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ON SOME CONVERSIONS OF THE
JENSEN-STEFFENSEN INEQUALITY

S. IVELIC AND J. PECARIC

ABSTRACT. Some conversions of the Jensen-Steffensen inequality
for convex functions are considered. Applying exp-convex method
improvements and reverses of the Slater-Pecari¢ inequality are ob-
tained. Related Cauchy’s type means are defined and some basic
properties are given.

1. INTRODUCTION
A function ¢ : (a,b) C R — R is convex if

Az + (1= Ny) < Ap(z) + (1= A)p(y)
holds for all z,y € (a,b) and X € [0, 1].

It is well known that for a convex function ¢ : (a,b) — R, any mono-
tonic n-tuple = (21, ...,x,) € (a,b)" and a real n-tuple a = (ay, ..., a,)
that satisfies

J
0<A;=) ai<A, j=1,..n A,>0, (1.1)
=1

the Jensen-Steffensen inequality

1 & 1 —
@ <An ;Zlazxz) = A, ;Zlaz‘p (xz) (1 2)

holds (see [9]).
The next integral variant of the Jensen-Steffensen inequality is proved
by R. P. Boas [5].

Theorem 1. Let ¢ : (a,b) — R be a convex function. Let f : o, 5] —
(a,b) be continuous and monotonic, where —oco < a < b < 400 and

Date: .

2000 Mathematics Subject Classification. 26D15.

Key words and phrases. Cauchy’s means, convex functions, Jensen-Steffensen in-
equality, Slater-Pecari¢ inequality .

107



Rad Hrvat. akad. znan. umjet. 515 Matematicke znanosti 17 (2013), str. 107-122
S. Ivelic and J. Pecaric On some conversions

—0 < a < f < 400, and X : [a, ] — R be either continuous or of
bounded variation satisfying

Ma) < Az) <AB) forall ze€a,B], AB)—Aa)>0. (1.3)
Then 5 5
Jr@at) | e (f(1)dA()
ol < 5 < 5 . (1.4)
I JaA®

One important property of a convex function ¢ : (a,b) — R is exis-
tence of the left and the right derivatives on (a,b), i.e for each = € (a, b)
there exists ¢’ () and ¢/, (x) and it holds ¢’ (z) < ¢/, (z). In follow-
ing we denote with ¢'(x) any value in the interval [¢’ (z), ¢/ (z)]. If a
function ¢ is differentiable then ¢'(z) = ¢’ (z) = ¢/, (z).

J. Pecari¢ [8] proved the following companion inequality to the Jensen-
Steffensen inequality which we refer to as the Slater-Pecari¢ inequality.
Some refinements of the Slater-Pecari¢ inequality (1.5) are proved in [1].

Theorem 2. Let ¢ : (a,b) — R be a conver function. Let x =
(,,...,xpn) be a monotonic n-tuple in (a,b)" and a = (ai,...,a,) be
a real n-tuple satisfying (1.1). If

< Doy airiply ()
aily () #0  and = € (a,b),
; " Zi:l ai‘%’ﬁr ()

then

1 - wo (s D @iy (x)
i ; i () < <P< ST (o) > (1.5)

The next companion inequality to the Jensen-Steffensen inequality is
proved by N. Elezovi¢ and J. Pecari¢ [6].

Theorem 3. If ¢ : (a,b) — R is a convex function, x, ..., x, monotonic
sequence in (a b) and aq, ..., a, real numbers satisfying (1.1), then

0< — Z a;p (x;) <;n2alxl> (1.6)
1 &
= A Zazxﬂp xz ( Zazwz> (An ;ai(/) (xl)> .

In following we denote T = A Z Qi

The inequalities (1.2), (1.5) and (1. ) can be obtained from the next
more general result as special cases.
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Theorem 4. [7, Theorem 1| Let ¢ : (a,b) — R be a convex function and
a; € R, i =1,...,n be such that (1.1) holds. Then for any z; € (a,b),
i =1,...,n, such that v1 < 290 < ... < xp, Or 1 > Ty > ... > T, the
inequalities

0le) ¢ (€)(F — ) < 1D asp (wi) < p(d) + 1 D i (wi) (i — )
" oi=1 " oi=1

(1.7)
hold for all ¢,d € (a,b).

Remark 1. Choosing ¢ = T the first inequality in (1.7) becomes (1.2).
Choosing d = & the second inequality in (1.7) becomes (1.6).
If we choose d € (a,b) such that

Z a; o' (z;) (x; —d) =0, (1.8)
i=1
the second inequality in (1.7) becomes
1 n
> i) < (@),
i=1
Under the condition 31" a;@ (x;) # 0, the equality (1.8) is equivalent
to

g = iz Gitig (1)
> i1 i’ (x:)

Therefore, we get (1.5).
Here we also quote integral version of Theorem 4.

Theorem 5. [7, Theorem 5] Let ¢ : (a,b) — R be a convex function.
Let f : [a, B] — (a,b) be a continuous and monotonic function, where
—0<a<b< 400 and —o0 < a < f < 400, and A : [, 5] — R be
either continuous or of bounded variation satisfying (1.3). Then & and
Y given by

109



Rad Hrvat. akad. znan. umjet. 515 Matematicke znanosti 17 (2013), str. 107-122
S. Ivelic and J. Pecaric On some conversions

are well defined and & € (a,b). Furthermore, if ©'(f) and \ have no
common discontinuity points, then the inequalities

/ B
p(c) + ¢ (c)(T—c) <y <p(d)+ Mfsﬂ’ (f()) (f(t) = d)dA(?)
(1.9)

hold for each ¢,d € (a,b).

In following we denote f = mfff(t)d)\(t).

In Section 2 we use so called exp-conver method established in [3], [4],
which enables us to interpret our results in form of exponential or log-
arithmic convexity. Because of that we quote definitions of exponential
and logarithmic convexity and some related propositions (see also [9]).

Definition 1. A function ¢ : (a,b) — R is said to be exponentially
convex if it is continuous and

m
Z wiujp(x; + ) >0
ij=1

holds for all m €N and all choices u; € R, i =1,2,...,m and x; € (a,b)
such that x;+x; € (a,b), 1 <1i,5 <m.

Definition 2. A function ¢ : (a,b) — Ry is said to be logarithmically
convex or log-convez if the function log  is convex, or equivalently, if

P (1= Nz +Ay) < o) e(y)*
holds for all x,y € (a,b), X € [0, 1].

Proposition 1. Let ¢ : (a,b) — R be a function. The following propo-
sitions are equivalent:

(i) ¢ is exponentially convex.
(ii) ¢ is continuous and

m
> winje (#5%) 2 0

,j=1

holds for all m € N and all choices u; € R and every x;,x; €
(a'a b)7 1 S Z?.] <m.

Corollary 1. If ¢ : (a,b) — Ry is an exponentially convex function
then ¢ is also log-convex.
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2. APPLICATIONS OF EXP-CONVEX METHOD

We define a new class of functionals which we use in sequel. In fol-
lowing we always suppose that 0 < a < b and —oco < a < < +00.

Let @ € [a,b]™ be a monotonic n-tuple, a be a real n-tuple satisfying
(1.1) and ¢, d € [a, b]. We define the functionals A; and A on C*([a, b])
by

Arlg) = o) + S [P @)~ d) o], @)
"i=1

/

As(g) = 4 D aip (@) — ole) — @' ()& ).
" oi=1

We also define integral case of the previous functionals as follows.

Let f : [a, B8] — [a,b] be a continuous and monotonic function, A :
[, B] = R be either continuous or of bounded variation satisfying (1.3)
and ¢, d € [a,b]. We define the functionals By and By on C*([a,b]) by

B
Bil) = £(d) + 57— [ (1) (70 = ) = o (F(0)] dAe).
’ (2.2)
Bal) = =g o e O N0 = ¢l0) = ¢ (=)

with assumption that ¢/(f) and A have no common discontinuity points.

Remark 2. Notice that in case when ¢ is conver, then by Theorem 4
it follows Ar(¢) > 0 and by Theorem 5 it follows Br(¢) > 0 for each
ke {1,2}.

In sequel we frequently use the family of convex functions {¢s; s € R}
defined by

s

ﬁ7 87&071
ds(xr) =4 —logz, s=0 . (2.3)

rzlogzx, s=1
Now we state and prove the next results.
Theorem 6. Let I'y : R — R be the function defined by
L(s) = Ak(9s) (2.4)
where Ay, is defined as in (2.1) and ¢s as in (2.3). Then
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(i) for all m € N and all choices p; € R, 1 < i < m, the matriz
[Fk (WFTPJH o is positive semi-definite, that is
,L’]:

. . m

det [rk (“Tpﬂ)] = (2.5)

i,j=1

(ii) the function Ty is exponentially convexz.

(iii) of in addition Ty is positive, then Iy is also log-convex. There-
fore, for any r,s,u € R, such that r < s < u, the following is
valid

Tr(8) " <Tp(r)" " Tk (w)". (2.6)

Proof. (i) Since
lim Iy, (s) = lim Ax(s) = Ar(¢o) = Tx (0),

s—0

lim Ty, (s) = lim Ag(¢s) = Ag(¢1) =Tk (1),

s—1 s—1
it follows that I'y is continuous function.
Let u;,p; € R, i =1,...,m, and p;; = @, 1 <45 <m.
We consider the function f : Ry — R defined by

F@) = 3 iy, @),
,)=
where ¢,,; is defined as in (2.3).

Since f is convex (see proof of [3, Theorem 3|), then applying Theorem
4 to f we have that

S pitp;

Z uiquk ( Z2 ]) Z 0

ij=1

holds for all choices of m € N, u;,p; € R, 1 <7 < m. Then the matrix
& (pii)];"_, is positive semi-definite, so the inequality (2. olds.

Ly (pij)]} = 1 iti i-definit the i lity (2.5) hold

(ii) Since I'y, is also continuous, then by Proposition 1 it follows that I'y,

is exponentially convex.

(iii) If T'y, is positive, then by Corollary 1 it follows that 'y, is log-convex.
Therefore, for r,s,u € R, such that » < s < u, we have

(u—8)logTk (r) + (r —u)log Ty (s) + (s — r)log T (u) >0
which is equivalent to (2.6). O
On a similar way we can prove the next theorem.
Theorem 7. Let A : R — R be the function defined by
Ak (s) = Bi(os)
where By, is defined as in (2.2) and ¢s as in (2.3). Then
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(i) for all m € N and all choices p; € R, 1 < i < m, the matrix
[Ak (me)] - 18 positive semi-definite, that is
Z7j:

det [Ak (“Tpﬂ)] > 0. (2.7)
ij=1
(i) the function Ay is exponentially convex.
(iii) of in addition Ay is positive, then Ay is also log-convex. There-
fore, for any r,s,u € R, such that r < s < u, the following is
valid

A ()77 < A ()7 Ag (w)" (2.8)

3. MEAN VALUE THEOREMS AND CAUCHY’S MEAN

In this section we prove Lagrange’s and Cauchy’s type of Mean value
theorem, in discrete and integral form, and introduce new means of
Cauchy’s type.

In following we use notation es for quadratic function, i.e. ea(t) = 2,
t € la,b].

Theorem 8. Let Ay be the functional defined by (2.1) and suppose
Ag(e2) #0. If ¢ € C*([a, b)), then there exists & € [a,b] such that

(o) = T8 o), (3.0)

Proof. Since ¢ € C%([a,b]), then there exist m = m[inb}go”(:c) and M =
z€(a,

m[a)lcj]go”(a:) such that m < ¢”(x) < M for each z € [a, b].
xE|a,

M
We define the functions g; = 762 —pand go = ¢ — %62.

Since ¢f (z), ¢5(x) > 0, the functions g, g2 are convex and applying (1.7)
we obtain

M m
714].3(62) —Ak(p) >0 and 0 < Ag(p) — EAk(eg).
Combining the last two inequalities we have

m < 2A5(p) < M.
A (e2)

Now we conclude that there exists & € [a, b] such that (3.1) holds. [

Theorem 9. Let Ay be the functional defined by (2.1) and suppose
Ap(e2) #0. If 9 € C?([a, b)), then there exists &, € [a,b] such that

Ae()¢" (&) = Ar(0)¥" (&k). (3.2)
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Proof. Applying (3.1) on the function hy = Ag(¥)p — Ax(p)Y we get
required result. O

Theorem 9 enables us to define new means. If we set a = min;<p<,{zx}
and b = max;<p<p{zr} and if we choose ¢ = ¢, and ¢ = ¢,, where
u,v € R, u # v, u,v # 0,1, providing that Ag(¢y), Ax(édy) # 0, then
from (3.2) we obtain

Ak(‘m) ]?72 = Ak(%)ﬁ}j”,

i.e.

o= (R

Since a < & < b, this presents a new mean on segment [a,b]. We use
notation

k . _ Ak(‘%) ﬁ
M, (z5a) = <Ak(¢u)) ) (3.3)

We can extend these means to the excluded cases. For k € {1,2} and
u,v € R we define:

n

i=1

n
D (del > ai(uzy ™! (wid)zi‘)>

1
" =
5 <d“+Al Zai(mg—l(%d)zg)>

, U # vy u,v#£0,1

n !
K3

=1
n
d“ log d-i—ALn Z ai(x;f*l(xi—d)(l—kulog x;)—x} log a:l)

=1 2u—1
eXp C ) T ufu—1) |0
du+Tn Zai(ux?_ (;Bi—d)—z;-‘)
=1
1 .y ) u=v#0,1
Mu?v(:n, a)= 70, N
log? d+ Aln Z a¢(2:1:;1 log x; (:vifd)flog2 xl)
exp =1 +1|,u=v=0
1 -1
2 logd+TnZai(xi (xi—d)—logxi)
=
1 nl
dlog? d—l—E Z a; (log x;(z;—d)(24+1log ;) —x; log? zz)
exXp =1 n -1 )
1
2 <d10g d+Tn Z a;((z;—d)(1+log x;)—z; log mz)>
i=1
u=uv=1.

\
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'u(v 1) <
7

1 (
A

a:z:Z Ulog z;—c* log c—c*~ Y (z—c)(14+ulog c)

u(u
2u—1
T ou(u—1) |
Za,a:, —ct—uct—1(z—c)
=1
MZ (x;a) = =v#

v—u

P
M:

Il
—

a;z;¥—cv vc“_l(f—c)>

,uF#E v u,v#£0,1

o
Ms

a;zl—ct—uct—1(z— c)>
1

-
T Mz

n
AL Z i log? x;—log? c—2¢~ ! log ¢(Z—c)
oxp | — +1]|,u=v=0
Z i log z;—log cc—l(zc)>
AL a;z; log? z;—clog? c—log ¢(Z—c)(2+log c)
n
exp =1 —1]l,u=v=1.
< L Eazmz log z;—clog c—(T— c)(1+logc)>
"i=1

We can easily check that these means are symmetric and the special
cases are limits of the general case. Note that (3.3) can be written as

M&@@—(&&Dfﬂ

where 'y, is the function defined as in (2.4).
Now we prove the monotonicity of these means.

Theorem 10. Let r,s,u,v € R such that r < wu, s < v. Then
Mﬁr(as;a) < Mfyu(m;a). (3.4)

Proof. By Theorem 6 it follows that the function I'y, is log-convex. There-
fore, for any r,s,u,v € R, such that r < u, s < v, r # s, u # v, we

have : N
(ri0) "= (ki)™

which is equivalent to (3.4). The statement of theorem follows using
continuous extensions. O

In following we present integral variants of the previous results with-
out proofs.

Theorem 11. Let By be the functional defined by (2.2) and suppose
that By(ea) # 0. If ¢ € C?([a,b]), then there exists & € [a,b] such that

Bi(p) = 80”(2&)31@(62)- (3.5)
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Theorem 12. Let By be the functional defined by (2.2) and suppose
that By(e2) # 0. If o, € C%([a,b]), then there exists & € [a,b] such
that

By(¥)¢" (&) = Br(e)" (&) (3.6

)

If we set Im f = [a,b] , then a = min,<;<g f(t) and b = max,<i<pg f(t)

and if we choose ¢ = ¢, and Y = ¢, where u,v € R, v # v, u,v # 0,1,
providing that By (¢y), Bk(¢y) # 0, then from (3.6) it follows

Bi(0)&) ™% = Bi(ou)&) 2,

1
Sk = (Bk(%)) o
By (¢u) 7
what presents a new mean on segment [a,b]. We use notation
1
Bi(¢v) ) v

MF (fi\) = . 3.7
L= (545 (3.7

We can extend these means to the excluded cases. For k € {1,2} and
u,v € R we define:

ie.

8 u
ey (d” /\(ﬁ)iA(a)g [vf“(ﬂ(f(t)d>f”(t>]dk<t>)
5 ,u#£ v u,v#£0,1
u(ul,l) (d“'f‘ )\(5)1,\(0) f[uf"1(t)(f(t)—d)—f“(t)]d/\(t))
| B
d* logd+mf[f"‘l(t)(f(t)—d)(1+u1ng(t))—f"(t) log f(£)]dA() -
exXp “ 3 ~ au=n |

@@ ] O O- - Ol
u=v#0,1

Q

log? d+ 57 5gay.J [2771(8)1og F() (£(6)—d)—log? F(1)]dA(t)
exp ' 3 +1l,u=v=0

2 (bg d+mf[f’l(t)(f(t)—d)—10g f(t)]d)\(t))

B
dlog? d+5g7x7ay.) [log F(O((O—d)(2+1og £(1)—F(2) log? F(H]AA®)
exp a —-11,
2 (d log d+ 5737 x(a) f [(£(t)—d) (1+1og f(£)— £ (1) log f(t)]d/\(t))
u=uv=1.
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v—u

ﬁ (,\(5 a) ff“(t)d)\(t) c’—vc’" 1(f—0))

,u# vy u,v#0,1
o= (M{ fu(t)dA(tm“ucul(fc))

m [ F2(8) log F(£)dA(E)—c* log c—ct =1 (F—c) (14u log c)

exp
XA ,\( )ff )dA(t)—c" —uct 1 (f—c)

M'L%,v(f;)‘>: U:’U#U,l

B
m[log2 F@)dA(t)—log? c—2¢ 1 log e(f—c)
exp & 3 +1l,u=v=0
2 ()\(ﬁ)i)\(a)f log f(t)dA(t)—log ccl(fc))
Wff(t) log? f(t)dA(t)—clog? c—log ¢(f—c)(2+log c)
exp -1, u=v=1.
2 (M!f(t) log f(t)d)\(t)—clogc—(f—c)(1+logc))

These means are also symmetric and the special cases are limits of
the general case. On a similar way we can prove the monotonicity of
these means.

Theorem 13. Let r,s,u,v € R such that r < u, s <wv. Then

ME(fiX) < My, (fi N).

4. IMPROVEMENT AND REVERSE OF THE SLATER-PECARIC
INEQUALITY

Let @ € [a,b]” be a monotonic n-tuple and a be a real n-tuple with
a; # 0 that satisfies (1.1). With M, (x; a) we denote u-mean with quasi-
weights a defined by
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For any u € R we have
min{zy, ..., z,} < My(x;a) < max{z,...,x,}.
Also, for any r,s € R, such that r < s, we have
M, (z;a) < My(x;a).

For more details see [2].
With d,, we denote expression defined by

= M (x;a)
i (s Mi(ma)_ e R\{0,1
;a1x1¢;($1) M:fill(m;a,)7 U \{ ) }7
a; ;l ZT; Anf-i-z:': a;x; log x; .
Z:l &r (i) An(1+10g}\40(m;a)) , u=1.

We define the functionals F, and G, (u € R) on C!([a,b]) by
Fule) = o) - -3 aiple
ulP) = Play Ani:1al<)0 Zi),
I :
Gul) = p(du) + =D i [w (i) (i — du) — ¢ (23)] , (4.2)
Ti=1

where d,, is defined as in (4.1).
Now we state and prove improvement and reverse of the Slater-Pecarié¢
inequality.

Theorem 14. Let F,, and G, (u € R) be the functionals defined as in
(4.2) and ¢s (s € R) the function defined as in (2.3). Then

(i) for r,s,u € R, such that r < s < u or u < r < s, the following
1s valid

Fu(dy) > Gu(¢S)(u—r)/(s—r)Gu(@)(s—u)/(s—r); (4.3)
(ii) forr,s,u € R, such that r < u < s, the following is valid

Fu(du) < Gul¢s) /070G ()77 (4.4)

Proof. (i) Let r,s,u € R such that r < s < u (when u < r < s the proof
is analogous).
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From (2.6) for k = 1 and choosing d = d,, it follows
(6000 + 4 S [0~ ) = 0 (0] )
< () + o S [or o) ai = ) = 0. )]

X <¢>u(du) + 4 Zn:ai [gb;(:vl)(xz —dy) — ¢u (l"z')}>s_T | )

Since
Guld) + 2 s [6(03) (1 — ) — 60 ()]

then from (4.5) it follows
Gu(®s)"™" < Guldr)" " Fu(du)®™",

which is equivalent to (4.3).

(ii) Let r,s,u € R, such that r < v < s. From (2.6) for k¥ = 1 and
choosing d = d,, it follows

(%(du) + Alnijlai [Qﬁ;(ﬂﬁz)(wz —dy) — bu (%’)})S_T

(2

< () + & S [or e = ) = o] )
X <¢s(du) + 4 éai [¢;($z)($z —du) — s (%)D ;
ie.
Fu(du)®™" < Gul(dr)™ "Gulds)"™"
which is equivalent to (4.4). O

Theorem 15. Let G,, (u € R) be the functional defined as in (4.2) and
¢s (s € R) the function defined as in (2.3). Then for all m € N and all
choices p; € R, 1 < i < m, the following is valid

det [Gp, (qbpi].)];f;:l >0, (4.6)
det [Gplz (¢pij)]2}zl >0, (4.7)
where p;; = pi;pj, 1<4,5<m.
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Proof. From (2.5) for k = 1 we have
det [T (pij)J)'_, = det [A1 (6,,)]"_, > 0. (4.8)

Choosing d = dp, from (4.8) it follows (4.6).

Similar, if we choose d = d,,,, then from (4.8) it follows (4.7). O

Now we present integral versions of the previous results.

Let f : [a, 5] — [a,b] be a continuous and monotonic function and
A [, B] = R be either continuous or of bounded variation satisfying
(1.3). With M, (f; A\) we denote integral u-mean defined by

1

B m
(wﬁx(a)ff“(fm(t)) : u e R\{0},
eXP( flogf ()), u = 0.

With d,, we denote expression defined by

My(f;\) =

f¢’ (HaA(?) A?“if”» v RO},
i, = _ ) ML, w=0,
J PulF(H)AAE) W?( B )<a)+>{1+ﬁogzl\3f{; A);W)’ U=
(4.9)
Now we define the functionals H, and K, (u € R) on C([a,b]) by
- B
H.(9) = 2(d) = =77 )¢ T N0, (4.10)
- B, -
Kule) = o)+ 5057577 [¢ COW0 =) = ¢ ()] are)

where d, is defined as in (4.9).

We state improvement and reverse of the integral Slater-Pecari¢ in-
equality without proofs.

Theorem 16. Let H, and K, (u € R) be the functionals defined as in
(4.10) and ¢s (s € R) the function defined as in (2.3). Then

(i) for r,s,u € R, such that r < s < u oru < r < s, the following
1s valid

Hu(du) > Ku(s) ™ C0K, (g,) 60/,
(ii) forr,s,u € R, such that r < u < s, the following is valid
Ho($u) < Ku(ds) @ 60K (¢,) 70/ 677,
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Theorem 17. Let K,, (u € R) be the functional defined as in (4.10) and
¢s (s € R) the function defined as in (2.3). Then for all m € N and all
choices p; € R, 1 < i < m, the following is valid

det [Kp, (¢Pij)]m >0

ij=1= "
det [Kpm (¢Pij)]:;:1 >0,
where p;j = @, 1<4,7<m.
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