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CAUCHY TYPE MEANS RELATED TO THE

CONVERSE JENSEN-STEFFENSEN INEQUALITY

S. IVELIĆ, M. KLARIČIĆ BAKULA, AND J. PEČARIĆ

Abstract. In this paper we apply so called exp-convex method to
the converse Jensen-Steffensen inequality in order to interpret it in
the form of exponentially convex functions. The outcome is a new
class of Cauchy type means and some new interesting inequalities
related to them.

1. Introduction

Let I be an interval in R and ϕ : I → R a convex function on I. If
x = (x1, . . . , xn) is any n-tuple in In and p = (p1, . . . , pn) a nonnegative
n-tuple such that Pn =

∑n
i=1 pi > 0, then the well known Jensen’s

inequality

ϕ

(
1

Pn

n∑
i=1

pixi

)
≤ 1

Pn

n∑
i=1

piϕ (xi) (1.1)

holds (see for example [9, p. 43]). If ϕ is strictly convex then (1.1) is
strict unless xi = c for all i ∈ {j : pj > 0}.

It is well known that the assumption ”p is a nonnegative n-tuple” can
be relaxed at the expense of more restrictions on the n-tuple x. Namely,
if p is a real n-tuple such that

0 ≤ Pj ≤ Pn , j = 1, . . . , n ; Pn > 0 , (1.2)

where Pj =
∑j

i=1 pi , then for any monotonic n-tuple x (increasing or
decreasing) in In we have

x̄ =
1

Pn

n∑
i=1

pixi ∈
{

[x1, xn] , x increasing
[xn, x1] , x decreasing

, (1.3)
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where Wn =
∑n

i=1wi and Wj =
∑j

i=1wi. If ϕ : I → R is a convex
function on I, then

n∑
i=1

wiϕ (xi) ≤ ϕ(a) + ϕ(b)− 2ϕ

(
a+ b

2

)
+ ϕ (x̄) . (1.6)

If ϕ is strictly convex, the equality holds in (1.6) if and only if there
exists l ∈ {2, . . . , n− 1} such that xl = x̄ = (a+ b) /2 and




(x1 = a ∧ xn = b) ∨ (x1 = b ∧ xn = a) ,
(∀j ∈ {2, . . . , l})

(
W̄j = 0 ∨ xj−1 = xj

)
,

(∀j ∈ {l, . . . , n− 1}) (Wj = 0 ∨ xj = xj+1) ,

where W̄j =
∑n

i=j wi.

Theorem 3. Let I be an open interval in R and [a, b] ⊆ I, −∞ < a <
b < +∞. Let x = (x1, . . . , xn) and w = (w1, . . . , wn) be real n-tuples
satisfying the conditions of Theorem 2. If ϕ : I → R is a convex function
on I, then

n∑
i=1

wiϕ (xi)− ϕ (x̄)

≤ ϕ(a) + ϕ(b)− ϕ (x̄)− ϕ (a+ b− x̄) (1.7)

≤ ϕ(a) + ϕ(b)− 2ϕ

(
a+ b

2

)
.

If ϕ is strictly convex, the equality holds in the first inequality in (1.7)
if and only if one of the following two cases occurs:

(i) either x̄ = a or x̄ = b,
(ii) there exists l ∈ {2, . . . , n− 1} such that x̄ = a+ b− xl and




(x1 = a ∧ xn = b) ∨ (x1 = b ∧ xn = a) ,

(∀j ∈ {2, . . . , l})
(
W̄j =

∑n
i=j wi = 0 ∨ xj−1 = xj

)
,

(∀j ∈ {l, . . . , n− 1}) (Wj = 0 ∨ xj = xj+1) .

If ϕ is strictly convex the second inequality in (1.7) becomes equality if
and only if x̄ = (a+ b) /2.

Remark 1. If we denote (1.7) as (1) ≤ (2) ≤ (3) and the equality
conditions for (1) = (3) as (EQ1) , for (1) = (2) as (EQ2) and for
(2) = (3) as (EQ3) we see that (EQ1) ⇐⇒ (EQ2) ∧ (EQ3) which is to
be expected.

and for any function ϕ convex on I, (1.1) still holds. Inequality (1.1)
considered under conditions (1.2) is known as the Jensen-Steffensen in-
equality (see for example [9, p. 57]) for convex functions. The equal-
ity case for strictly convex functions is not so simple as in the case of
Jensen’s inequality and it was thoroughly investigated in [1].

It is known that the Jensen-Steffensen inequality can be stated in a
more general integral form. It is given in the following theorem (see for
example [9, p. 58]).

Theorem 1. Let f : [α, β] → (a, b) be a continuous and monotonic
function, where −∞ < α < β < +∞ and −∞ ≤ a < b ≤ +∞. Let
λ : [α, β] → R be either continuous or of bounded variation satisfying

λ (α) ≤ λ (t) ≤ λ (β) for all t ∈ [α, β] , λ (β)− λ (α) > 0.

Then for any convex function ϕ : (a, b) → R the inequality

ϕ

(
1

λ(β)−λ(α)

β∫
α
f(t)dλ(t)

)
≤ 1

λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t)

holds.

Another well known inequality related to Jensen’s inequality is con-
verse Jensen’s inequality (see for example [9, p. 98])

1

Pn

n∑
i=1

piϕ (xi) ≤
b− x̄

b− a
ϕ (a) +

x̄− a

b− a
ϕ (b) , (1.4)

which holds when ϕ : I → R is a convex function on I, [a, b] ⊂ I,
−∞ < a < b < +∞ and p,x are as in (1.1) .

Since Jensen’s inequality remains valid under Steffensen’s conditions
for n-tuples x and p it was reasonable to think that (1.4) would be valid
too, but this was not the case (one can rather easily find a counterexam-
ple). A converse Jensen-Steffensen inequality as well as two inequalities
complementary to the Jensen-Steffensen inequality have been recently
established in [6] and they are stated in the following two theorems.

Theorem 2. Let I be an open interval in R and [a, b] ⊆ I, −∞ < a <
b < +∞. For n > 2 let x = (x1, . . . , xn) be a monotonic n-tuple in
[a, b]n and w = (w1, . . . , wn) a real n-tuple satisfying

wi �= 0, i = 1, . . . , n,

0 ≤ Wj ≤ Wn = 1, j = 1, . . . , n, (1.5)
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where Wn =
∑n

i=1wi and Wj =
∑j

i=1wi. If ϕ : I → R is a convex
function on I, then

n∑
i=1

wiϕ (xi) ≤ ϕ(a) + ϕ(b)− 2ϕ

(
a+ b

2

)
+ ϕ (x̄) . (1.6)

If ϕ is strictly convex, the equality holds in (1.6) if and only if there
exists l ∈ {2, . . . , n− 1} such that xl = x̄ = (a+ b) /2 and




(x1 = a ∧ xn = b) ∨ (x1 = b ∧ xn = a) ,
(∀j ∈ {2, . . . , l})

(
W̄j = 0 ∨ xj−1 = xj

)
,

(∀j ∈ {l, . . . , n− 1}) (Wj = 0 ∨ xj = xj+1) ,

where W̄j =
∑n

i=j wi.

Theorem 3. Let I be an open interval in R and [a, b] ⊆ I, −∞ < a <
b < +∞. Let x = (x1, . . . , xn) and w = (w1, . . . , wn) be real n-tuples
satisfying the conditions of Theorem 2. If ϕ : I → R is a convex function
on I, then

n∑
i=1

wiϕ (xi)− ϕ (x̄)

≤ ϕ(a) + ϕ(b)− ϕ (x̄)− ϕ (a+ b− x̄) (1.7)

≤ ϕ(a) + ϕ(b)− 2ϕ

(
a+ b

2

)
.

If ϕ is strictly convex, the equality holds in the first inequality in (1.7)
if and only if one of the following two cases occurs:

(i) either x̄ = a or x̄ = b,
(ii) there exists l ∈ {2, . . . , n− 1} such that x̄ = a+ b− xl and




(x1 = a ∧ xn = b) ∨ (x1 = b ∧ xn = a) ,

(∀j ∈ {2, . . . , l})
(
W̄j =

∑n
i=j wi = 0 ∨ xj−1 = xj

)
,

(∀j ∈ {l, . . . , n− 1}) (Wj = 0 ∨ xj = xj+1) .

If ϕ is strictly convex the second inequality in (1.7) becomes equality if
and only if x̄ = (a+ b) /2.

Remark 1. If we denote (1.7) as (1) ≤ (2) ≤ (3) and the equality
conditions for (1) = (3) as (EQ1) , for (1) = (2) as (EQ2) and for
(2) = (3) as (EQ3) we see that (EQ1) ⇐⇒ (EQ2) ∧ (EQ3) which is to
be expected.
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and for any function ϕ convex on I, (1.1) still holds. Inequality (1.1)
considered under conditions (1.2) is known as the Jensen-Steffensen in-
equality (see for example [9, p. 57]) for convex functions. The equal-
ity case for strictly convex functions is not so simple as in the case of
Jensen’s inequality and it was thoroughly investigated in [1].

It is known that the Jensen-Steffensen inequality can be stated in a
more general integral form. It is given in the following theorem (see for
example [9, p. 58]).

Theorem 1. Let f : [α, β] → (a, b) be a continuous and monotonic
function, where −∞ < α < β < +∞ and −∞ ≤ a < b ≤ +∞. Let
λ : [α, β] → R be either continuous or of bounded variation satisfying

λ (α) ≤ λ (t) ≤ λ (β) for all t ∈ [α, β] , λ (β)− λ (α) > 0.

Then for any convex function ϕ : (a, b) → R the inequality

ϕ

(
1

λ(β)−λ(α)

β∫
α
f(t)dλ(t)

)
≤ 1

λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t)

holds.

Another well known inequality related to Jensen’s inequality is con-
verse Jensen’s inequality (see for example [9, p. 98])

1

Pn

n∑
i=1

piϕ (xi) ≤
b− x̄

b− a
ϕ (a) +

x̄− a

b− a
ϕ (b) , (1.4)

which holds when ϕ : I → R is a convex function on I, [a, b] ⊂ I,
−∞ < a < b < +∞ and p,x are as in (1.1) .

Since Jensen’s inequality remains valid under Steffensen’s conditions
for n-tuples x and p it was reasonable to think that (1.4) would be valid
too, but this was not the case (one can rather easily find a counterexam-
ple). A converse Jensen-Steffensen inequality as well as two inequalities
complementary to the Jensen-Steffensen inequality have been recently
established in [6] and they are stated in the following two theorems.

Theorem 2. Let I be an open interval in R and [a, b] ⊆ I, −∞ < a <
b < +∞. For n > 2 let x = (x1, . . . , xn) be a monotonic n-tuple in
[a, b]n and w = (w1, . . . , wn) a real n-tuple satisfying

wi �= 0, i = 1, . . . , n,

0 ≤ Wj ≤ Wn = 1, j = 1, . . . , n, (1.5)
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Definition 1. A function ϕ : I → R is said to be exponentially convex
if it is continuous and if

m∑
i,j=1

ξiξjϕ (xi + xj) ≥ 0,

holds for any choice of m ∈ N, ξ = (ξ1, . . . , ξm) ∈ Rm and x =
(x1, . . . , xm) ∈ Im such that xi + xj ∈ I.

Definition 2. A function ϕ : I → R+ is said to be logarithmically
convex or log-convex if the function logϕ is convex, or equivalently, if

ϕ ((1− λ)x+ λy) ≤ ϕ(x)1−λϕ(y)λ

holds for all x, y ∈ I, λ ∈ [0, 1].

The following proposition is given in [3].

Proposition 1. Let ϕ : I → R be a function. The following assertions
are equivalent:

(i) ϕ is exponentially convex.
(ii) ϕ is continuous and

m∑
i,j=1

ξiξjϕ
(
xi+xj

2

)
≥ 0,

for any choice of m ∈ N, ξ = (ξ1, . . . , ξm) ∈ Rm and x =
(x1, . . . , xm) ∈ Im.

Remark 2. We can easily see that for positive functions exponential
convexity implies log-convexity (consider Proposition 1 for m = 2).

The following lemmas give two characterization inequalities for convex
functions (see [9, p. 2]).

Lemma 1. Let ϕ be a convex function on an interval I ⊆ R. Then for
any x1, x2, x3 ∈ I such that x1 < x2 < x3 the following is valid

(x3 − x2)ϕ (x1) + (x1 − x3)ϕ (x2) + (x2 − x1)ϕ (x3) ≥ 0.

Lemma 2. Let ϕ be a convex function on an interval I ⊆ R. Then for
any x1, x2, y1, y2,∈ I such that x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2 the
following is valid

ϕ (x2)− ϕ (x1)

x2 − x1
≤ ϕ (y2)− ϕ (y1)

y2 − y1
.

In the same paper integral versions of Theorem 2 and Theorem 3 has
been established. For the sake of brevity throughout the rest of the
paper we denote

f = 1
λ(β)−λ(α)

β∫
α
f(t)dλ(t) ∈ [a, b] .

Theorem 4. Let f : [α, β] → [a, b] be a continuous and monotonic
function, where −∞ < α < β < +∞ and −∞ < a < b < +∞. Let
λ : [α, β] → R be either continuous or of bounded variation satisfying

λ (α) ≤ λ (t) ≤ λ (β) for all t ∈ [α, β] , λ (β)− λ (α) > 0. (1.8)

Then for any continuous convex function ϕ : [a, b] → R the inequality

1
λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t) ≤ ϕ (a) + ϕ (b)− 2ϕ

(
a+ b

2

)
+ ϕ

(
f
)

(1.9)

holds.

Theorem 5. Let the functions f and λ be as in Theorem 4. Then for
any continuous convex function ϕ : [a, b] → R the inequalities

1
λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t)− ϕ

(
f
)

≤ ϕ(a) + ϕ(b)− ϕ
(
f
)
− ϕ

(
a+ b− f

)
(1.10)

≤ ϕ (a) + ϕ (b)− 2ϕ

(
a+ b

2

)

hold.

In Section 2 we apply so called exp-convex method to the results
presented in Theorem 3 and Theorem 5. In Section 3 we introduce new
means of Cauchy type and using results from Section 2 we establish
comparison inequalities for them.

2. Exp-convex method

In this section we use so called exp-convex method established in [3]
in order to interpret our results in the form of exponentially convex
functions or (in the special case) log-convex functions (for the results
related to the log-convex method see [2], [4], [7], [10] and [11]). As a
consequence we obtain some new interesting inequalities.

Throughout this section I denotes an open interval in R, R+ denotes
the set {x ∈ R : x > 0} and log denotes the natural logarithm function.

The following definitions can be found in [8] and [9].
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Definition 1. A function ϕ : I → R is said to be exponentially convex
if it is continuous and if

m∑
i,j=1

ξiξjϕ (xi + xj) ≥ 0,

holds for any choice of m ∈ N, ξ = (ξ1, . . . , ξm) ∈ Rm and x =
(x1, . . . , xm) ∈ Im such that xi + xj ∈ I.

Definition 2. A function ϕ : I → R+ is said to be logarithmically
convex or log-convex if the function logϕ is convex, or equivalently, if

ϕ ((1− λ)x+ λy) ≤ ϕ(x)1−λϕ(y)λ

holds for all x, y ∈ I, λ ∈ [0, 1].

The following proposition is given in [3].

Proposition 1. Let ϕ : I → R be a function. The following assertions
are equivalent:

(i) ϕ is exponentially convex.
(ii) ϕ is continuous and

m∑
i,j=1

ξiξjϕ
(
xi+xj

2

)
≥ 0,

for any choice of m ∈ N, ξ = (ξ1, . . . , ξm) ∈ Rm and x =
(x1, . . . , xm) ∈ Im.

Remark 2. We can easily see that for positive functions exponential
convexity implies log-convexity (consider Proposition 1 for m = 2).

The following lemmas give two characterization inequalities for convex
functions (see [9, p. 2]).

Lemma 1. Let ϕ be a convex function on an interval I ⊆ R. Then for
any x1, x2, x3 ∈ I such that x1 < x2 < x3 the following is valid

(x3 − x2)ϕ (x1) + (x1 − x3)ϕ (x2) + (x2 − x1)ϕ (x3) ≥ 0.

Lemma 2. Let ϕ be a convex function on an interval I ⊆ R. Then for
any x1, x2, y1, y2,∈ I such that x1 ≤ y1, x2 ≤ y2, x1 �= x2, y1 �= y2 the
following is valid

ϕ (x2)− ϕ (x1)

x2 − x1
≤ ϕ (y2)− ϕ (y1)

y2 − y1
.
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In the same paper integral versions of Theorem 2 and Theorem 3 has
been established. For the sake of brevity throughout the rest of the
paper we denote

f = 1
λ(β)−λ(α)

β∫
α
f(t)dλ(t) ∈ [a, b] .

Theorem 4. Let f : [α, β] → [a, b] be a continuous and monotonic
function, where −∞ < α < β < +∞ and −∞ < a < b < +∞. Let
λ : [α, β] → R be either continuous or of bounded variation satisfying

λ (α) ≤ λ (t) ≤ λ (β) for all t ∈ [α, β] , λ (β)− λ (α) > 0. (1.8)

Then for any continuous convex function ϕ : [a, b] → R the inequality

1
λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t) ≤ ϕ (a) + ϕ (b)− 2ϕ

(
a+ b

2

)
+ ϕ

(
f
)

(1.9)

holds.

Theorem 5. Let the functions f and λ be as in Theorem 4. Then for
any continuous convex function ϕ : [a, b] → R the inequalities

1
λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t)− ϕ

(
f
)

≤ ϕ(a) + ϕ(b)− ϕ
(
f
)
− ϕ

(
a+ b− f

)
(1.10)

≤ ϕ (a) + ϕ (b)− 2ϕ

(
a+ b

2

)

hold.

In Section 2 we apply so called exp-convex method to the results
presented in Theorem 3 and Theorem 5. In Section 3 we introduce new
means of Cauchy type and using results from Section 2 we establish
comparison inequalities for them.

2. Exp-convex method

In this section we use so called exp-convex method established in [3]
in order to interpret our results in the form of exponentially convex
functions or (in the special case) log-convex functions (for the results
related to the log-convex method see [2], [4], [7], [10] and [11]). As a
consequence we obtain some new interesting inequalities.

Throughout this section I denotes an open interval in R, R+ denotes
the set {x ∈ R : x > 0} and log denotes the natural logarithm function.

The following definitions can be found in [8] and [9].
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where φpij is defined as in (2.2) .
Then

f ′′(x) =
m∑

i,j=1

uiujx
pij−2 =

(
m∑
i=1

uix
pi
2
−1

)2

≥ 0,

hence f is convex on R+.
Applying Theorem 3 to f and x,w as in (2.1) we have that

m∑
i,j=1

uiujΩk

(
pi+pj

2

)
≥ 0

holds for all choices of m ∈ N, ui, pi ∈ R, 1 ≤ i ≤ m.
Since Ωk is also continuous, then by Proposition 1 it follows that Ωk

is exponentially convex. �

Theorem 7. Let Ωk be as in Theorem 6. If in addition the correspond-
ing condition (EQk) is not satisfied, then Ωk is log-convex. Therefore:

(i) for any r, s, t ∈ R, such that r < s < t, we have

Ωk (s)
t−r ≤ Ωk (r)

t−sΩk (t)
s−r ; (2.4)

(ii) for any s, t, u, v ∈ R, such that s ≤ u, t ≤ v, s �= t, u �= v, we
have (

Ωk (t)

Ωk (s)

) 1
t−s

≤
(
Ωk (v)

Ωk (u)

) 1
v−u

. (2.5)

Proof. (i) By Theorem 6 it follows that the function Ωk is exponentially
convex.

Note that the function φt given by (2.2) is strictly convex so Fk(φt) >
0.

Then Ωk is positive and hence log-convex.
By Lemma 1, for r, s, t ∈ R, such that r < s < t, we have

(t− s) log Ωk (r) + (r − t) log Ωk (s) + (s− r) log Ωk (t) ≥ 0,

which is equivalent to (2.4).
(ii) Since Ωk is log-convex, by Lemma 2 it follows that for any s, t,

u, v ∈ R, such that s ≤ u, t ≤ v, s �= t, u �= v, the inequality

log Ωk (t)− log Ωk (s)

t− s
≤ log Ωk (v)− log Ωk (u)

v − u
(2.6)

holds. Then (2.5) easily follows from (2.6). �

Now we present integral versions of the previous results. We define a
new class of functionals as follows.

Let f : [α, β] → [a, b] be a continuous and monotonic function, where
−∞ < α < β < +∞ and 0 < a < b < +∞. Let λ : [α, β] → R

Next we define a class of functionals which we will use in the sequel.
For real numbers a, b such that 0 < a < b < +∞, a monotonic n-tuple

x ∈ [a, b]n and a real n-tuple w satisfying (1.5) we define the functionals
Fk, k ∈ {1, 2, 3} , on C([a, b]) by

F1(ϕ) = ϕ (a) + ϕ (b) + ϕ (x̄)− 2ϕ

(
a+ b

2

)
−

n∑
i=1

wiϕ (xi) ,

F2(ϕ) = ϕ(a) + ϕ(b)− ϕ (a+ b− x̄)−
n∑

i=1

wiϕ (xi) , (2.1)

F3(ϕ) = ϕ (x̄) + ϕ (a+ b− x̄)− 2ϕ

(
a+ b

2

)
.

Notice that when ϕ is convex, by Theorem 3 it follows that Fk(ϕ) ≥ 0.
Also, when ϕ is strictly convex and the corresponding condition (EQk)
is not satisfied, then by Theorem 3 it follows that Fk(ϕ) > 0. Observe
that all the functionals Fk are linear (this property will be needed later).

In the sequel we will frequently use a family of convex functions de-
scribed in the following lemma.

Lemma 3. [5] Let t be a real number. We define the function φt : R+ →
R by

φt(x) =




xt

t(t−1) , t �= 0, 1

− log x, t = 0
x log x, t = 1

. (2.2)

Then φ′′
t (x) = xt−2, hence φt is convex on R+.

Now we can state and prove the next result.

Theorem 6. The function Ωk : R → R defined by

Ωk (t) = Fk(φt), (2.3)

where Fk is defined as in (2.1) and φt as in (2.2), is exponentially convex.

Proof. Since

lim
t→0

Ωk (t) = lim
t→0

Fk(φt) = Fk(φ0) = Ωk (0) ,

lim
t→1

Ωk (t) = lim
t→1

Fk(φt) = Fk(φ1) = Ωk (1) ,

it follows that Ωk is continuous.
Let ui, pi ∈ R, i = 1, ...,m, and pij =

pi+pj
2 , 1 ≤ i, j ≤ m.

We consider the function f : R+ → R defined by

f(x) =

m∑
i,j=1

uiujφpij (x),
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where φpij is defined as in (2.2) .
Then

f ′′(x) =
m∑

i,j=1

uiujx
pij−2 =

(
m∑
i=1

uix
pi
2
−1

)2

≥ 0,

hence f is convex on R+.
Applying Theorem 3 to f and x,w as in (2.1) we have that

m∑
i,j=1

uiujΩk

(
pi+pj

2

)
≥ 0

holds for all choices of m ∈ N, ui, pi ∈ R, 1 ≤ i ≤ m.
Since Ωk is also continuous, then by Proposition 1 it follows that Ωk

is exponentially convex. �

Theorem 7. Let Ωk be as in Theorem 6. If in addition the correspond-
ing condition (EQk) is not satisfied, then Ωk is log-convex. Therefore:

(i) for any r, s, t ∈ R, such that r < s < t, we have

Ωk (s)
t−r ≤ Ωk (r)

t−sΩk (t)
s−r ; (2.4)

(ii) for any s, t, u, v ∈ R, such that s ≤ u, t ≤ v, s �= t, u �= v, we
have (

Ωk (t)

Ωk (s)

) 1
t−s

≤
(
Ωk (v)

Ωk (u)

) 1
v−u

. (2.5)

Proof. (i) By Theorem 6 it follows that the function Ωk is exponentially
convex.

Note that the function φt given by (2.2) is strictly convex so Fk(φt) >
0.

Then Ωk is positive and hence log-convex.
By Lemma 1, for r, s, t ∈ R, such that r < s < t, we have

(t− s) log Ωk (r) + (r − t) log Ωk (s) + (s− r) log Ωk (t) ≥ 0,

which is equivalent to (2.4).
(ii) Since Ωk is log-convex, by Lemma 2 it follows that for any s, t,

u, v ∈ R, such that s ≤ u, t ≤ v, s �= t, u �= v, the inequality

log Ωk (t)− log Ωk (s)

t− s
≤ log Ωk (v)− log Ωk (u)

v − u
(2.6)

holds. Then (2.5) easily follows from (2.6). �

Now we present integral versions of the previous results. We define a
new class of functionals as follows.

Let f : [α, β] → [a, b] be a continuous and monotonic function, where
−∞ < α < β < +∞ and 0 < a < b < +∞. Let λ : [α, β] → R
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Next we define a class of functionals which we will use in the sequel.
For real numbers a, b such that 0 < a < b < +∞, a monotonic n-tuple

x ∈ [a, b]n and a real n-tuple w satisfying (1.5) we define the functionals
Fk, k ∈ {1, 2, 3} , on C([a, b]) by

F1(ϕ) = ϕ (a) + ϕ (b) + ϕ (x̄)− 2ϕ

(
a+ b

2

)
−

n∑
i=1

wiϕ (xi) ,

F2(ϕ) = ϕ(a) + ϕ(b)− ϕ (a+ b− x̄)−
n∑

i=1

wiϕ (xi) , (2.1)

F3(ϕ) = ϕ (x̄) + ϕ (a+ b− x̄)− 2ϕ

(
a+ b

2

)
.

Notice that when ϕ is convex, by Theorem 3 it follows that Fk(ϕ) ≥ 0.
Also, when ϕ is strictly convex and the corresponding condition (EQk)
is not satisfied, then by Theorem 3 it follows that Fk(ϕ) > 0. Observe
that all the functionals Fk are linear (this property will be needed later).

In the sequel we will frequently use a family of convex functions de-
scribed in the following lemma.

Lemma 3. [5] Let t be a real number. We define the function φt : R+ →
R by

φt(x) =




xt

t(t−1) , t �= 0, 1

− log x, t = 0
x log x, t = 1

. (2.2)

Then φ′′
t (x) = xt−2, hence φt is convex on R+.

Now we can state and prove the next result.

Theorem 6. The function Ωk : R → R defined by

Ωk (t) = Fk(φt), (2.3)

where Fk is defined as in (2.1) and φt as in (2.2), is exponentially convex.

Proof. Since

lim
t→0

Ωk (t) = lim
t→0

Fk(φt) = Fk(φ0) = Ωk (0) ,

lim
t→1

Ωk (t) = lim
t→1

Fk(φt) = Fk(φ1) = Ωk (1) ,

it follows that Ωk is continuous.
Let ui, pi ∈ R, i = 1, ...,m, and pij =

pi+pj
2 , 1 ≤ i, j ≤ m.

We consider the function f : R+ → R defined by

f(x) =

m∑
i,j=1

uiujφpij (x),
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Proof. Since ϕ ∈ C2([a, b]) there exist m = min
x∈[a,b]

ϕ′′(x) and M =

max
x∈[a,b]

ϕ′′(x) such that m ≤ ϕ′′(x) ≤ M for each x ∈ [a, b].

We define the functions g1, g2 : [a, b] → R by

g1 =
M
2 e2 − ϕ and g2 = ϕ− m

2 e2.

Then g1, g2 ∈ C2([a, b]) and

g′′1(x) = M − ϕ′′(x) ≥ 0 and g′′2(x) = ϕ′′(x)−m ≥ 0,

hence the functions g1, g2 are convex.
By Theorem 3 it follows that

M

2
Fk(e2)− Fk(ϕ) ≥ 0

and

0 ≤ Fk(ϕ)−
m

2
Fk(e2).

Since Fk(e2) �= 0, by combining the last two inequalities we obtain

m ≤ 2Fk(ϕ)

Fk(e2)
≤ M.

Since ϕ ∈ C2([a, b]) there exists ξk ∈ [a, b] such that

ϕ′′(ξk) =
2Fk(ϕ)

Fk(e2)
.

�

Theorem 11. Let Fk be the functional on C([a, b]) defined as in (2.1).
Suppose that the corresponding condition (EQk) is not satisfied. If
ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Fk(ψ)ϕ
′′(ξk) = Fk(ϕ)ψ

′′(ξk). (3.2)

Proof. We define the function hk : [a, b] → R by

hk = Fk(ψ)ϕ− Fk(ϕ)ψ.

Then hk ∈ C2([a, b]). Applying Theorem 10 we get

Fk(hk) =
h′′
k(ξk)
2 Fk(e2). (3.3)

Since Fk(hk) = 0, it follows h′′k(ξk) = 0, that is

Fk(ψ)ϕ
′′(ξk)− Fk(ϕ)ψ

′′(ξk) = 0.

�

be continuous or of bounded variation satisfying (1.8). We define the
functionals Gk, k ∈ {1, 2, 3} , on C([a, b]) by

G1(ϕ) = ϕ (a) + ϕ (b) + ϕ
(
f
)
− 2ϕ

(
a+ b

2

)
− 1

λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t),

G2(ϕ) = ϕ(a) + ϕ(b)− ϕ
(
a+ b− f

)
− 1

λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t), (2.7)

G3(ϕ) = ϕ
(
f
)
+ ϕ

(
a+ b− f

)
− 2ϕ

(
a+ b

2

)
.

Notice that when ϕ is convex by Theorem 5 it follows that Gk(ϕ) ≥ 0
and that all Gk are linear.

We can prove the next two theorems in a similar way as Theorems 6
and 7.

Theorem 8. The function ∆k : R → R defined by

∆k (t) = Gk(φt), (2.8)

where Gk is defined as in (2.7) and φt as in (2.2) , is exponentially con-
vex.

Theorem 9. Let ∆k be the function as in Theorem 8. If in addition
∆k is positive, then ∆k is log-convex. Therefore:

(i) for any r, s, t ∈ R, such that r < s < t, we have

∆k (s)
t−r ≤ ∆k (r)

t−s∆k (t)
s−r ;

(ii) for any s, t, u, v ∈ R, such that s ≤ u, t ≤ v, s �= t, u �= v, we
have (

∆k (t)

∆k (s)

) 1
t−s

≤
(
∆k (v)

∆k (u)

) 1
v−u

.

3. Applications

In this section we prove Lagrange’s and Cauchy’s types of Mean value
theorem. As consequences we introduce new means of Cauchy’s type, in
discrete and integral form, and prove the monotonicity of these means.

In the following we denote with e2 the quadratic function, that is
e2 : [a, b] → R , e2(t) = t2.

Theorem 10. Let Fk be the functional on C([a, b]) defined as in (2.1).
Suppose that the corresponding condition (EQk) is not satisfied. If ϕ ∈
C2([a, b]), then there exists ξk ∈ [a, b] such that

Fk(ϕ) =
ϕ′′(ξk)

2
Fk(e2), (3.1)
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Proof. Since ϕ ∈ C2([a, b]) there exist m = min
x∈[a,b]

ϕ′′(x) and M =

max
x∈[a,b]

ϕ′′(x) such that m ≤ ϕ′′(x) ≤ M for each x ∈ [a, b].

We define the functions g1, g2 : [a, b] → R by

g1 =
M
2 e2 − ϕ and g2 = ϕ− m

2 e2.

Then g1, g2 ∈ C2([a, b]) and

g′′1(x) = M − ϕ′′(x) ≥ 0 and g′′2(x) = ϕ′′(x)−m ≥ 0,

hence the functions g1, g2 are convex.
By Theorem 3 it follows that

M

2
Fk(e2)− Fk(ϕ) ≥ 0

and

0 ≤ Fk(ϕ)−
m

2
Fk(e2).

Since Fk(e2) �= 0, by combining the last two inequalities we obtain

m ≤ 2Fk(ϕ)

Fk(e2)
≤ M.

Since ϕ ∈ C2([a, b]) there exists ξk ∈ [a, b] such that

ϕ′′(ξk) =
2Fk(ϕ)

Fk(e2)
.

�

Theorem 11. Let Fk be the functional on C([a, b]) defined as in (2.1).
Suppose that the corresponding condition (EQk) is not satisfied. If
ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b] such that

Fk(ψ)ϕ
′′(ξk) = Fk(ϕ)ψ

′′(ξk). (3.2)

Proof. We define the function hk : [a, b] → R by

hk = Fk(ψ)ϕ− Fk(ϕ)ψ.

Then hk ∈ C2([a, b]). Applying Theorem 10 we get

Fk(hk) =
h′′
k(ξk)
2 Fk(e2). (3.3)

Since Fk(hk) = 0, it follows h′′k(ξk) = 0, that is

Fk(ψ)ϕ
′′(ξk)− Fk(ϕ)ψ

′′(ξk) = 0.

�

Rad Hrvat. akad. znan. umjet. 515 Matematičke znanosti 17 (2013), str. 123-138
S. Ivelic, M. Klaricic Bakula, and J. Pecaric Cauchy type means related

be continuous or of bounded variation satisfying (1.8). We define the
functionals Gk, k ∈ {1, 2, 3} , on C([a, b]) by

G1(ϕ) = ϕ (a) + ϕ (b) + ϕ
(
f
)
− 2ϕ

(
a+ b

2

)
− 1

λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t),

G2(ϕ) = ϕ(a) + ϕ(b)− ϕ
(
a+ b− f

)
− 1

λ(β)−λ(α)

β∫
α
ϕ(f(t))dλ(t), (2.7)

G3(ϕ) = ϕ
(
f
)
+ ϕ

(
a+ b− f

)
− 2ϕ

(
a+ b

2

)
.

Notice that when ϕ is convex by Theorem 5 it follows that Gk(ϕ) ≥ 0
and that all Gk are linear.

We can prove the next two theorems in a similar way as Theorems 6
and 7.

Theorem 8. The function ∆k : R → R defined by

∆k (t) = Gk(φt), (2.8)

where Gk is defined as in (2.7) and φt as in (2.2) , is exponentially con-
vex.

Theorem 9. Let ∆k be the function as in Theorem 8. If in addition
∆k is positive, then ∆k is log-convex. Therefore:

(i) for any r, s, t ∈ R, such that r < s < t, we have

∆k (s)
t−r ≤ ∆k (r)

t−s∆k (t)
s−r ;

(ii) for any s, t, u, v ∈ R, such that s ≤ u, t ≤ v, s �= t, u �= v, we
have (

∆k (t)

∆k (s)

) 1
t−s

≤
(
∆k (v)

∆k (u)

) 1
v−u

.

3. Applications

In this section we prove Lagrange’s and Cauchy’s types of Mean value
theorem. As consequences we introduce new means of Cauchy’s type, in
discrete and integral form, and prove the monotonicity of these means.

In the following we denote with e2 the quadratic function, that is
e2 : [a, b] → R , e2(t) = t2.

Theorem 10. Let Fk be the functional on C([a, b]) defined as in (2.1).
Suppose that the corresponding condition (EQk) is not satisfied. If ϕ ∈
C2([a, b]), then there exists ξk ∈ [a, b] such that

Fk(ϕ) =
ϕ′′(ξk)

2
Fk(e2), (3.1)



132

M2
u,v(x;w) =







1
v(v−1)

(
av+bv−x̃v−

n∑
i=1

wix
v
i

)

1
u(u−1)

(
au+bu−x̃u−

n∑
i=1

wixu
i

)




1
v−u

, u �= v; u, v �= 0, 1

exp


au log a+bu log b−x̃u log x̃−C

au+bu−x̃u−
n∑

i=1
wixu

i

− 2u−1
u(u−1)


 , u = v �= 0, 1

exp


 log2 a+log2 b−log2 x̃−

n∑
i=1

wi log
2 xi

2

(
log a+log b−log x̃−

n∑
i=1

wi log xi

) + 1


 , u = v = 0

exp


 a log2 a+b log2 b−x̃ log2 x̃−D

2

(
a log a+b log b−x̃ log x̃−

n∑
i=1

wi log xi

) − 1


 , u = v = 1

M3
u,v(x;w) =




(
1

v(v−1)(x̄
v+x̃v−2(a+b

2 )
v
)

1
u(u−1)(x̄u+x̃u−2(a+b

2 )
u
)

) 1
v−u

, u �= v; u, v �= 0, 1

exp

(
x̄u log x̄+x̃u log x̃−2(a+b

2 )
u
log(a+b

2 )
x̄u+x̃u−2(a+b

2 )
u − 2u−1

u(u−1)

)
, u = v �= 0, 1

exp

(
log2 x̄+log2 x̃−2 log2(a+b

2 )
2(log x̄+log x̃−2 log(a+b

2 ))
+ 1

)
, u = v = 0

exp

(
x̄ log2 x̄+x̃ log2 x̃−(a+b) log2(a+b

2 )
2(x̄ log x̄+x̃ log x̃−(a+b) log(a+b

2 ))
− 1

)
, u = v = 1

where

x̃ = a+ b− x̄,

C =
∑n

i=1wix
u
i log xi and D =

∑n
i=1wixi log

2 xi.

We can easily check that these means are symmetric and the special
cases are limits of the general case. That is, we have

Mk
u,u(x;w) = lim

v→u
Mk

u,v(x;w),

Mk
0,0(x;w) = lim

u→0
Mk

u,u(x;w),

Mk
1,1(x;w) = lim

u→1
Mk

u,u(x;w).

Notice that (3.4) can be rewritten as

Mk
u,v(x;w) =

(
Ωk (v)

Ωk (u)

) 1
v−u

,

where Ωk is the function defined as in (2.3).
Now we prove the monotonicity of these means.

Theorem 12. Let s, t, u, v ∈ R be such that s ≤ u, t ≤ v. Then

Mk
t,s(x;w) ≤ Mk

v,u(x;w). (3.5)

Theorem 11 enables us to define new means. If we set a = min1≤k≤n{xk}
and b = max1≤k≤n{xk} and if we choose ϕ = φu and ψ = φv, where
u, v ∈ R, u �= v, u, v �= 0, 1, then from (3.2) we obtain

Fk(φv)ξ
u−2
k = Fk(φu)ξ

v−2
k ,

that is

ξk =

(
Fk(φv)

Fk(φu)

) 1
v−u

,

which represents a new family of means on the segment [a, b]. We use
notation

Mk
u,v(x;w) =

(
Fk(φv)

Fk(φu)

) 1
v−u

. (3.4)

We can extend these means to the excluded cases. For k ∈ {1, 2, 3} and
u, v ∈ R we define:

M1
u,v(x;w) =







1
v(v−1)

(
av+bv−2(a+b

2 )
v
+x̄v−

n∑
i=1

wix
v
i

)

1
u(u−1)

(
au+bu−2(a+b

2 )
u
+x̄u−

n∑
i=1

wixu
i

)




1
v−u

, u �= v; u, v �= 0, 1

exp


au log a+bu log b−2(a+b

2 )
u
log(a+b

2 )+x̄u log x̄−C

au+bu−2(a+b
2 )

u
+x̄u−

n∑
i=1

wixu
i

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp


 log2 a+log2 b−2 log2(a+b

2 )+log2 x̄−
n∑

i=1
wi log

2 xi

2

(
log a+log b−2 log(a+b

2 )+log x̄−
n∑

i=1
wi log xi

) + 1


 , u = v = 0

exp


 a log2 a+b log2 b−(a+b) log2(a+b

2 )+x̄ log2 x̄−D

2

(
a log a+b log b−(a+b) log(a+b

2 )+x̄ log x̄−
n∑

i=1
wixi log xi

) − 1


 ,

u = v = 1
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M2
u,v(x;w) =







1
v(v−1)

(
av+bv−x̃v−

n∑
i=1

wix
v
i

)

1
u(u−1)

(
au+bu−x̃u−

n∑
i=1

wixu
i

)




1
v−u

, u �= v; u, v �= 0, 1

exp


au log a+bu log b−x̃u log x̃−C

au+bu−x̃u−
n∑

i=1
wixu

i

− 2u−1
u(u−1)


 , u = v �= 0, 1

exp


 log2 a+log2 b−log2 x̃−

n∑
i=1

wi log
2 xi

2

(
log a+log b−log x̃−

n∑
i=1

wi log xi

) + 1


 , u = v = 0

exp


 a log2 a+b log2 b−x̃ log2 x̃−D

2

(
a log a+b log b−x̃ log x̃−

n∑
i=1

wi log xi

) − 1


 , u = v = 1

M3
u,v(x;w) =




(
1

v(v−1)(x̄
v+x̃v−2(a+b

2 )
v
)

1
u(u−1)(x̄u+x̃u−2(a+b

2 )
u
)

) 1
v−u

, u �= v; u, v �= 0, 1

exp

(
x̄u log x̄+x̃u log x̃−2(a+b

2 )
u
log(a+b

2 )
x̄u+x̃u−2(a+b

2 )
u − 2u−1

u(u−1)

)
, u = v �= 0, 1

exp

(
log2 x̄+log2 x̃−2 log2(a+b

2 )
2(log x̄+log x̃−2 log(a+b

2 ))
+ 1

)
, u = v = 0

exp

(
x̄ log2 x̄+x̃ log2 x̃−(a+b) log2(a+b

2 )
2(x̄ log x̄+x̃ log x̃−(a+b) log(a+b

2 ))
− 1

)
, u = v = 1

where

x̃ = a+ b− x̄,

C =
∑n

i=1wix
u
i log xi and D =

∑n
i=1wixi log

2 xi.

We can easily check that these means are symmetric and the special
cases are limits of the general case. That is, we have

Mk
u,u(x;w) = lim

v→u
Mk

u,v(x;w),

Mk
0,0(x;w) = lim

u→0
Mk

u,u(x;w),

Mk
1,1(x;w) = lim

u→1
Mk

u,u(x;w).

Notice that (3.4) can be rewritten as

Mk
u,v(x;w) =

(
Ωk (v)

Ωk (u)

) 1
v−u

,

where Ωk is the function defined as in (2.3).
Now we prove the monotonicity of these means.

Theorem 12. Let s, t, u, v ∈ R be such that s ≤ u, t ≤ v. Then

Mk
t,s(x;w) ≤ Mk

v,u(x;w). (3.5)
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Theorem 11 enables us to define new means. If we set a = min1≤k≤n{xk}
and b = max1≤k≤n{xk} and if we choose ϕ = φu and ψ = φv, where
u, v ∈ R, u �= v, u, v �= 0, 1, then from (3.2) we obtain

Fk(φv)ξ
u−2
k = Fk(φu)ξ

v−2
k ,

that is

ξk =

(
Fk(φv)

Fk(φu)

) 1
v−u

,

which represents a new family of means on the segment [a, b]. We use
notation

Mk
u,v(x;w) =

(
Fk(φv)

Fk(φu)

) 1
v−u

. (3.4)

We can extend these means to the excluded cases. For k ∈ {1, 2, 3} and
u, v ∈ R we define:

M1
u,v(x;w) =







1
v(v−1)

(
av+bv−2(a+b

2 )
v
+x̄v−

n∑
i=1

wix
v
i

)

1
u(u−1)

(
au+bu−2(a+b

2 )
u
+x̄u−

n∑
i=1

wixu
i

)




1
v−u

, u �= v; u, v �= 0, 1

exp


au log a+bu log b−2(a+b

2 )
u
log(a+b

2 )+x̄u log x̄−C

au+bu−2(a+b
2 )

u
+x̄u−

n∑
i=1

wixu
i

− 2u−1
u(u−1)


 ,

u = v �= 0, 1

exp


 log2 a+log2 b−2 log2(a+b

2 )+log2 x̄−
n∑

i=1
wi log

2 xi

2

(
log a+log b−2 log(a+b

2 )+log x̄−
n∑

i=1
wi log xi

) + 1


 , u = v = 0

exp


 a log2 a+b log2 b−(a+b) log2(a+b

2 )+x̄ log2 x̄−D

2

(
a log a+b log b−(a+b) log(a+b

2 )+x̄ log x̄−
n∑

i=1
wixi log xi
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u = v = 0
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(
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2 )+f log2 f−F
2(a log a+b log b−(a+b) log(a+b

2 )+f log f−G)
− 1

)
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u = v = 1
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(
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 ,
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Proof. By Theorem 7 it follows that the function Ωk is log-convex.
Therefore, for any s, t, u, v ∈ R such that s ≤ u, t ≤ v, s �= t, u �= v,
inequality (2.5) holds which is equivalent to (3.5). The statement of
theorem follows using continuous extensions. �

In the following we present the integral versions of previous results.
We can prove the next two theorems in a similar way as Theorems 10
and 11.

Theorem 13. Let Gk be the functional on C([a, b]) defined as in (2.7).
Suppose that Gk(e2) �= 0. If ϕ ∈ C2([a, b]), then there exists ξk ∈ [a, b]
such that

Gk(ϕ) =
ϕ′′(ξk)

2
Gk(e2). (3.6)

Theorem 14. Let Gk be the functional on C([a, b]) defined as in (2.7).
Suppose that Gk(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b]
such that

Gk(ψ)ϕ
′′(ξk) = Gk(ϕ)ψ

′′(ξk). (3.7)

If we set Im f = [a, b] , that is a = minα≤t≤β f(t) and b = maxα≤t≤β f(t),
and if we choose ϕ = φu and ψ = φv, where u, v ∈ R, u �= v, u, v �= 0, 1,
providing that Gk(ϕu), Gk(ϕv) �= 0, then from (3.7) we obtain

ξk =

(
Gk(φv)

Gk(φu)

) 1
v−u

.

This represents a new class of integral means on the segment [a, b]. We
use notation

Mk
u,v(f ;λ) =

(
Gk(φv)

Gk(φu)

) 1
v−u

. (3.8)

For k ∈ {1, 2, 3} and u, v ∈ R we can extend these means to the ex-
cluded cases as follows:
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Proof. By Theorem 7 it follows that the function Ωk is log-convex.
Therefore, for any s, t, u, v ∈ R such that s ≤ u, t ≤ v, s �= t, u �= v,
inequality (2.5) holds which is equivalent to (3.5). The statement of
theorem follows using continuous extensions. �

In the following we present the integral versions of previous results.
We can prove the next two theorems in a similar way as Theorems 10
and 11.

Theorem 13. Let Gk be the functional on C([a, b]) defined as in (2.7).
Suppose that Gk(e2) �= 0. If ϕ ∈ C2([a, b]), then there exists ξk ∈ [a, b]
such that

Gk(ϕ) =
ϕ′′(ξk)

2
Gk(e2). (3.6)

Theorem 14. Let Gk be the functional on C([a, b]) defined as in (2.7).
Suppose that Gk(e2) �= 0. If ϕ, ψ ∈ C2([a, b]), then there exists ξk ∈ [a, b]
such that

Gk(ψ)ϕ
′′(ξk) = Gk(ϕ)ψ

′′(ξk). (3.7)

If we set Im f = [a, b] , that is a = minα≤t≤β f(t) and b = maxα≤t≤β f(t),
and if we choose ϕ = φu and ψ = φv, where u, v ∈ R, u �= v, u, v �= 0, 1,
providing that Gk(ϕu), Gk(ϕv) �= 0, then from (3.7) we obtain

ξk =

(
Gk(φv)

Gk(φu)

) 1
v−u

.

This represents a new class of integral means on the segment [a, b]. We
use notation

Mk
u,v(f ;λ) =

(
Gk(φv)

Gk(φu)

) 1
v−u

. (3.8)

For k ∈ {1, 2, 3} and u, v ∈ R we can extend these means to the ex-
cluded cases as follows:
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+f̃v−2(a+b
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v
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u(u−1)(f

u
+f̃u−2(a+b

2 )
u
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) 1
v−u

, u �= v; u, v �= 0, 1

exp

(
f
u
log f+f̃u log f̃−2(a+b

2 )
u
log(a+b

2 )
f
u
+f̃u−2(a+b

2 )
u − 2u−1

u(u−1)

)
, u = v �= 0, 1

exp

(
log2 f+log2 f̃−2 log2(a+b
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2(log f+log f̃−2 log(a+b

2 ))
+ 1

)
, u = v = 0

exp

(
f log2 f+f̃ log2 f̃−(a+b) log2(a+b

2 )
2(f log f+f̃ log f̃−(a+b) log(a+b

2 ))
− 1

)
, u = v = 1

where

f̃ = a+ b− f,

E = 1
λ(β)−λ(α)

∫ β
α f

u(t) log f(t)dλ(t),

F = 1
λ(β)−λ(α)

∫ β
α f(t) log

2 f(t)dλ(t),

G = 1
λ(β)−λ(α)

∫ β
α f(t) log f(t)dλ(t).

We can easily check that these means are symmetric and the special
cases are limits of the general case. That is,

Mk
u,u(f ;λ) = lim

v→u
Mk

u,v(f ;λ),

Mk
0,0(f ;λ) = lim

u→0
Mk

u,u(f ;λ),

Mk
1,1(f ;λ) = lim

u→1
Mk

u,u(f ;λ).

Notice that (3.8) can be rewritten as

Mk
u,v(f ;λ) =

(
∆k (v)

∆k (u)

) 1
v−u

where ∆k is the function defined as in (2.8).
Similary as in discrete case we can prove the monotonicity of these

means which we express in the next theorem.

Theorem 15. Let s, t, u, v ∈ R be such that s ≤ u, t ≤ v. Then

Mk
t,s(f ;λ) ≤ Mk

v,u(f ;λ).
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GENERAL QUADRATURE FORMULAE BASED ON
THE WEIGHTED MONTGOMERY IDENTITY AND

RELATED INEQUALITIES

M. KLARIČIĆ BAKULA, J. PEČARIĆ, AND M. RIBIČIĆ PENAVA

Abstract. In this paper two families of general two-point and
closed four-point weighted quadrature formulae are established. Ob-
tained formulae are used to present several Hadamard type and
Ostrowski type inequalities for α-L-Hölder functions. These results
are applied to establish error estimates for the Gauss-Chebyshev
quadratures.

1. Introduction

Let f : [a, b] → R be a differentiable function on [a, b] such that
f ′ : [a, b] → R is integrable on [a, b] and let w : [a, b] → [0,∞〉 be
some probability density function. In [1] J. Pečarić proved a weighted
generalization of the well known Montgomery identity (more about the
Montgomery identity can be found for example in [2]):

f (x) =
∫ b

a
w (t) f (t) dt +

∫ b

a
Pw (x, t) f ′ (t) dt,

where the weighted Peano kernel is defined by

Pw (x, t) =
{

W (t) , a ≤ t ≤ x
W (t) − 1, x < t ≤ b

.

This was used in the recent paper [3], where A. Aglić Aljinović and
J. Pečarić introduced two new extensions of the weighted Montgomery
identity.

In this paper we use one of those new weighted Montgomery identities
to establish for each x ∈ [a, (a + b) /2] a general two-point quadrature
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2000 Mathematics Subject Classification. 26D15, 26D20.
Key words and phrases. Two-point quadrature, Four-point quadrature,

Hadamard’s inequalities, Montgomery identity.


