)x+yu).
Then for all s € [0, 1]

(3.4) R(z,y;t) =

Yy 1
(3.5) / su)du = (y— 1) /0 (1 — w)z + uy)du

(3.6) = (y— x)¢((1 —s)z+sy)+o(sz+(1-s)y)

2
_ 3 1
— (3/43:) ¢"((1 —uw)x + uy)F5(t)dt
0
It is obvious that for each s € [1, 5], F5(t) > 0, for all ¢ € [0, 1] and that
for s =0, F5(t) <0, for all ¢ € [0,1]. Then by the mean-value theorem

for integrals, for every s € {0} U [1, 3] there exists & € [0, 1] such that

1
/ &"((1— wyz + uy) F (t)dt = 6" (1 — &)z + &) /0 3 (t)dt.

After we put substitution ¢ = (1 — s)z + sy in (3.6), for s € {0} U [}, 1],
our proof is done.
O

Remark 3.3. We observe that if © < y then R(z,y;t) > 0 fort = x
and R(z,y;t) < 0 for t € [Z52, x+3y], where R(x,y;t) is defined with
(3.4).

Corollary 3.4. Let qﬁ € 02 [z,y] be a convex function. Then

o(t) + oz +y—1)
¢
- 2
for each t € [xﬂ’ x+43y For t = x the above inequality is reversed.

Remark 3.5. Observe that for t = x we get the first half of Hadamard
inequality.

Corollary 3.6. Let ¢1, ¢o € C%[x,y]. Then for some & € [z, ],
- gcf% Ydu — @10 Ho1ty=) G
y—z L [Y g (u)du — w P1(E)’

for each t € {z} U [Cczﬁ, x'fy], assuming both denominators different
than zero.

(3.7)
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Proof. Let us define the linear functional
/ Flu)du — )+f(w+y—t).
—x

Next, we define A(¢ ) ¢1(t)L(p2) — ¢p2(t)L(¢1). By Theorem 3.2 there
exists £ € [z, y] such that

LX) = N'(§)R(z, y3 1)

On the other hand, L(A) = 0 so it follows by Remark 3.3 \’(§) =
& (&) L(d2) — ¢5(§)L(¢1) = 0 and (3.7) is proved.

Remark 3.7. If ¢/ /¢4 has inverse, from (3.7) we have

_ ¢1(t)+¢>12($+y*t)

_ L (¥4
(3.8) 5:<¢'1'> [ == fe A1 (w)du
' /" t)+oo(z+y—t
o %fy _ p2(t) ¢22( y—t)

UU

If we take ¢q(u) = uP~ !, ¢o(u) = u? !, in Remark 3.7 we can define
new means. Suppose 0 < x <y < oo and p # q, p,q # 0,1,2 are given.
Let us define the following expressions

1
P —yP Pl (aiy—)P~1 \ p—g
t _ | (a=1)(g=2) pa—y) 2
(39) Ep:q(x’y) | (p—D)(p—2) zT—y? a1y (zyy—1)q- 1!
q(z—y) 2

where t € {z} U [ZFY, 2H34],
In order to deduce continuous extensions of (3.9) for parameters p and
g, for t € {a} U [Z¥, 73] we consider the following function

4
(3.10)
R G e A
Tty —lnz-Iny .
() = (inxy 1{15(1ny y Int-in(e-+y—0) :_ (1)’
tlnt—i—(r—i—y 2t) In(z+y—t) + x+y W’ - 2?

Theorem 3.8. Let 0 < x < y < o0.

(i) For everyt € [ZHY, x"f’y] function v defined with (3.10) is expo-
nentially convexr on R.
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(ii) For every t € [#,Hg’y] and for all t, € R, k = 1,2,...,n,

matriz { (t it ) 1$ positive semi-definite matriz. Partic-
i,j=1

i+t \ 1"
det [1/1 (?)] > 0.
ij=1

(iii) For everyt € {a} U [ZH T3] and p £ ¢

Proof. (i) It is easy to see from (3.10) that the function ¢ is continuous.
For arbitrary n € N and u;, t; € R (i = 1,...,n) let us define the
function

ularly

Z Uittt 1(:6),
i,j=1
where {¢, : r € R} is the family of convex functions defined on (0, c0)
with
T(f,1)7 r 7é 07 1a
(3.11) or(r) = —Inz, 7=0;
zlnx, r=1.
. m titt; m ti 3\ 2
Since ®"(z) = > wujz~2 0= <Z u;x 2 _2) > 0, the function ®
ij—=1 =
is convex on [z,y]. Hence, using Corollary 4.5 for function ® and using
the fact that

y J—
v(r) =~ . " / or—1(w)du — L= F %21(:6 ty-t)

we get Z U5 ( b +t]) > 0, concluding exponential convexity of func-
i,7=1

tion .

(ii) part of theorem follows from (i)-part and exponential convexity.

(iii) part of theorem is obvious.

O

Now, all continuous extensions of means Ef,yq(:c,y) are obvious but
the cases p = ¢ :

Int+ln(z4+y—t)  InZ2z—In?y

¢ _ 3—2p 2 2(z—y)
Epp(w,y) = exp G-Dr-2 T w1 ety 0] Py
2 p(z—y)
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ES,O(xa y) =

3(z+y) 3(lnz—Iny)

. z+y—t) Int+tln(z+y—t)  In®z-In?y
4t(z+y—t) 2(z—y)

(
+ 2t +y—t) ()
T+y _ Inz—Iny
2t(x+y—t) -y

exp

zln?z—yln’y  In®t+n’(z+y—t)  Int+in(z+y—t)
t _ 2(z—y) 4 2
El’l(x’y) = ©Xp z(lnz—1)—y(ny—1)  Int+in(z+y—t)
T—yY 2

t —
Ez,Q(JC, y) =
tin? t—(z+y—t) In?(z4y—t) 3(z2lnz—y?Iny) 3
4 B 4(z—y) o g([]? + y)
tInt+(x+y—t) In(z+y—t) + z+y _ z?lnz—y%lny
2 4 2(x—y)

exp

tInt—(z+y—t) In(z+y—t) + z2In? z—y%In%y
2 A(z—y)
tlnt+(x+y—t) In(z+y—t) + z+y _ z?lnz—y%lny
2 4 2(x—y)

- exp

Remark 3.9. If we put t = mQﬂ and t = x in above continuous exten-

sions we get continuous extensions of E;’q(x,y) and Eg,q(:):,y) defined
with (1.3) and (1.4) respectively.

Now we prove monotonicity of the new means.
Theorem 3.10. Let p <r, q <s. Then
(3.12) B} y(2.y) < Bl (x,y)
aty 243y

for all0 <z <y < oo and every t € {x} U [*F¥, =]

Proof. Assume first that p # g, r # s. Since by (i)-part of Theorem 3.8
the function 1) defined with (3.10) is exponentially convex, by Corollary
2.2 1) is log-convex function and then by Lemma 2.3 we have

L 1
o (P

Using (iii)-part of Theorem 3.8 and then using above continuous exten-
sions of means E;q(x, y) we conclude our proof. O
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4. RADAU-TYPE QUADRATURES FOR STOLARSKY MEANS

We proceed with similar generalizations using Radau-type quadra-
tures from [4] (see also [3]).

Theorem 4.1. Let f : [-1,1] — R be such that " is continuous on
[—1,1] and let s € (—1,0) U {1}. Then there exists £ € [—1,1] such that

(1) Z ) - ) = 50— 99
and

1 S
@2 [ - ) - T ) = 1= 9 ()

Theorem 4.2. Let ¢ € C%[z,y]. Then for each t € (z, “FL] U {y} there
exist some & € [x,y], such that

(4.3) /¢ Mgy IS = ()R, i t)

and

/¢> it — V=2 gty — t) — 2T () = ¢z 4y — )Rz, yit)

where

Riz,y:t) = (4y + 2z 126t)(y — x)

Proof. We apply Theorem 4.1 for f : [-1,1] = R, f(u) := Cb(l_Tuib” +
HTUZ/) Then for all s € (—1,0] U {1}

1
Y
(4.5) pluydu = L2 [ ¢(5he + H2y)du
/ [
(4.6) = 52| &0@) + ezt + 2y

+ (1—38%(231—3:) ¢//(1—2§0$+ H;Oy):|

)

for some &y € [—1,1]. After we put substitution ¢t = 5%z + 1+“”y and
apply (4.1) and (4.2) we get (4.3) and (4.4).
O
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Corollary 4.3. Let ¢ € C?[z,y]. Then for each t € (z, 2] U{y} there
exist some £ € [z,y], such that

(4.7) /¢ M) ) = () Ry (2, i)

and for each v € [*T,y) U {x} there exist some n € [x,y], such that

;Lawfﬁwwﬁﬁwwwmwmw>

where
4y + 2x — 6t T —4x —2 -
( Yy r—06 )(y ) and Rg(m,y;v) (6U € y)(y

Remark 4.4. Assume z < y. Observe then Ry(x,y;t) > 0 fort €
(z, x—;”’], and Ry(z,y;t) < 0 fort = y. Also Ra(z,y;v) > 0 for v €
(252, y); and Ra(z,y;v) <0 forv=x.

Corollary 4.5. Let ¢ € C?[x,y] be a convex function.
(i) For everyt € (z, %5Y]
y
2 [ ot = 2zmro() + o)
xr

For t =y the above inequality is reversed.
(ii) For every v € [Z32,y)

2 / P(t)dt > Y=

For v =z the above inequality is reversed.

L g(v) + L2 )

Similar to Corollary (3.6) we can also prove the following corollary.

Corollary 4.6. Let ¢1,¢2 € C%[z,y]. Then for each t € (z, 5] U {y}
there exist some & € [x,y], such that

2 xfyﬁbl Ydu — 2t 2otV gy (z) — 2y (t) _ P (E)
v J2 b2 (u)du — 2t T o (1) — =S a(t)  D5(8)

and for each v € [z“’,y) U {x} there exist some n € [x,y|, such that

(4.9)

2 fy ¢2 )du — ,Uébz(v) - yzxf_v%@(y) ¢ (n)’

assuming that denominators in (4.9) and (4.10) are not equal zero.
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Remark 4.7. If ¢ /¢4 has inverse, from (4.9) we have

(N (55 S a)du = 2 (3) — e (1)
(4.11) f—( ) (Wﬁ,@ 2tzy¢() ﬁgf)g(t))

o

Now if we take ¢1(x) = 2P~1, ¢o(z) = 2971, in Remark 4.7 we can
define new means. Suppose 0 < z <y < oo and p # q, p,q # 0,1,2 are
given. Let us define the following expressions

1
(4=1)(¢=2) Q(Zép_zz)))_27%%1)71_?;%?71 .
Lt — [ le=D)(@=2) ply—z = ;
(4.12) vaq(:v,y) = ((p—l)(p—2) 2(;(;‘1—96;7)7% TY q-1_YTT g 1) ’
q(y—= t—z -t

where t € (z, Z5¥] U {y}.

In order to deduce continuous extensions of (4.12), for t € (x, %] U{y}
we consider the following function

(4.13)
1 2yP—aP)  2t—a—y 1 y_g; _1 .
(r—1)(p—-2) ( p(y—2) A ) , p#0,1,2;
Iny—Inz 2t—m—g§ . gé m) —0:
= y—x 2x(t—x 2t(t—x)’
(1 (p) (2t—z—y) lzl_x;—gy—z) Int 2(y1ny_—zr In z) 19, p=1;
y?Iny—z?Ilnz (2t—z—y)zlnz (y—x)tInt Tty 9
y—x o t—x o t—x T p =24

It is easy to see that 1 is a continuous function and similar to Theorem
3.8 we can prove the following theorem.
Theorem 4.8. Let 0 <z < y < oco.

(i) For every t € (x,%5Y] function ¢y defined with (4.13) is expo-
nentially conver on R.
(ii) For every t € (x, xTer] and for all ty, € R, k =1,2,...,n, matriz

. X n
{wl (@)} . 18 positive semi-definite matriz. Particularly
i,j=

ti+t\ 1"
det [¢1< ! J)] >0,
2 =

(iii) For allt € (z, Z2]U{y} and p # q

Ryq(x,y) = @1%) 7=

Now, all continuous extensions for Ryh(z, y) are obvious but the cases
Pp=q:
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1.t _
Rp,p(xv y) -
D _ P D _ P o _
2(2y zP) 2(yPlny—z lny)+2t Y o1y g YE -1 1 g
exp 3-2p _ p’y—=) p(y—) t—x t—a
(p—1)(p—2) 20yP—aP) 2A—w—y , 4 Y=T, ’
p(y—x) t—x t—x
for p # 0;
1?t —
RO,O(xv y) =
In? y—In®z 3lny—Inx 2l—x—y 3 Yy—T 3
y—2) T2 y-z  2a(i-z) (Inz+3) - 2t(t—a) (Int+3)
exp Iny—Inz 2t—z—y  y—=x
y—x 2z(t—x) 2t(t—x)

(2t—z—y)In?z+(y—x)In*t  yIn?y—zlnz

Rlul(x7 y) = exXp 2t—z—y)Inz+(y—z)Int  2(ylny—zlnz
- +2
t—x y—x
17t —_—
RZ,Q(J:? y) -
(2t—z—y)z(2Inz—In? )+ (y—z)t(2Int—In? t) _ 3y Iny—22Inx) + 3(z+y)
ox 2(t—x) 2(y—x) 4
p y?’Iny—a2lnz  (2t—z—y)rlnz  (y—x)tlnt a4y
y—x t—x t—x 2

We now continue with means generated from (4.10).

Remark 4.9. If ¢/ /¢4 has inverse, from (4.10) we have

N -1 /2 y¢ t)dt — L=Zp(v) — y+$—2v¢ y
o) \CZ [T ot — Ep(n) - BEZ(y)

We put ¢1(z) = P71, ¢o(x) = 2971, in Remark 4.9 and we can define
new means. Suppose z,y >0, x # y and p # q, p,q # 0,1,2 are given.
Let us define the following expressions

y—x

L

2WP—aP) y—z 1 y+z—=2v , 1\ p—q
(4.15) R?)’Z($7y): ((q—l)(q—Q) p(y—z) - y—v Y )

)

(p—1)(p—2) 2(y?—29)

ya—1
where v € [2T¥,y) U {z}.

In order to deduce continuous extensions of (4.15), for v € [xTer, y)U{z}
we consider the following function
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(4.16)
1 2(yP—aP)  y—zxz p-1  y+z—2v p—1 .
(p—1)(p—2) ( p(y—=) y— 5V y—v Y , P#0L3
Iny—Inz  y—x  ytz—20 p= 0:
Pa(p) = y—= v(y—v)  y(y—v)’ ’
(y—z) Inv+(y+z—2v) Iny 2(ylny—xInx) .
y—v - —x + 27 p= 17
y?’Iny—22Inz _ (y—z)vlnv  (y+z—20)ylny a4y —9
y—x y—uv y—v 20 D= =

It is easy to show that 19 is a continuous function and similar to
Theorem 3.8 we can prove the following theorem.

Theorem 4.10. Let 0 < x <y < 0.

(i) For every v € [I;y,y) function 1o defined with (4.16) is expo-
nentially convex on R.
(ii) For every v € [%,y) and for all ty, € R, k =1,2,...,n, matrix

PN D
[1/12 (@)} . is positive semi-definite matrix. Particularly
z’]:

ti+t:\]1"
det [1/}2 <;J)] > 0.
ij=1

(iii) For allv € [%3%,y) U {z}, and p # g

R2(r,y) = (mi)

Now, all continuous extensions for Rf,jg(x, y) are obvious but the cases
bp=q:

2,0 _
Rp,p(xvy) -
2(yi—a9) 2Plny—aPlnz) y—z . 4 y-‘,—x 21) 1
- ot LEE=2Y -1
ex 3-2p  _ ¢*(y—x) p(y—2) Ty vt vy
Pl o002 2(yP—aP) y—=x | ytz—2v | )
—_—— — P 77yp
ply—z) y—v y—v
In?y—In?z 3(Iny—Inz) y—x y+r—2v
2,0 2(y—=) 2(y—z)  ~ 2v(y—v) (Inv+3)—5 (y—v) (Iny+3)
R (2,y) = ex y y y y(y .
0,0 Y) = p Iny—Inz y—z  ytz—2v ’

(y— x)lnv—i—(y—l—x 2v)lny 2(ylny—znz)
y—v Yy—x

(y—z) Inv+(y+z—2v) Iny yln y—zln’z
2,0 Yy—v y—x +2 .
Ry (2, y) = exp ;
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R2 2(z,y) =
(y—x)v(2In v—In? v)+(y+z—20)y(2 In y—In? y) _ 3y Iny—2?Inx) + 3(z+y)
ox 2(y—v) 2(y—z) 4
p y?lny—a22lnz _ (y—z)vlnv  (y+z—2v)ylny a4y
y—x Yy—v y—v 2

Similarly to Theorem 3.10 we can prove monotonicity of the new
means.

Theorem 4.11. Letp<r, ¢ <s and 0 <z <y < oco. Then
(i) for everyt € (x, %} U{y}

(4.17) Ryq(x.y) < Ryi(z,y);
(ii) for every v € 2, y) U {z}

(4.18) Ry (x,y) < Ry (e, y).

Remark 4.12. Observe that means E, (z,y) and E7 (x,y) defined in
(1.3) and (1.4) can be deduced from means R}Djfl(x,y) and jog(x,y) :

(i) for t = Z5¥ we have Rll,’é(x y) = EL (2,y), and for t = y we

P,
have Ryg(x,y) = E} (v y);
(il) for v = Z2¥ we have R q(z,y) = B (2,y), and for t = x we
have Rp q(x y) = ( Y).
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