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ON SOME CONVERSIONS OF THE

JENSEN-STEFFENSEN INEQUALITY

S. IVELIĆ AND J. PEČARIĆ

Abstract. Some conversions of the Jensen-Steffensen inequality
for convex functions are considered. Applying exp-convex method
improvements and reverses of the Slater-Pečarić inequality are ob-
tained. Related Cauchy’s type means are defined and some basic
properties are given.

1. Introduction

A function ϕ : (a, b) ⊆ R → R is convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

holds for all x, y ∈ (a, b) and λ ∈ [0, 1].
It is well known that for a convex function ϕ : (a, b) → R, any mono-

tonic n-tuple x = (x1, ..., xn) ∈ (a, b)n and a real n-tuple a = (a1, ..., an)
that satisfies

0 ≤ Aj =

j∑
i=1

ai ≤ An, j = 1, ..., n, An > 0, (1.1)

the Jensen-Steffensen inequality

ϕ

(
1

An

n∑
i=1

aixi

)
≤ 1

An

n∑
i=1

aiϕ (xi) (1.2)

holds (see [9]).
The next integral variant of the Jensen-Steffensen inequality is proved

by R. P. Boas [5].

Theorem 1. Let ϕ : (a, b) → R be a convex function. Let f : [α, β] →
(a, b) be continuous and monotonic, where −∞ ≤ a < b ≤ +∞ and
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Begović, Orthic axis, Lemoine line and Longchamps line of the
triangle in I2, Rad Hrvat. Akad. Znan. umj., 503(2009), 13-19.

J. Beban–Brkić, Department of Geomatics, Faculty of Geodesy, Univer-
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Theorem 4. [7, Theorem 1] Let ϕ : (a, b) → R be a convex function and
ai ∈ R, i = 1, ..., n be such that (1.1) holds. Then for any xi ∈ (a, b) ,
i = 1, ..., n, such that x1 ≤ x2 ≤ ... ≤ xn or x1 ≥ x2 ≥ ... ≥ xn, the
inequalities

ϕ(c) + ϕ
′
(c)(x̄− c) ≤ 1

An

n∑
i=1

aiϕ (xi) ≤ ϕ(d) +
1

An

n∑
i=1

aiϕ
′
(xi)(xi − d)

(1.7)
hold for all c, d ∈ (a, b).

Remark 1. Choosing c = x̄ the first inequality in (1.7) becomes (1.2).
Choosing d = x̄ the second inequality in (1.7) becomes (1.6).
If we choose d ∈ (a, b) such that

n∑
i=1

aiϕ
′ (xi) (xi − d) = 0, (1.8)

the second inequality in (1.7) becomes

1

An

n∑
i=1

aiϕ (xi) ≤ ϕ(d).

Under the condition
∑n

i=1 aiϕ
′
(xi) �= 0, the equality (1.8) is equivalent

to

d =

∑n
i=1 aixiϕ

′ (xi)∑n
i=1 aiϕ

′ (xi)
.

Therefore, we get (1.5).

Here we also quote integral version of Theorem 4.

Theorem 5. [7, Theorem 5] Let ϕ : (a, b) → R be a convex function.
Let f : [α, β] → (a, b) be a continuous and monotonic function, where
−∞ ≤ a < b ≤ +∞ and −∞ < α < β < +∞, and λ : [α, β] → R be
either continuous or of bounded variation satisfying (1.3). Then x̃ and
ỹ given by

x̃ =
1

λ(β)− λ(α)

β∫
α
f(t)dλ(t),

ỹ =
1

λ(β)− λ(α)

β∫
α
ϕ (f(t)) dλ(t)

−∞ < α < β < +∞, and λ : [α, β] → R be either continuous or of
bounded variation satisfying

λ(α) ≤ λ(x) ≤ λ(β) for all x ∈ [α, β], λ(β)− λ(α) > 0. (1.3)

Then

ϕ




β∫
α
f(t)dλ(t)

β∫
α
dλ(t)


 ≤

β∫
α
ϕ (f(t)) dλ(t)

β∫
α
dλ(t)

. (1.4)

One important property of a convex function ϕ : (a, b) → R is exis-
tence of the left and the right derivatives on (a, b), i.e for each x ∈ (a, b)
there exists ϕ′

−(x) and ϕ′
+(x) and it holds ϕ′

−(x) ≤ ϕ′
+(x). In follow-

ing we denote with ϕ′(x) any value in the interval [ϕ′
−(x), ϕ

′
+(x)]. If a

function ϕ is differentiable then ϕ′(x) = ϕ′
−(x) = ϕ′

+(x).
J. Pečarić [8] proved the following companion inequality to the Jensen-

Steffensen inequality which we refer to as the Slater-Pečarić inequality.
Some refinements of the Slater-Pečarić inequality (1.5) are proved in [1].

Theorem 2. Let ϕ : (a, b) → R be a convex function. Let x =
(x1 , ..., xn) be a monotonic n-tuple in (a, b)n and a = (a1, ..., an) be
a real n-tuple satisfying (1.1). If

n∑
i=1

aiϕ
′
+ (xi) �= 0 and

∑n
i=1 aixiϕ

′
+ (xi)∑n

i=1 aiϕ
′
+ (xi)

∈ (a, b),

then
1

An

n∑
i=1

aiϕ (xi) ≤ ϕ

(∑n
i=1 aixiϕ

′
+ (xi)∑n

i=1 aiϕ
′
+ (xi)

)
. (1.5)

The next companion inequality to the Jensen-Steffensen inequality is
proved by N. Elezović and J. Pečarić [6].

Theorem 3. If ϕ : (a, b) → R is a convex function, x1 , ..., xn monotonic
sequence in (a, b) and a1, ..., an real numbers satisfying (1.1), then

0 ≤ 1

An

n∑
i=1

aiϕ (xi)− ϕ

(
1

An

n∑
i=1

aixi

)
(1.6)

≤ 1

An

n∑
i=1

aixiϕ
′
(xi)−

(
1

An

n∑
i=1

aixi

)(
1

An

n∑
i=1

aiϕ
′
(xi)

)
.

In following we denote x̄ = 1
An

∑n

i=1
aixi.

The inequalities (1.2), (1.5) and (1.6) can be obtained from the next
more general result as special cases.
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Theorem 4. [7, Theorem 1] Let ϕ : (a, b) → R be a convex function and
ai ∈ R, i = 1, ..., n be such that (1.1) holds. Then for any xi ∈ (a, b) ,
i = 1, ..., n, such that x1 ≤ x2 ≤ ... ≤ xn or x1 ≥ x2 ≥ ... ≥ xn, the
inequalities

ϕ(c) + ϕ
′
(c)(x̄− c) ≤ 1

An

n∑
i=1

aiϕ (xi) ≤ ϕ(d) +
1

An

n∑
i=1

aiϕ
′
(xi)(xi − d)

(1.7)
hold for all c, d ∈ (a, b).

Remark 1. Choosing c = x̄ the first inequality in (1.7) becomes (1.2).
Choosing d = x̄ the second inequality in (1.7) becomes (1.6).
If we choose d ∈ (a, b) such that

n∑
i=1

aiϕ
′ (xi) (xi − d) = 0, (1.8)

the second inequality in (1.7) becomes

1

An

n∑
i=1

aiϕ (xi) ≤ ϕ(d).

Under the condition
∑n

i=1 aiϕ
′
(xi) �= 0, the equality (1.8) is equivalent

to

d =

∑n
i=1 aixiϕ

′ (xi)∑n
i=1 aiϕ

′ (xi)
.

Therefore, we get (1.5).

Here we also quote integral version of Theorem 4.

Theorem 5. [7, Theorem 5] Let ϕ : (a, b) → R be a convex function.
Let f : [α, β] → (a, b) be a continuous and monotonic function, where
−∞ ≤ a < b ≤ +∞ and −∞ < α < β < +∞, and λ : [α, β] → R be
either continuous or of bounded variation satisfying (1.3). Then x̃ and
ỹ given by

x̃ =
1

λ(β)− λ(α)

β∫
α
f(t)dλ(t),

ỹ =
1

λ(β)− λ(α)

β∫
α
ϕ (f(t)) dλ(t)
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−∞ < α < β < +∞, and λ : [α, β] → R be either continuous or of
bounded variation satisfying

λ(α) ≤ λ(x) ≤ λ(β) for all x ∈ [α, β], λ(β)− λ(α) > 0. (1.3)

Then

ϕ




β∫
α
f(t)dλ(t)

β∫
α
dλ(t)


 ≤

β∫
α
ϕ (f(t)) dλ(t)

β∫
α
dλ(t)

. (1.4)

One important property of a convex function ϕ : (a, b) → R is exis-
tence of the left and the right derivatives on (a, b), i.e for each x ∈ (a, b)
there exists ϕ′

−(x) and ϕ′
+(x) and it holds ϕ′

−(x) ≤ ϕ′
+(x). In follow-

ing we denote with ϕ′(x) any value in the interval [ϕ′
−(x), ϕ

′
+(x)]. If a

function ϕ is differentiable then ϕ′(x) = ϕ′
−(x) = ϕ′

+(x).
J. Pečarić [8] proved the following companion inequality to the Jensen-

Steffensen inequality which we refer to as the Slater-Pečarić inequality.
Some refinements of the Slater-Pečarić inequality (1.5) are proved in [1].

Theorem 2. Let ϕ : (a, b) → R be a convex function. Let x =
(x1 , ..., xn) be a monotonic n-tuple in (a, b)n and a = (a1, ..., an) be
a real n-tuple satisfying (1.1). If

n∑
i=1

aiϕ
′
+ (xi) �= 0 and

∑n
i=1 aixiϕ

′
+ (xi)∑n

i=1 aiϕ
′
+ (xi)

∈ (a, b),

then
1

An

n∑
i=1

aiϕ (xi) ≤ ϕ

(∑n
i=1 aixiϕ

′
+ (xi)∑n

i=1 aiϕ
′
+ (xi)

)
. (1.5)

The next companion inequality to the Jensen-Steffensen inequality is
proved by N. Elezović and J. Pečarić [6].

Theorem 3. If ϕ : (a, b) → R is a convex function, x1 , ..., xn monotonic
sequence in (a, b) and a1, ..., an real numbers satisfying (1.1), then

0 ≤ 1

An

n∑
i=1

aiϕ (xi)− ϕ

(
1

An

n∑
i=1

aixi

)
(1.6)

≤ 1

An

n∑
i=1

aixiϕ
′
(xi)−

(
1

An

n∑
i=1

aixi

)(
1

An

n∑
i=1

aiϕ
′
(xi)

)
.

In following we denote x̄ = 1
An

∑n

i=1
aixi.

The inequalities (1.2), (1.5) and (1.6) can be obtained from the next
more general result as special cases.
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2. Applications of Exp-convex method

We define a new class of functionals which we use in sequel. In fol-
lowing we always suppose that 0 < a < b and −∞ < α < β < +∞.

Let x ∈ [a, b]n be a monotonic n-tuple, a be a real n-tuple satisfying
(1.1) and c, d ∈ [a, b]. We define the functionals A1 and A2 on C1([a, b])
by

A1(ϕ) = ϕ(d) +
1

An

n∑
i=1

ai

[
ϕ

′
(xi)(xi − d)− ϕ (xi)

]
, (2.1)

A2(ϕ) =
1

An

n∑
i=1

aiϕ (xi)− ϕ(c)− ϕ
′
(c)(x̄− c).

We also define integral case of the previous functionals as follows.
Let f : [α, β] → [a, b] be a continuous and monotonic function, λ :

[α, β] → R be either continuous or of bounded variation satisfying (1.3)
and c, d ∈ [a, b]. We define the functionals B1 and B2 on C1([a, b]) by

B1(ϕ) = ϕ(d) +
1

λ(β)− λ(α)

β∫
α

[
ϕ′ (f(t)) (f(t)− d)− ϕ (f(t))

]
dλ(t),

(2.2)

B2(ϕ) =
1

λ(β)− λ(α)

∫ β
α ϕ (f(t)) dλ(t)− ϕ(c)− ϕ

′
(c)(f̄ − c),

with assumption that ϕ′(f) and λ have no common discontinuity points.

Remark 2. Notice that in case when ϕ is convex, then by Theorem 4
it follows Ak(ϕ) ≥ 0 and by Theorem 5 it follows Bk(ϕ) ≥ 0 for each
k ∈ {1, 2}.

In sequel we frequently use the family of convex functions {φs; s ∈ R}
defined by

φs(x) =





xs

s(s−1) , s �= 0, 1

− log x, s = 0
x log x, s = 1

. (2.3)

Now we state and prove the next results.

Theorem 6. Let Γk : R → R be the function defined by

Γk(s) = Ak(φs) (2.4)

where Ak is defined as in (2.1) and φs as in (2.3) . Then

are well defined and x̃ ∈ (a, b). Furthermore, if ϕ′(f) and λ have no
common discontinuity points, then the inequalities

ϕ(c) + ϕ
′
(c)(x̃− c) ≤ ỹ ≤ ϕ(d) +

1

λ(β)− λ(α)

β∫
α
ϕ′ (f(t)) (f(t)− d) dλ(t)

(1.9)
hold for each c, d ∈ (a, b).

In following we denote f̄ = 1
λ(β)−λ(α)

∫ β
α f(t)dλ(t).

In Section 2 we use so called exp-convex method established in [3], [4],
which enables us to interpret our results in form of exponential or log-
arithmic convexity. Because of that we quote definitions of exponential
and logarithmic convexity and some related propositions (see also [9]).

Definition 1. A function ϕ : (a, b) → R is said to be exponentially
convex if it is continuous and

m∑
i,j=1

uiujϕ(xi + xj) ≥ 0

holds for all m ∈N and all choices ui ∈ R, i = 1, 2, ...,m and xi ∈ (a, b)
such that xi+xj ∈ (a, b), 1 ≤ i, j ≤ m.

Definition 2. A function ϕ : (a, b) → R+ is said to be logarithmically
convex or log-convex if the function logϕ is convex, or equivalently, if

ϕ ((1− λ)x+ λy) ≤ ϕ(x)1−λϕ(y)λ

holds for all x, y ∈ (a, b), λ ∈ [0, 1].

Proposition 1. Let ϕ : (a, b) → R be a function. The following propo-
sitions are equivalent:

(i) ϕ is exponentially convex.
(ii) ϕ is continuous and

m∑
i,j=1

uiujϕ
(
xi+xj

2

)
≥ 0

holds for all m ∈ N and all choices ui ∈ R and every xi, xj ∈
(a, b), 1 ≤ i, j ≤ m.

Corollary 1. If ϕ : (a, b) → R+ is an exponentially convex function
then ϕ is also log-convex.
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2. Applications of Exp-convex method

We define a new class of functionals which we use in sequel. In fol-
lowing we always suppose that 0 < a < b and −∞ < α < β < +∞.

Let x ∈ [a, b]n be a monotonic n-tuple, a be a real n-tuple satisfying
(1.1) and c, d ∈ [a, b]. We define the functionals A1 and A2 on C1([a, b])
by

A1(ϕ) = ϕ(d) +
1

An

n∑
i=1

ai

[
ϕ

′
(xi)(xi − d)− ϕ (xi)

]
, (2.1)

A2(ϕ) =
1

An

n∑
i=1

aiϕ (xi)− ϕ(c)− ϕ
′
(c)(x̄− c).

We also define integral case of the previous functionals as follows.
Let f : [α, β] → [a, b] be a continuous and monotonic function, λ :

[α, β] → R be either continuous or of bounded variation satisfying (1.3)
and c, d ∈ [a, b]. We define the functionals B1 and B2 on C1([a, b]) by

B1(ϕ) = ϕ(d) +
1

λ(β)− λ(α)

β∫
α

[
ϕ′ (f(t)) (f(t)− d)− ϕ (f(t))

]
dλ(t),

(2.2)

B2(ϕ) =
1

λ(β)− λ(α)

∫ β
α ϕ (f(t)) dλ(t)− ϕ(c)− ϕ

′
(c)(f̄ − c),

with assumption that ϕ′(f) and λ have no common discontinuity points.

Remark 2. Notice that in case when ϕ is convex, then by Theorem 4
it follows Ak(ϕ) ≥ 0 and by Theorem 5 it follows Bk(ϕ) ≥ 0 for each
k ∈ {1, 2}.

In sequel we frequently use the family of convex functions {φs; s ∈ R}
defined by

φs(x) =





xs

s(s−1) , s �= 0, 1

− log x, s = 0
x log x, s = 1

. (2.3)

Now we state and prove the next results.

Theorem 6. Let Γk : R → R be the function defined by

Γk(s) = Ak(φs) (2.4)

where Ak is defined as in (2.1) and φs as in (2.3) . Then
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are well defined and x̃ ∈ (a, b). Furthermore, if ϕ′(f) and λ have no
common discontinuity points, then the inequalities

ϕ(c) + ϕ
′
(c)(x̃− c) ≤ ỹ ≤ ϕ(d) +

1

λ(β)− λ(α)

β∫
α
ϕ′ (f(t)) (f(t)− d) dλ(t)

(1.9)
hold for each c, d ∈ (a, b).

In following we denote f̄ = 1
λ(β)−λ(α)

∫ β
α f(t)dλ(t).

In Section 2 we use so called exp-convex method established in [3], [4],
which enables us to interpret our results in form of exponential or log-
arithmic convexity. Because of that we quote definitions of exponential
and logarithmic convexity and some related propositions (see also [9]).

Definition 1. A function ϕ : (a, b) → R is said to be exponentially
convex if it is continuous and

m∑
i,j=1

uiujϕ(xi + xj) ≥ 0

holds for all m ∈N and all choices ui ∈ R, i = 1, 2, ...,m and xi ∈ (a, b)
such that xi+xj ∈ (a, b), 1 ≤ i, j ≤ m.

Definition 2. A function ϕ : (a, b) → R+ is said to be logarithmically
convex or log-convex if the function logϕ is convex, or equivalently, if

ϕ ((1− λ)x+ λy) ≤ ϕ(x)1−λϕ(y)λ

holds for all x, y ∈ (a, b), λ ∈ [0, 1].

Proposition 1. Let ϕ : (a, b) → R be a function. The following propo-
sitions are equivalent:

(i) ϕ is exponentially convex.
(ii) ϕ is continuous and

m∑
i,j=1

uiujϕ
(
xi+xj

2

)
≥ 0

holds for all m ∈ N and all choices ui ∈ R and every xi, xj ∈
(a, b), 1 ≤ i, j ≤ m.

Corollary 1. If ϕ : (a, b) → R+ is an exponentially convex function
then ϕ is also log-convex.
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(i) for all m ∈ N and all choices pi ∈ R, 1 ≤ i ≤ m, the matrix[
Λk

(
pi+pj

2

)]m
i,j=1

is positive semi-definite, that is

det
[
Λk

(
pi+pj

2

)]m
i,j=1

≥ 0. (2.7)

(ii) the function Λk is exponentially convex.
(iii) if in addition Λk is positive, then Λk is also log-convex. There-

fore, for any r, s, u ∈ R, such that r < s < u, the following is
valid

Λk (s)
u−r ≤ Λk (r)

u−s Λk (u)
s−r . (2.8)

3. Mean value Theorems and Cauchy’s mean

In this section we prove Lagrange’s and Cauchy’s type of Mean value
theorem, in discrete and integral form, and introduce new means of
Cauchy’s type.

In following we use notation e2 for quadratic function, i.e. e2(t) = t2,
t ∈ [a, b].

Theorem 8. Let Ak be the functional defined by (2.1) and suppose
Ak(e2) �= 0. If ϕ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Ak(ϕ) =
ϕ′′(ξk)

2
Ak(e2). (3.1)

Proof. Since ϕ ∈ C2([a, b]), then there exist m = min
x∈[a,b]

ϕ′′(x) and M =

max
x∈[a,b]

ϕ′′(x) such that m ≤ ϕ′′(x) ≤ M for each x ∈ [a, b].

We define the functions g1 =
M

2
e2 − ϕ and g2 = ϕ− m

2
e2.

Since g′′1(x), g
′′
2(x) ≥ 0, the functions g1, g2 are convex and applying (1.7)

we obtain

M

2
Ak(e2)−Ak(ϕ) ≥ 0 and 0 ≤ Ak(ϕ)−

m

2
Ak(e2).

Combining the last two inequalities we have

m ≤ 2Ak(ϕ)

Ak(e2)
≤ M.

Now we conclude that there exists ξk ∈ [a, b] such that (3.1) holds. �

Theorem 9. Let Ak be the functional defined by (2.1) and suppose
Ak(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Ak(ψ)ϕ
′′(ξk) = Ak(ϕ)ψ

′′(ξk). (3.2)

(i) for all m ∈ N and all choices pi ∈ R, 1 ≤ i ≤ m, the matrix[
Γk

(
pi+pj

2

)]m
i,j=1

is positive semi-definite, that is

det
[
Γk

(
pi+pj

2

)]m
i,j=1

≥ 0. (2.5)

(ii) the function Γk is exponentially convex.
(iii) if in addition Γk is positive, then Γk is also log-convex. There-

fore, for any r, s, u ∈ R, such that r < s < u, the following is
valid

Γk (s)
u−r ≤ Γk (r)

u−s Γk (u)
s−r . (2.6)

Proof. (i) Since

lim
s→0

Γk (s) = lim
s→0

Ak(φs) = Ak(φ0) = Γk (0) ,

lim
s→1

Γk (s) = lim
s→1

Ak(φs) = Ak(φ1) = Γk (1) ,

it follows that Γk is continuous function.
Let ui, pi ∈ R, i = 1, ...,m, and pij =

pi+pj
2 , 1 ≤ i, j ≤ m.

We consider the function f : R+ → R defined by

f(x) =
m∑

i,j=1
uiujφpij (x),

where φpij is defined as in (2.3) .
Since f is convex (see proof of [3, Theorem 3]), then applying Theorem
4 to f we have that

m∑
i,j=1

uiujΓk

(
pi+pj

2

)
≥ 0

holds for all choices of m ∈ N, ui, pi ∈ R, 1 ≤ i ≤ m. Then the matrix
[Γk (pij)]

m
i,j=1 is positive semi-definite, so the inequality (2.5) holds.

(ii) Since Γk is also continuous, then by Proposition 1 it follows that Γk

is exponentially convex.
(iii) If Γk is positive, then by Corollary 1 it follows that Γk is log-convex.
Therefore, for r, s, u ∈ R, such that r < s < u, we have

(u− s) log Γk (r) + (r − u) log Γk (s) + (s− r) log Γk (u) ≥ 0

which is equivalent to (2.6). �

On a similar way we can prove the next theorem.

Theorem 7. Let Λk : R → R be the function defined by

Λk (s) = Bk(φs)

where Bk is defined as in (2.2) and φs as in (2.3) . Then
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(i) for all m ∈ N and all choices pi ∈ R, 1 ≤ i ≤ m, the matrix[
Λk

(
pi+pj

2

)]m
i,j=1

is positive semi-definite, that is

det
[
Λk

(
pi+pj

2

)]m
i,j=1

≥ 0. (2.7)

(ii) the function Λk is exponentially convex.
(iii) if in addition Λk is positive, then Λk is also log-convex. There-

fore, for any r, s, u ∈ R, such that r < s < u, the following is
valid

Λk (s)
u−r ≤ Λk (r)

u−s Λk (u)
s−r . (2.8)

3. Mean value Theorems and Cauchy’s mean

In this section we prove Lagrange’s and Cauchy’s type of Mean value
theorem, in discrete and integral form, and introduce new means of
Cauchy’s type.

In following we use notation e2 for quadratic function, i.e. e2(t) = t2,
t ∈ [a, b].

Theorem 8. Let Ak be the functional defined by (2.1) and suppose
Ak(e2) �= 0. If ϕ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Ak(ϕ) =
ϕ′′(ξk)

2
Ak(e2). (3.1)

Proof. Since ϕ ∈ C2([a, b]), then there exist m = min
x∈[a,b]

ϕ′′(x) and M =

max
x∈[a,b]

ϕ′′(x) such that m ≤ ϕ′′(x) ≤ M for each x ∈ [a, b].

We define the functions g1 =
M

2
e2 − ϕ and g2 = ϕ− m

2
e2.

Since g′′1(x), g
′′
2(x) ≥ 0, the functions g1, g2 are convex and applying (1.7)

we obtain

M

2
Ak(e2)−Ak(ϕ) ≥ 0 and 0 ≤ Ak(ϕ)−

m

2
Ak(e2).

Combining the last two inequalities we have

m ≤ 2Ak(ϕ)

Ak(e2)
≤ M.

Now we conclude that there exists ξk ∈ [a, b] such that (3.1) holds. �

Theorem 9. Let Ak be the functional defined by (2.1) and suppose
Ak(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Ak(ψ)ϕ
′′(ξk) = Ak(ϕ)ψ

′′(ξk). (3.2)
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(i) for all m ∈ N and all choices pi ∈ R, 1 ≤ i ≤ m, the matrix[
Γk

(
pi+pj

2

)]m
i,j=1

is positive semi-definite, that is

det
[
Γk

(
pi+pj

2

)]m
i,j=1

≥ 0. (2.5)

(ii) the function Γk is exponentially convex.
(iii) if in addition Γk is positive, then Γk is also log-convex. There-

fore, for any r, s, u ∈ R, such that r < s < u, the following is
valid

Γk (s)
u−r ≤ Γk (r)

u−s Γk (u)
s−r . (2.6)

Proof. (i) Since

lim
s→0

Γk (s) = lim
s→0

Ak(φs) = Ak(φ0) = Γk (0) ,

lim
s→1

Γk (s) = lim
s→1

Ak(φs) = Ak(φ1) = Γk (1) ,

it follows that Γk is continuous function.
Let ui, pi ∈ R, i = 1, ...,m, and pij =

pi+pj
2 , 1 ≤ i, j ≤ m.

We consider the function f : R+ → R defined by

f(x) =
m∑

i,j=1
uiujφpij (x),

where φpij is defined as in (2.3) .
Since f is convex (see proof of [3, Theorem 3]), then applying Theorem
4 to f we have that

m∑
i,j=1

uiujΓk

(
pi+pj

2

)
≥ 0

holds for all choices of m ∈ N, ui, pi ∈ R, 1 ≤ i ≤ m. Then the matrix
[Γk (pij)]

m
i,j=1 is positive semi-definite, so the inequality (2.5) holds.

(ii) Since Γk is also continuous, then by Proposition 1 it follows that Γk

is exponentially convex.
(iii) If Γk is positive, then by Corollary 1 it follows that Γk is log-convex.
Therefore, for r, s, u ∈ R, such that r < s < u, we have

(u− s) log Γk (r) + (r − u) log Γk (s) + (s− r) log Γk (u) ≥ 0

which is equivalent to (2.6). �

On a similar way we can prove the next theorem.

Theorem 7. Let Λk : R → R be the function defined by

Λk (s) = Bk(φs)

where Bk is defined as in (2.2) and φs as in (2.3) . Then
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M2
u,v(x;a) =







1
v(v−1)

(
1
An

n∑
i=1

aixi
v−cv−vcv−1(x̄−c)

)

1
u(u−1)

(
1
An

n∑
i=1

aixu
i −cu−ucu−1(x̄−c)

)




1
v−u

, u �= v; u, v �= 0, 1

exp




1
An

n∑
i=1

aixi
u log xi−cu log c−cu−1(x̄−c)(1+u log c)

1
An

n∑
i=1

aixi
u−cu−ucu−1(x̄−c)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




1
An

n∑
i=1

ai log
2 xi−log2 c−2c−1 log c(x̄−c)

2

(
1
An

n∑
i=1

ai log xi−log c−c−1(x̄−c)

) + 1


 , u = v = 0

exp




1
An

n∑
i=1

aixi log
2 xi−c log2 c−log c(x̄−c)(2+log c)

2

(
1
An

n∑
i=1

aixi log xi−c log c−(x̄−c)(1+log c)

) − 1


 , u = v = 1.

We can easily check that these means are symmetric and the special
cases are limits of the general case. Note that (3.3) can be written as

Mk
u,v(x;a) =

(
Γk (v)

Γk (u)

) 1
v−u

,

where Γk is the function defined as in (2.4).
Now we prove the monotonicity of these means.

Theorem 10. Let r, s, u, v ∈ R such that r ≤ u, s ≤ v. Then

Mk
s,r(x;a) ≤ Mk

v,u(x;a). (3.4)

Proof. By Theorem 6 it follows that the function Γk is log-convex. There-
fore, for any r, s, u, v ∈ R, such that r ≤ u, s ≤ v, r �= s, u �= v, we
have (

Γk (s)

Γk (r)

) 1
s−r

≤
(
Γk (v)

Γk (u)

) 1
v−u

which is equivalent to (3.4). The statement of theorem follows using
continuous extensions. �

In following we present integral variants of the previous results with-
out proofs.

Theorem 11. Let Bk be the functional defined by (2.2) and suppose
that Bk(e2) �= 0. If ϕ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Bk(ϕ) =
ϕ′′(ξk)

2
Bk(e2). (3.5)

Proof. Applying (3.1) on the function hk = Ak(ψ)ϕ − Ak(ϕ)ψ we get
required result. �

Theorem 9 enables us to define new means. If we set a = min1≤k≤n{xk}
and b = max1≤k≤n{xk} and if we choose ϕ = φu and ψ = φv, where
u, v ∈ R, u �= v, u, v �= 0, 1, providing that Ak(φu), Ak(φv) �= 0, then
from (3.2) we obtain

Ak(φv)ξ
u−2
k = Ak(φu)ξ

v−2
k ,

i.e.

ξk =

(
Ak(φv)

Ak(φu)

) 1
v−u

.

Since a ≤ ξk ≤ b, this presents a new mean on segment [a, b]. We use
notation

Mk
u,v(x;a) =

(
Ak(φv)

Ak(φu)

) 1
v−u

. (3.3)

We can extend these means to the excluded cases. For k ∈ {1, 2} and
u, v ∈ R we define:

M1
u,v(x;a) =







1
v(v−1)

(
dv+

1
An

n∑
i=1

ai(vxv−1
i (xi−d)−xv

i )

)

1
u(u−1)

(
du+

1
An

n∑
i=1

ai(uxu−1
i (xi−d)−xu

i )

)




1
v−u

, u �= v; u, v �= 0, 1

exp




du log d+
1
An

n∑
i=1

ai(xu−1
i (xi−d)(1+u log xi)−xu

i log xi)

du+
1
An

n∑
i=1

ai(uxu−1
i (xi−d)−xu

i )
− 2u−1

u(u−1)


 ,

u = v �= 0, 1

exp




log2 d+
1
An

n∑
i=1

ai(2x−1
i log xi(xi−d)−log2 xi)

2

(
log d+

1
An

n∑
i=1

ai(x−1
i (xi−d)−log xi)

) + 1


 , u = v = 0

exp




d log2 d+
1
An

n∑
i=1

ai(log xi(xi−d)(2+log xi)−xi log
2 xi)

2

(
d log d+

1
An

n∑
i=1

ai((xi−d)(1+log xi)−xi log xi)

) − 1


 ,

u = v = 1.
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M2
u,v(x;a) =







1
v(v−1)

(
1
An

n∑
i=1

aixi
v−cv−vcv−1(x̄−c)

)

1
u(u−1)

(
1
An

n∑
i=1

aixu
i −cu−ucu−1(x̄−c)

)




1
v−u

, u �= v; u, v �= 0, 1

exp




1
An

n∑
i=1

aixi
u log xi−cu log c−cu−1(x̄−c)(1+u log c)

1
An

n∑
i=1

aixi
u−cu−ucu−1(x̄−c)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




1
An

n∑
i=1

ai log
2 xi−log2 c−2c−1 log c(x̄−c)

2

(
1
An

n∑
i=1

ai log xi−log c−c−1(x̄−c)

) + 1


 , u = v = 0

exp




1
An

n∑
i=1

aixi log
2 xi−c log2 c−log c(x̄−c)(2+log c)

2

(
1
An

n∑
i=1

aixi log xi−c log c−(x̄−c)(1+log c)

) − 1


 , u = v = 1.

We can easily check that these means are symmetric and the special
cases are limits of the general case. Note that (3.3) can be written as

Mk
u,v(x;a) =

(
Γk (v)

Γk (u)

) 1
v−u

,

where Γk is the function defined as in (2.4).
Now we prove the monotonicity of these means.

Theorem 10. Let r, s, u, v ∈ R such that r ≤ u, s ≤ v. Then

Mk
s,r(x;a) ≤ Mk

v,u(x;a). (3.4)

Proof. By Theorem 6 it follows that the function Γk is log-convex. There-
fore, for any r, s, u, v ∈ R, such that r ≤ u, s ≤ v, r �= s, u �= v, we
have (

Γk (s)

Γk (r)

) 1
s−r

≤
(
Γk (v)

Γk (u)

) 1
v−u

which is equivalent to (3.4). The statement of theorem follows using
continuous extensions. �

In following we present integral variants of the previous results with-
out proofs.

Theorem 11. Let Bk be the functional defined by (2.2) and suppose
that Bk(e2) �= 0. If ϕ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Bk(ϕ) =
ϕ′′(ξk)

2
Bk(e2). (3.5)

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 107-122
S. Ivelic and J. Pecaric On some conversions

Proof. Applying (3.1) on the function hk = Ak(ψ)ϕ − Ak(ϕ)ψ we get
required result. �

Theorem 9 enables us to define new means. If we set a = min1≤k≤n{xk}
and b = max1≤k≤n{xk} and if we choose ϕ = φu and ψ = φv, where
u, v ∈ R, u �= v, u, v �= 0, 1, providing that Ak(φu), Ak(φv) �= 0, then
from (3.2) we obtain

Ak(φv)ξ
u−2
k = Ak(φu)ξ

v−2
k ,

i.e.

ξk =

(
Ak(φv)

Ak(φu)

) 1
v−u

.

Since a ≤ ξk ≤ b, this presents a new mean on segment [a, b]. We use
notation

Mk
u,v(x;a) =

(
Ak(φv)

Ak(φu)

) 1
v−u

. (3.3)

We can extend these means to the excluded cases. For k ∈ {1, 2} and
u, v ∈ R we define:

M1
u,v(x;a) =







1
v(v−1)

(
dv+

1
An

n∑
i=1

ai(vxv−1
i (xi−d)−xv

i )

)

1
u(u−1)

(
du+

1
An

n∑
i=1

ai(uxu−1
i (xi−d)−xu

i )

)




1
v−u

, u �= v; u, v �= 0, 1

exp




du log d+
1
An

n∑
i=1

ai(xu−1
i (xi−d)(1+u log xi)−xu

i log xi)

du+
1
An

n∑
i=1

ai(uxu−1
i (xi−d)−xu

i )
− 2u−1

u(u−1)


 ,

u = v �= 0, 1

exp




log2 d+
1
An

n∑
i=1

ai(2x−1
i log xi(xi−d)−log2 xi)

2

(
log d+

1
An

n∑
i=1

ai(x−1
i (xi−d)−log xi)

) + 1


 , u = v = 0

exp




d log2 d+
1
An

n∑
i=1

ai(log xi(xi−d)(2+log xi)−xi log
2 xi)

2

(
d log d+

1
An

n∑
i=1

ai((xi−d)(1+log xi)−xi log xi)

) − 1


 ,

u = v = 1.
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M2
u,v(f ;λ) =







1
v(v−1)


 1

λ(β)−λ(α)

β∫
α
fv(t)dλ(t)−cv−vcv−1(f̄−c)




1
u(u−1)


 1

λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)







1
v−u

, u �= v; u, v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α
fu(t) log f(t)dλ(t)−cu log c−cu−1(f̄−c)(1+u log c)

1
λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α

log2 f(t)dλ(t)−log2 c−2c−1 log c(f̄−c)

2


 1

λ(β)−λ(α)

β∫
α

log f(t)dλ(t)−log c−c−1(f̄−c)




+ 1




, u = v = 0

exp




1
λ(β)−λ(α)

β∫
α
f(t) log2 f(t)dλ(t)−c log2 c−log c(f̄−c)(2+log c)

2


 1

λ(β)−λ(α)

β∫
α
f(t) log f(t)dλ(t)−c log c−(f̄−c)(1+log c)




− 1




, u = v = 1.

These means are also symmetric and the special cases are limits of
the general case. On a similar way we can prove the monotonicity of
these means.

Theorem 13. Let r, s, u, v ∈ R such that r ≤ u, s ≤ v. Then

Mk
s,r(f ;λ) ≤ Mk

v,u(f ;λ).

4. Improvement and reverse of the Slater-Pečarić
inequality

Let x ∈ [a, b]n be a monotonic n-tuple and a be a real n-tuple with
ai �= 0 that satisfies (1.1). With Mu(x;a) we denote u-mean with quasi-
weights a defined by

Mu(x;a) =




(
1

An

n∑
i=1

aix
u
i

) 1
u

, u ∈ R \{0} ,

(
n∏

i=1

xaii

) 1
An

, u = 0.

M2
u,v(f ;λ) =








1
v(v−1)


 1

λ(β)−λ(α)

β∫
α
fv(t)dλ(t)−cv−vcv−1(f̄−c)




1
u(u−1)


 1

λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)







1
v−u

, u �= v; u, v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α
fu(t) log f(t)dλ(t)−cu log c−cu−1(f̄−c)(1+u log c)

1
λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α

log2 f(t)dλ(t)−log2 c−2c−1 log c(f̄−c)

2


 1

λ(β)−λ(α)

β∫
α

log f(t)dλ(t)−log c−c−1(f̄−c)




+ 1




, u = v = 0

exp




1
λ(β)−λ(α)

β∫
α
f(t) log2 f(t)dλ(t)−c log2 c−log c(f̄−c)(2+log c)

2


 1

λ(β)−λ(α)

β∫
α
f(t) log f(t)dλ(t)−c log c−(f̄−c)(1+log c)




− 1




, u = v = 1.

These means are also symmetric and the special cases are limits of
the general case. On a similar way we can prove the monotonicity of
these means.

Theorem 13. Let r, s, u, v ∈ R such that r ≤ u, s ≤ v. Then

Mk
s,r(f ;λ) ≤ Mk

v,u(f ;λ).

4. Improvement and reverse of the Slater-Pečarić
inequality

Let x ∈ [a, b]n be a monotonic n-tuple and a be a real n-tuple with
ai �= 0 that satisfies (1.1). With Mu(x;a) we denote u-mean with quasi-
weights a defined by

Mu(x;a) =




(
1

An

n∑
i=1

aix
u
i

) 1
u

, u ∈ R \{0} ,

(
n∏

i=1

xaii

) 1
An

, u = 0.

Theorem 12. Let Bk be the functional defined by (2.2) and suppose
that Bk(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such
that

Bk(ψ)ϕ
′′(ξk) = Bk(ϕ)ψ

′′(ξk). (3.6)

If we set Im f = [a, b] , then a = minα≤t≤β f(t) and b = maxα≤t≤β f(t)
and if we choose ϕ = φu and ψ = φv, where u, v ∈ R, u �= v, u, v �= 0, 1,
providing that Bk(φu), Bk(φv) �= 0, then from (3.6) it follows

Bk(φv)ξ
u−2
k = Bk(φu)ξ

v−2
k ,

i.e.

ξk =

(
Bk(φv)

Bk(φu)

) 1
v−u

,

what presents a new mean on segment [a, b]. We use notation

Mk
u,v(f ;λ) =

(
Bk(φv)

Bk(φu)

) 1
v−u

. (3.7)

We can extend these means to the excluded cases. For k ∈ {1, 2} and
u, v ∈ R we define:

M1
u,v(f ;λ) =







1
v(v−1)


dv+

1
λ(β)−λ(α)

β∫
α
[vfv−1(t)(f(t)−d)−fv(t)]dλ(t)




1
u(u−1)


du+

1
λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)







1
v−u

, u �= v; u, v �= 0, 1

exp




du log d+
1

λ(β)−λ(α)

β∫
α
[fu−1(t)(f(t)−d)(1+u log f(t))−fu(t) log f(t)]dλ(t)

du+
1

λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




log2 d+
1

λ(β)−λ(α)

β∫
α
[2f−1(t) log f(t)(f(t)−d)−log2 f(t)]dλ(t)

2


log d+

1
λ(β)−λ(α)

β∫
α
[f−1(t)(f(t)−d)−log f(t)]dλ(t)




+ 1




, u = v = 0

exp




d log2 d+
1

λ(β)−λ(α)

β∫
α
[log f(t)(f(t)−d)(2+log f(t))−f(t) log2 f(t)]dλ(t)

2


d log d+

1
λ(β)−λ(α)

β∫
α
[(f(t)−d)(1+log f(t))−f(t) log f(t)]dλ(t)




− 1




,

u = v = 1.

Theorem 12. Let Bk be the functional defined by (2.2) and suppose
that Bk(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such
that

Bk(ψ)ϕ
′′(ξk) = Bk(ϕ)ψ

′′(ξk). (3.6)

If we set Im f = [a, b] , then a = minα≤t≤β f(t) and b = maxα≤t≤β f(t)
and if we choose ϕ = φu and ψ = φv, where u, v ∈ R, u �= v, u, v �= 0, 1,
providing that Bk(φu), Bk(φv) �= 0, then from (3.6) it follows

Bk(φv)ξ
u−2
k = Bk(φu)ξ

v−2
k ,

i.e.

ξk =

(
Bk(φv)

Bk(φu)

) 1
v−u

,

what presents a new mean on segment [a, b]. We use notation

Mk
u,v(f ;λ) =

(
Bk(φv)

Bk(φu)

) 1
v−u

. (3.7)

We can extend these means to the excluded cases. For k ∈ {1, 2} and
u, v ∈ R we define:

M1
u,v(f ;λ) =








1
v(v−1)


dv+

1
λ(β)−λ(α)

β∫
α
[vfv−1(t)(f(t)−d)−fv(t)]dλ(t)




1
u(u−1)


du+

1
λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)







1
v−u

, u �= v; u, v �= 0, 1

exp




du log d+
1

λ(β)−λ(α)

β∫
α
[fu−1(t)(f(t)−d)(1+u log f(t))−fu(t) log f(t)]dλ(t)

du+
1

λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




log2 d+
1

λ(β)−λ(α)

β∫
α
[2f−1(t) log f(t)(f(t)−d)−log2 f(t)]dλ(t)

2


log d+

1
λ(β)−λ(α)

β∫
α
[f−1(t)(f(t)−d)−log f(t)]dλ(t)




+ 1




, u = v = 0

exp




d log2 d+
1

λ(β)−λ(α)

β∫
α
[log f(t)(f(t)−d)(2+log f(t))−f(t) log2 f(t)]dλ(t)

2


d log d+

1
λ(β)−λ(α)

β∫
α
[(f(t)−d)(1+log f(t))−f(t) log f(t)]dλ(t)




− 1




,

u = v = 1.
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M2
u,v(f ;λ) =







1
v(v−1)


 1

λ(β)−λ(α)

β∫
α
fv(t)dλ(t)−cv−vcv−1(f̄−c)




1
u(u−1)


 1

λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)







1
v−u

, u �= v; u, v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α
fu(t) log f(t)dλ(t)−cu log c−cu−1(f̄−c)(1+u log c)

1
λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α

log2 f(t)dλ(t)−log2 c−2c−1 log c(f̄−c)

2


 1

λ(β)−λ(α)

β∫
α

log f(t)dλ(t)−log c−c−1(f̄−c)




+ 1




, u = v = 0

exp




1
λ(β)−λ(α)

β∫
α
f(t) log2 f(t)dλ(t)−c log2 c−log c(f̄−c)(2+log c)

2


 1

λ(β)−λ(α)

β∫
α
f(t) log f(t)dλ(t)−c log c−(f̄−c)(1+log c)




− 1




, u = v = 1.

These means are also symmetric and the special cases are limits of
the general case. On a similar way we can prove the monotonicity of
these means.

Theorem 13. Let r, s, u, v ∈ R such that r ≤ u, s ≤ v. Then

Mk
s,r(f ;λ) ≤ Mk

v,u(f ;λ).

4. Improvement and reverse of the Slater-Pečarić
inequality

Let x ∈ [a, b]n be a monotonic n-tuple and a be a real n-tuple with
ai �= 0 that satisfies (1.1). With Mu(x;a) we denote u-mean with quasi-
weights a defined by

Mu(x;a) =




(
1

An

n∑
i=1

aix
u
i

) 1
u

, u ∈ R \{0} ,

(
n∏

i=1

xaii

) 1
An

, u = 0.

M2
u,v(f ;λ) =








1
v(v−1)


 1

λ(β)−λ(α)

β∫
α
fv(t)dλ(t)−cv−vcv−1(f̄−c)




1
u(u−1)


 1

λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)







1
v−u

, u �= v; u, v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α
fu(t) log f(t)dλ(t)−cu log c−cu−1(f̄−c)(1+u log c)

1
λ(β)−λ(α)

β∫
α
fu(t)dλ(t)−cu−ucu−1(f̄−c)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




1
λ(β)−λ(α)

β∫
α

log2 f(t)dλ(t)−log2 c−2c−1 log c(f̄−c)

2


 1

λ(β)−λ(α)

β∫
α

log f(t)dλ(t)−log c−c−1(f̄−c)




+ 1




, u = v = 0

exp




1
λ(β)−λ(α)

β∫
α
f(t) log2 f(t)dλ(t)−c log2 c−log c(f̄−c)(2+log c)

2


 1

λ(β)−λ(α)

β∫
α
f(t) log f(t)dλ(t)−c log c−(f̄−c)(1+log c)




− 1




, u = v = 1.

These means are also symmetric and the special cases are limits of
the general case. On a similar way we can prove the monotonicity of
these means.

Theorem 13. Let r, s, u, v ∈ R such that r ≤ u, s ≤ v. Then

Mk
s,r(f ;λ) ≤ Mk

v,u(f ;λ).

4. Improvement and reverse of the Slater-Pečarić
inequality

Let x ∈ [a, b]n be a monotonic n-tuple and a be a real n-tuple with
ai �= 0 that satisfies (1.1). With Mu(x;a) we denote u-mean with quasi-
weights a defined by

Mu(x;a) =




(
1

An

n∑
i=1

aix
u
i

) 1
u

, u ∈ R \{0} ,

(
n∏

i=1

xaii

) 1
An

, u = 0.
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Theorem 12. Let Bk be the functional defined by (2.2) and suppose
that Bk(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such
that

Bk(ψ)ϕ
′′(ξk) = Bk(ϕ)ψ

′′(ξk). (3.6)

If we set Im f = [a, b] , then a = minα≤t≤β f(t) and b = maxα≤t≤β f(t)
and if we choose ϕ = φu and ψ = φv, where u, v ∈ R, u �= v, u, v �= 0, 1,
providing that Bk(φu), Bk(φv) �= 0, then from (3.6) it follows

Bk(φv)ξ
u−2
k = Bk(φu)ξ

v−2
k ,

i.e.

ξk =

(
Bk(φv)

Bk(φu)

) 1
v−u

,

what presents a new mean on segment [a, b]. We use notation

Mk
u,v(f ;λ) =

(
Bk(φv)

Bk(φu)

) 1
v−u

. (3.7)

We can extend these means to the excluded cases. For k ∈ {1, 2} and
u, v ∈ R we define:

M1
u,v(f ;λ) =







1
v(v−1)


dv+

1
λ(β)−λ(α)

β∫
α
[vfv−1(t)(f(t)−d)−fv(t)]dλ(t)




1
u(u−1)


du+

1
λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)







1
v−u

, u �= v; u, v �= 0, 1

exp




du log d+
1

λ(β)−λ(α)

β∫
α
[fu−1(t)(f(t)−d)(1+u log f(t))−fu(t) log f(t)]dλ(t)

du+
1

λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




log2 d+
1

λ(β)−λ(α)

β∫
α
[2f−1(t) log f(t)(f(t)−d)−log2 f(t)]dλ(t)

2


log d+

1
λ(β)−λ(α)

β∫
α
[f−1(t)(f(t)−d)−log f(t)]dλ(t)




+ 1




, u = v = 0

exp




d log2 d+
1

λ(β)−λ(α)

β∫
α
[log f(t)(f(t)−d)(2+log f(t))−f(t) log2 f(t)]dλ(t)

2


d log d+

1
λ(β)−λ(α)

β∫
α
[(f(t)−d)(1+log f(t))−f(t) log f(t)]dλ(t)




− 1




,

u = v = 1.

Theorem 12. Let Bk be the functional defined by (2.2) and suppose
that Bk(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such
that

Bk(ψ)ϕ
′′(ξk) = Bk(ϕ)ψ

′′(ξk). (3.6)

If we set Im f = [a, b] , then a = minα≤t≤β f(t) and b = maxα≤t≤β f(t)
and if we choose ϕ = φu and ψ = φv, where u, v ∈ R, u �= v, u, v �= 0, 1,
providing that Bk(φu), Bk(φv) �= 0, then from (3.6) it follows

Bk(φv)ξ
u−2
k = Bk(φu)ξ

v−2
k ,

i.e.

ξk =

(
Bk(φv)

Bk(φu)

) 1
v−u

,

what presents a new mean on segment [a, b]. We use notation

Mk
u,v(f ;λ) =

(
Bk(φv)

Bk(φu)

) 1
v−u

. (3.7)

We can extend these means to the excluded cases. For k ∈ {1, 2} and
u, v ∈ R we define:

M1
u,v(f ;λ) =







1
v(v−1)


dv+

1
λ(β)−λ(α)

β∫
α
[vfv−1(t)(f(t)−d)−fv(t)]dλ(t)




1
u(u−1)


du+

1
λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)







1
v−u

, u �= v; u, v �= 0, 1

exp




du log d+
1

λ(β)−λ(α)

β∫
α
[fu−1(t)(f(t)−d)(1+u log f(t))−fu(t) log f(t)]dλ(t)

du+
1

λ(β)−λ(α)

β∫
α
[ufu−1(t)(f(t)−d)−fu(t)]dλ(t)

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp




log2 d+
1

λ(β)−λ(α)

β∫
α
[2f−1(t) log f(t)(f(t)−d)−log2 f(t)]dλ(t)

2


log d+

1
λ(β)−λ(α)

β∫
α
[f−1(t)(f(t)−d)−log f(t)]dλ(t)




+ 1




, u = v = 0

exp




d log2 d+
1

λ(β)−λ(α)

β∫
α
[log f(t)(f(t)−d)(2+log f(t))−f(t) log2 f(t)]dλ(t)

2


d log d+

1
λ(β)−λ(α)

β∫
α
[(f(t)−d)(1+log f(t))−f(t) log f(t)]dλ(t)




− 1




,

u = v = 1.
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From (2.6) for k = 1 and choosing d = du it follows
(
φs(du) +

1
An

n∑
i=1

ai

[
φ

′
s(xi)(xi − du)− φs (xi)

])u−r

≤
(
φr(du) +

1
An

n∑
i=1

ai

[
φ

′
r(xi)(xi − du)− φr (xi)

])u−s

×
(
φu(du) +

1
An

n∑
i=1

ai

[
φ

′
u(xi)(xi − du)− φu (xi)

])s−r

. (4.5)

Since

φu(du) +
1
An

n∑
i=1

ai

[
φ

′
u(xi)(xi − du)− φu (xi)

]

= φu(du)− 1
An

n∑
i=1

aiφu (xi) ,

then from (4.5) it follows

Gu(φs)
u−r ≤ Gu(φr)

u−sFu(φu)
s−r,

which is equivalent to (4.3).
(ii) Let r, s, u ∈ R, such that r < u < s. From (2.6) for k = 1 and
choosing d = du it follows

(
φu(du) +

1
An

n∑
i=1

ai

[
φ

′
u(xi)(xi − du)− φu (xi)

])s−r

≤
(
φr(du) +

1
An

n∑
i=1

ai

[
φ

′
r(xi)(xi − du)− φr (xi)

])s−u

×
(
φs(du) +

1
An

n∑
i=1

ai

[
φ

′
s(xi)(xi − du)− φs (xi)

])u−r

,

i.e.

Fu(φu)
s−r ≤ Gu(φr)

s−uGu(φs)
u−r

which is equivalent to (4.4). �

Theorem 15. Let Gu (u ∈ R) be the functional defined as in (4.2) and
φs (s ∈ R) the function defined as in (2.3) . Then for all m ∈ N and all
choices pi ∈ R, 1 ≤ i ≤ m, the following is valid

det
[
Gp1

(
φpij

)]m
i,j=1

≥ 0, (4.6)

det
[
Gp12

(
φpij

)]m
i,j=1

≥ 0, (4.7)

where pij =
pi+pj

2 , 1 ≤ i, j ≤ m.

For any u ∈ R we have

min{x1, ..., xn} ≤ Mu(x;a) ≤ max{x1, ..., xn}.

Also, for any r, s ∈ R, such that r < s, we have

Mr(x;a) ≤ Ms(x;a).

For more details see [2].
With du we denote expression defined by

du =

n∑
i=1

aixiφ
′
u(xi)

n∑
i=1

aiφ′
u(xi)

=




Mu
u (x;a)

Mu−1
u−1 (x;a)

, u ∈ R \{0, 1} ,

M−1(x;a), u = 0,
Anx̄+

∑n
i=1aixi log xi

An(1+logM0(x;a))
, u = 1.

(4.1)

We define the functionals Fu and Gu (u ∈ R) on C1([a, b]) by

Fu(ϕ) = ϕ(du)−
1

An

n∑
i=1

aiϕ(xi),

Gu(ϕ) = ϕ(du) +
1

An

n∑
i=1

ai

[
ϕ

′
(xi)(xi − du)− ϕ (xi)

]
, (4.2)

where du is defined as in (4.1).
Now we state and prove improvement and reverse of the Slater-Pečarić

inequality.

Theorem 14. Let Fu and Gu (u ∈ R) be the functionals defined as in
(4.2) and φs (s ∈ R) the function defined as in (2.3) . Then

(i) for r, s, u ∈ R, such that r < s < u or u < r < s, the following
is valid

Fu(φu) ≥ Gu(φs)
(u−r)/(s−r)Gu(φr)

(s−u)/(s−r); (4.3)

(ii) for r, s, u ∈ R, such that r < u < s, the following is valid

Fu(φu) ≤ Gu(φs)
(u−r)/(s−r)Gu(φr)

(s−u)/(s−r). (4.4)

Proof. (i) Let r, s, u ∈ R such that r < s < u (when u < r < s the proof
is analogous).
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From (2.6) for k = 1 and choosing d = du it follows
(
φs(du) +

1
An

n∑
i=1

ai

[
φ

′
s(xi)(xi − du)− φs (xi)

])u−r

≤
(
φr(du) +

1
An

n∑
i=1

ai

[
φ

′
r(xi)(xi − du)− φr (xi)

])u−s

×
(
φu(du) +

1
An

n∑
i=1

ai

[
φ

′
u(xi)(xi − du)− φu (xi)

])s−r

. (4.5)

Since

φu(du) +
1
An

n∑
i=1

ai

[
φ

′
u(xi)(xi − du)− φu (xi)

]

= φu(du)− 1
An

n∑
i=1

aiφu (xi) ,

then from (4.5) it follows

Gu(φs)
u−r ≤ Gu(φr)

u−sFu(φu)
s−r,

which is equivalent to (4.3).
(ii) Let r, s, u ∈ R, such that r < u < s. From (2.6) for k = 1 and
choosing d = du it follows

(
φu(du) +

1
An

n∑
i=1

ai

[
φ

′
u(xi)(xi − du)− φu (xi)

])s−r

≤
(
φr(du) +

1
An

n∑
i=1

ai

[
φ

′
r(xi)(xi − du)− φr (xi)

])s−u

×
(
φs(du) +

1
An

n∑
i=1

ai

[
φ

′
s(xi)(xi − du)− φs (xi)

])u−r

,

i.e.

Fu(φu)
s−r ≤ Gu(φr)

s−uGu(φs)
u−r

which is equivalent to (4.4). �

Theorem 15. Let Gu (u ∈ R) be the functional defined as in (4.2) and
φs (s ∈ R) the function defined as in (2.3) . Then for all m ∈ N and all
choices pi ∈ R, 1 ≤ i ≤ m, the following is valid

det
[
Gp1

(
φpij

)]m
i,j=1

≥ 0, (4.6)

det
[
Gp12

(
φpij

)]m
i,j=1

≥ 0, (4.7)

where pij =
pi+pj

2 , 1 ≤ i, j ≤ m.
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For any u ∈ R we have

min{x1, ..., xn} ≤ Mu(x;a) ≤ max{x1, ..., xn}.

Also, for any r, s ∈ R, such that r < s, we have

Mr(x;a) ≤ Ms(x;a).

For more details see [2].
With du we denote expression defined by

du =

n∑
i=1

aixiφ
′
u(xi)

n∑
i=1

aiφ′
u(xi)

=




Mu
u (x;a)

Mu−1
u−1 (x;a)

, u ∈ R \{0, 1} ,

M−1(x;a), u = 0,
Anx̄+

∑n
i=1aixi log xi

An(1+logM0(x;a))
, u = 1.

(4.1)

We define the functionals Fu and Gu (u ∈ R) on C1([a, b]) by

Fu(ϕ) = ϕ(du)−
1

An

n∑
i=1

aiϕ(xi),

Gu(ϕ) = ϕ(du) +
1

An

n∑
i=1

ai

[
ϕ

′
(xi)(xi − du)− ϕ (xi)

]
, (4.2)

where du is defined as in (4.1).
Now we state and prove improvement and reverse of the Slater-Pečarić

inequality.

Theorem 14. Let Fu and Gu (u ∈ R) be the functionals defined as in
(4.2) and φs (s ∈ R) the function defined as in (2.3) . Then

(i) for r, s, u ∈ R, such that r < s < u or u < r < s, the following
is valid

Fu(φu) ≥ Gu(φs)
(u−r)/(s−r)Gu(φr)

(s−u)/(s−r); (4.3)

(ii) for r, s, u ∈ R, such that r < u < s, the following is valid

Fu(φu) ≤ Gu(φs)
(u−r)/(s−r)Gu(φr)

(s−u)/(s−r). (4.4)

Proof. (i) Let r, s, u ∈ R such that r < s < u (when u < r < s the proof
is analogous).
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Theorem 17. Let Ku (u ∈ R) be the functional defined as in (4.10) and
φs (s ∈ R) the function defined as in (2.3) . Then for all m ∈ N and all
choices pi ∈ R, 1 ≤ i ≤ m, the following is valid

det
[
Kp1

(
φpij

)]m
i,j=1

≥ 0,

det
[
Kp12

(
φpij

)]m
i,j=1

≥ 0,

where pij =
pi+pj

2 , 1 ≤ i, j ≤ m.
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[9] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings, and
Statistical Applications, Academic Press, New York, 1992.

Faculty of Civil Engineering and Architecture, University of Split,
Matice hrvatske 15, 21000 Split, Croatia

E-mail address: sivelic@gradst.hr

Faculty of Textile Technology, University of Zagreb, Prilaz Baruna
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Proof. From (2.5) for k = 1 we have

det [Γ1 (pij)]
m
i,j=1 = det

[
A1

(
φpij

)]m
i,j=1

≥ 0. (4.8)

Choosing d = dp1 from (4.8) it follows (4.6).
Similar, if we choose d = dp12 , then from (4.8) it follows (4.7). �

Now we present integral versions of the previous results.
Let f : [α, β] → [a, b] be a continuous and monotonic function and

λ : [α, β] → R be either continuous or of bounded variation satisfying
(1.3). With Mu(f ;λ) we denote integral u-mean defined by

Mu(f ;λ) =




(
1

λ(β)−λ(α)

β∫
α
fu(t)dλ(t)

) 1
u

, u ∈ R \{0} ,

exp

(
1

λ(β)−λ(α)

β∫
α
log f(t)dλ(t)

)
, u = 0.

With d̃u we denote expression defined by

d̃u =

β∫
α
φ′
u(f(t))f(t)dλ(t)

β∫
α
φ′
u(f(t))dλ(t)

=




Mu
u (f ;λ)

Mu−1
u−1 (f ;λ)

, u ∈ R \{0, 1} ,

M−1(f ;λ), u = 0,

(λ(β)−λ(α))f̄+
∫ β
α f(t) log f(t)dλ(t)

(λ(β)−λ(α))(1+logM0(f ;λ))
, u = 1.

(4.9)
Now we define the functionals Hu and Ku (u ∈ R) on C1([a, b]) by

Hu(ϕ) = ϕ(d̃u)−
1

λ(β)− λ(α)

β∫
α
ϕ (f(t)) dλ(t), (4.10)

Ku(ϕ) = ϕ(d̃u) +
1

λ(β)− λ(α)

β∫
α

[
ϕ

′
(f(t))(f(t)− d̃u)− ϕ (f(t))

]
dλ(t),

where d̃u is defined as in (4.9).
We state improvement and reverse of the integral Slater-Pečarić in-

equality without proofs.

Theorem 16. Let Hu and Ku (u ∈ R) be the functionals defined as in
(4.10) and φs (s ∈ R) the function defined as in (2.3) . Then

(i) for r, s, u ∈ R, such that r < s < u or u < r < s, the following
is valid

Hu(φu) ≥ Ku(φs)
(u−r)/(s−r)Ku(φr)

(s−u)/(s−r);

(ii) for r, s, u ∈ R, such that r < u < s, the following is valid

Hu(φu) ≤ Ku(φs)
(u−r)/(s−r)Ku(φr)

(s−u)/(s−r).
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Theorem 17. Let Ku (u ∈ R) be the functional defined as in (4.10) and
φs (s ∈ R) the function defined as in (2.3) . Then for all m ∈ N and all
choices pi ∈ R, 1 ≤ i ≤ m, the following is valid

det
[
Kp1

(
φpij

)]m
i,j=1

≥ 0,

det
[
Kp12

(
φpij

)]m
i,j=1

≥ 0,

where pij =
pi+pj

2 , 1 ≤ i, j ≤ m.
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Proof. From (2.5) for k = 1 we have

det [Γ1 (pij)]
m
i,j=1 = det

[
A1

(
φpij

)]m
i,j=1

≥ 0. (4.8)

Choosing d = dp1 from (4.8) it follows (4.6).
Similar, if we choose d = dp12 , then from (4.8) it follows (4.7). �

Now we present integral versions of the previous results.
Let f : [α, β] → [a, b] be a continuous and monotonic function and

λ : [α, β] → R be either continuous or of bounded variation satisfying
(1.3). With Mu(f ;λ) we denote integral u-mean defined by

Mu(f ;λ) =




(
1

λ(β)−λ(α)

β∫
α
fu(t)dλ(t)

) 1
u

, u ∈ R \{0} ,

exp

(
1

λ(β)−λ(α)

β∫
α
log f(t)dλ(t)

)
, u = 0.

With d̃u we denote expression defined by

d̃u =

β∫
α
φ′
u(f(t))f(t)dλ(t)

β∫
α
φ′
u(f(t))dλ(t)

=




Mu
u (f ;λ)

Mu−1
u−1 (f ;λ)

, u ∈ R \{0, 1} ,

M−1(f ;λ), u = 0,

(λ(β)−λ(α))f̄+
∫ β
α f(t) log f(t)dλ(t)

(λ(β)−λ(α))(1+logM0(f ;λ))
, u = 1.

(4.9)
Now we define the functionals Hu and Ku (u ∈ R) on C1([a, b]) by

Hu(ϕ) = ϕ(d̃u)−
1

λ(β)− λ(α)

β∫
α
ϕ (f(t)) dλ(t), (4.10)

Ku(ϕ) = ϕ(d̃u) +
1

λ(β)− λ(α)

β∫
α

[
ϕ

′
(f(t))(f(t)− d̃u)− ϕ (f(t))

]
dλ(t),

where d̃u is defined as in (4.9).
We state improvement and reverse of the integral Slater-Pečarić in-

equality without proofs.

Theorem 16. Let Hu and Ku (u ∈ R) be the functionals defined as in
(4.10) and φs (s ∈ R) the function defined as in (2.3) . Then

(i) for r, s, u ∈ R, such that r < s < u or u < r < s, the following
is valid

Hu(φu) ≥ Ku(φs)
(u−r)/(s−r)Ku(φr)

(s−u)/(s−r);

(ii) for r, s, u ∈ R, such that r < u < s, the following is valid

Hu(φu) ≤ Ku(φs)
(u−r)/(s−r)Ku(φr)

(s−u)/(s−r).
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CAUCHY TYPE MEANS RELATED TO THE

CONVERSE JENSEN-STEFFENSEN INEQUALITY

S. IVELIĆ, M. KLARIČIĆ BAKULA, AND J. PEČARIĆ

Abstract. In this paper we apply so called exp-convex method to
the converse Jensen-Steffensen inequality in order to interpret it in
the form of exponentially convex functions. The outcome is a new
class of Cauchy type means and some new interesting inequalities
related to them.

1. Introduction

Let I be an interval in R and ϕ : I → R a convex function on I. If
x = (x1, . . . , xn) is any n-tuple in In and p = (p1, . . . , pn) a nonnegative
n-tuple such that Pn =

∑n
i=1 pi > 0, then the well known Jensen’s

inequality

ϕ

(
1

Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

piϕ (xi) (1.1)

holds (see for example [9, p. 43]). If ϕ is strictly convex then (1.1) is
strict unless xi = c for all i ∈ {j : pj > 0}.

It is well known that the assumption ”p is a nonnegative n-tuple” can
be relaxed at the expense of more restrictions on the n-tuple x. Namely,
if p is a real n-tuple such that

0 ≤ Pj ≤ Pn , j = 1, . . . , n ; Pn > 0 , (1.2)

where Pj =
∑j

i=1 pi , then for any monotonic n-tuple x (increasing or
decreasing) in In we have

x̄ =
1

Pn

n∑
i=1

pixi ∈
{

[x1, xn] , x increasing
[xn, x1] , x decreasing

, (1.3)
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