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CERTAIN BINARY RELATIONS AND OPERATIONS
AND THEIR USE IN RESEARCH OF BICENTRIC

POLYGONS
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ABSTRACT. In the article we consider certain binary relations
and operations and their use in research of bicentric n-gons
where n > 3 is an odd integer. The considered binary rela-
tions and operations are defined on the set whose elements are
integers 1,2,..., %‘1 which are relatively prime to n. We have
found that some properties concerning bicentric n-gons can be
a source or generator for many useful ideas and procedures in
number theory and theory of groups. So using partition and
ordering concerning bicentric n-gons, where n is an odd integer
we have found some interesting relations concerning number
theory.
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The article is closely connected with the articles [5] and [6].

1. INTRODUCTION

The

most part of the article deals with some kinds of binary relations and
operations closely connected with bicentric n-gons where n > 3 is an
odd integer. Some of the obtained results can be interesting not only
in theory of bicentric n-gons but also in number theory and theory of

groups.

First we state some results from [6] which will be used in the following.
Let n > 3 is an odd integer and let S denotes the set given by

(1.1)

S:{x:$€{1,2,...,n;1} and GCD(z,n):l}.

Definition A. Let f:S — S be function defined by

(1.2)

Date:

2z if2x €S
f(x)_{n—2m if2x €S
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THEOREM A. The function f is one to one mapping from S to S.

(It is easy to show that z1 # xo = f(z1) # f(x2). If K € Sis even
then equation 2x = k has solution in S, but if k£ is odd then equation
k = n — 2z has solution in S.)

Corollary A. 1. The function f determines a partition of the set S.

Example A. 1. Let n = 17. Then partition of the set S = {1,2,...,8}
has two cosets C; = {1,2,4,8} and Cy = {3,5,6,7} since in this case
f)y=2, f(2)=4, f4)=8, f8)=1,

f@B)=6, f(6)=5 f(5)=17 [f(7)=3.

Corollary A. 2. The function f determines one (cyclic) ordering of
elements in each coset.

(1.3)

Example A. 2. Ifn =17 then instead of (1.3) we can write

(1.4a) 1-2—-4—-8—=1,

(1.4b) 3—+6—5—>7—3.
where, for brevity, instead of f(x) =y we write x — y.
Example A. 3. Let n=31. Then S = {1,2,...,15} and

1—-2 —4—-8->15—1,
3—6 -12—>7—14 — 3,
5— 10— 11 — 9— 13 — 5.

The partition of S is {C1,Cq,Cs} where
Cp={1,2,4,8,15}, C,=1{3,6,12,7,14}, C;={5,10,11,9,13}.

As will be seen the partition and ordering determined by function
f have very interesting and important properties concerning bicentric
polygons.

In this connection let us remark that function f defined by (1.2) can
be also defined by

(1.5a) f<n;x) =z if x € Sis odd,
€T . .
(1.5b) f (5) =z if z € S is even.
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So, if n =11 then S = {1,2,3,4,5} and we have
11-1
f< >:1 or 5—1,

2

11-5
f< 5 >:5 or 3— 5,

11—
f< 23>:3 or 4— 3,
f(2)=4 or 2—4,
f(1)=2 or 1—2.

Thus1 —+2—-4—-3—5—1.

Since the function f is one to one mapping from S to S there is the
function f~! from S to S given by
(1.6) () = {:5”” ?f x %s an odd i?teger ‘

5 if z is an even integer

The ordering obtained using function f~! is opposite to the ordering
obtained using function f. So, if n = 11, the ordering obtained using
function f~'is1 —+5—=3 =4 —2— 1.

Now about notation and some results concerning bicentric polygons
which will be used in the article.

A polygon which is both chordal and tangential is shortly called bicen-
tric polygon. The first one that was concerned with bicentric polygons is
German mathematician Nicolaus Fuss (1755-1826). He found relations
(conditions) for bicentric quadrilateral, pentagon, hexagon, heptagon
and octagon given in [1] and [2].

Although Fuss found relations only for bicentric n-gons, 4 < n < 8, it
is in his honor to call such relations Fuss’ relation also in the case n > 8.

The very remarkable theorem concerning bicentric polygons is given in
[4] by French mathematician Poncelet (1788-1867), so called Poncelet’s
closure theorem for circles, can be stated as follows.

Let C7 and C5 be two circles, where Cy is inside of C7. If there is
a bicentric n-gon A; ... A, such that C; is its circumcircle and Cs its
incircle then for every point P; on C] there are points Pi,... P, on C]
such that Pi,... P, is a bicentric n-gon whose circumcircle is C and
incircle Cs.

Although this celebrated Poncelet’s closure theorem dates from nine-
teenth century, many mathematicians have been working on number of
problems in connection with this theorem. In this article we deal with
certain important properties and relations in this connection.
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If Ay... A, is considered bicentric n-gon then it is usually to be used
the following notation

R: radius of circumcircle of the n-gon A; ... A,,
r: radius of incircle of the n-gon A; ... A,,
d: distance between centers of circumecircle and incircle.

By
(1.7) EW(R,d,r) =0

is denoted Fuss’ relation for bicentric n-gons whose rotation number for
n is k, that is, it is valid

n
Z measure of LA;MA; 11 = k - 360,
i=1
where M is the center of the incircle of Ay ... A, and n+1 = n( mod n).
Of course, for rotation number &k hold relations

1§]~c§n_1 if n is odd,
(1.8)

1<k<—

if n is even,

where GCD(k,n) =1

Here let us remark that instead of saying that k is rotation number for
n we shall also say that k is number of outscription or circumscription
for bicentric n-gons. These numbers will play important role in the
following.

Let (Ry,dy, ) be a solution of Fuss’ relation (1.7) and let Ry, dy, 1
be given by

~ R2 - d2 A 2dekrk
(1.9&) Rk = M, dk R2 d2 s

N R2 d2 2dekrk 2
0o e e (TR (2an)

From (1.9a) it is clear that Ry, >0 and dy > 0 since Ry > dj, + 7. The
proof that also 7, > 0 can be written as

R} —d} 2Rpdri \
2 2 2 e — Qg LEECETE 2/ p2 212

ZWVJW&—M@i 2d3r3)”.
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Notice 1. For brevity in the following we shall often write k instead of
f(k). Also let us remark that the relation given by (1.9) is in fact the
relation (2) in [6].

Now, using some properties of the function f, we state the following
conjecture which is slightly modified Conjecture 2.3 given in [6].

Conjecture 1. Let n > 3 be an odd integer and let k be an integer from
the set S given by (1.1), that is, let (Ry,dg, i) be a solution of Fuss’
relation (1.7). Then

(1.10a) (Rk,cik,@ = (Ry.dgmy)
and
(1.10b) F® (R, d;, ) =0,

where Ry, cfk, 7. are calculated using notation (1.9).

First we have proved this conjecture for n = 3,5,7,9. (See [5, Theo-
rems 1,3,5].) Then we have proved this conjecture for n = 11,13, 15, 17.
For odd n > 17 we found that the capacity of usual (standard) computer
is insufficient.

Now using partition of the set S determined by function f, the Con-
jecture 1 can be modified and stated as follows.

Conjecture 2. Let n > 3 be any given odd integer and let C; be a coset
of the partition of the set S determined by function f. Let ki, ko, ..., ky
be all elements of the coset C; and let ki — ko — ... — ky, — k1. Let

(Rg,,dg,, Tk, ) be solutions of Fuss’ relations F,gkl)(R, d,r)=0. Then
(1.11)

(Rklaczklyfh) = (Rky, diy Thy ) (ng,czk27%> = (R, diy, Ths)
(ka dkua f‘kv) = (Rk1 5 dkl 5 rk1) 5

where v is the number of elements in the coset C;.

So if n = 5 we have coset {1,2} where 1 — 2 — 1. In accordance
with 1 — 2 and 2 — 1 we have relations

(Ri,di,ri) = (Rg,dg,'l“g), (RQ,dQ,TQ) = (Rl,dl,Tl) .
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If n = 7 we have coset {1,2,3}, where 1 - 2 — 3 — 1. In accordance
with 1 — 2, 2 — 3, 3 — 1 we have relations
(Ri7diari) = (R27d277'2)7
(R3,ds,75) = (Rs,ds,73) ,
(Rg,dg,rg) = (R1,dy,71) .

If n = 17 we have two cosets. See Example A.1 and Example A.2.
Concerning coset C7 we have

(Ry,dy,rq) = (Rp, da,m2),
(Rs,d3.r3) = (Rayda,ra),
(Ry.dy.ry) = (Bs,ds,s),
( g, dg, T ) = (Ry,dy,71) .

Analogously holds for coset Cs.

Notice 2. Since the elements of the set S are rotation numbers for a
given odd n > 3, the function f determines a partition of these numbers.
Also the function f determines a cyclic ordering of the elements in each
coset. This partition and the ordering concerning function f on the set
S is compatible with partition and ordering determined by relation (1.9)
on the set of the corresponding classes of bicentric n-gons for a given
odd n. This compatibility can be very useful in researching of bicentric
n-gons, where n > 3 is an odd integer. (An example is the article [6].)

In connection with Conjecture 2 the following question can be arisen.

If m > 1 is a given integer how can be found the set G,, of all odd
integers such that for any two integers from G,, we get cosets with m
elements? Here will be shown how we can get the set G, for m =
3,4,...,9.

Let m be an integer such that 3 < m < 9 and let n be an integer from
the set Gy, given by

Gy = {2 —1,2" +1,D},

where D is the sequence of all divisor of 2”* — 1 and all divisor of 2 + 1
such that none of them is less then 2m + 1. Let S,, denotes the set

{x: xe{l,...,nT_l} and GCD(x,n)zl}.
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Then partition of the set S,, determined by function f has cosets with
m elements. For example:

Gs ={7,9}, G4 = {15,17}, G5 = {31,33,11},
Ge = {63,65,13,21}, G7 = {127,129, 43},
Gg = {255,257,51,85}, Gg = {511,513,19,27,57,73,171}.

Concerning m =1 and m = 2 we have n =3 if m =1 and n = 5 if
m = 2.

The above examples strongly suggest that analogously holds generally
for any integer m > 9. If the corresponding conjecture is a true one then
there exists a partition of all odd integers n > 3 such that for any m > 1

we get one class. What can be implications of this partition to bicentric
polygons it may be a theme of investigation.

2. CERTAIN BINARY RELATIONS AND OPERATIONS AND THEIR USE IN
RESEARCH OF BICENTRIC POLYGONS

First we prove the following theorem which is a true one for every odd
n > 3 for which Conjecture 2 is also true.

THEOREM 1. Let (Ry,,dk,, ;) and (Rk,dk,rk_) be as in Conjec-
ture 2. Then for each i = 1,2,...,v it is valid

(2.1a) Ry,dy, = R;, d;,
(2.1b) (Ri, + i )? =12, = (B +dp) 72
(2.1¢) (Re, — i 1%, = (Ry, — ;) — 72,
Proof. 1t is easy to see that from (1.9) it follows
Ridy = Rydy,
(R + cik)Q — 7 = (R + dp)* — 13,
(£ - dk)Q — 2 = (Rp — dp)? — 1.
U
Corollary 1.1. From (2.1) it follows
Rzi—l—dii _Tli :R%i —I—dii —r%i, i=1,...,0.

Now we prove the following theorem which is a true one if and only
if the Conjecture 2 is a true one. Without loss of generality we can take
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n = 17 since essentially the same argument applies in all of the other
cases.

THEOREM 2. Let n = 17. Then we have cosets C; = {1,2,4,8} and
Cy =1{3,6,5,7} wherel -2 —-4—-8—>1and3 -6 —>5— 7 — 3.
Let

(22) (Ri,di,T‘i), 1= 1,2,4,8 and (Rj,dj,Tj), j = 3, 6,5,7
be solutions of Fuss’ relation Fi7(R,d,r) =0 such that

(2.3a) (Ry,d1,71) = (Ra,da,72), (Ra,d2,72) = (Ra,ds,74),
(2.3b) (Ry,ds, 74) = (Rs,ds,7s), (Rs,ds,s) = (Ri,di,m1)
and

(2.4a) (R3.ds3,73) = (Re,dg,76), (Re,ds,76) = (R, ds,75),
(24b) (R57d57735) = (R77d7,7'7), (R?,Ci?,f7) = (R37d37743)'
Then the following relations holds good

(2.5a) R% = Ry (RQ + 79+ \/(Rz +1r9)2 — d%) ,

(2.5b) d? = Ry (Rz + 79 — \/(R2 +12)? — d%) ;

(2.5¢) 1t = (Ry +12)* — d3,

(2.6a) R% =Ry <R4 +rg + \/(R4 +74)% — di) ,

(2.6b) d3 = Ry (R4 +ry— \/(R4 +ra)? - di) )

(2.6¢) r% = (R4 + 7‘4)2 — di,

(2.7&) RZ = Rg (Rg +rg + \/(Rg + 7’8)2 — d%) ,

(2.7b) di = Rs <R8 +rg — \/(RB +18)% — d%) ;

(2.7¢) i = (Rs +rs)? — d3,
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(2.82) R{ =Ry (Rl —ri+ \/(Rl —711)* — d%) ;
(2.8b) d3 = Ry <R1 -7 = \/(Rl —r1)? - d%) :
(2.8¢) rg = (Ri—r)? —di.

Analogously holds for the solutions (Rj,d;,r;), j =3,6,5,7.

In this connection let us remark that the following rule needs to be
used. If k is an odd integer from the set {1,...,8} then we have the
expressions

(2.9a) Ry, <Rk — T+ \/(Rk — Tk)Q — d%) ,

(2.9b) Rk <Rk — T — \/(Rk - Tk)Q - d%) 5

(2.90) (Rk — T’k)Q — d%

But if k is an even integer from the set {1,...,8} then we have the
following expressions

(2.10&) Ry, (Rk +rp + \/(Rk + Tk)Q — dz) ,

(2.10Db) Ry, <Rk +rp — \/(Rk +7r)? — d%) ,

(2.10c) (Ry, + 1) — d2.

So, for example, for K = 3 and k = 6 we have relations

R%:Rﬁ <R6+T6+\/(RG+T6)2—CZ%>,

R%ZRE, (R5—T5+\/(R5—T5)2—d§).
(More about this for some odd n > 3 can be seen Corollaries 1.3 and
3.2 in [5].)
Proof. First it is clear that (2.3) can be written as
(Rla d17 7'1) — (R27 d27 7’2) — (R47 d47 T4) — (R87 d87 TS) — (Rh d17 rl)a

where the arrow — replaces the word implies. Also from (2.5), (2.6), (2.7)
and (2.8) it is clear that

(R1,d1,7m1) < (Rg,da,r2) < (Ra,ds,r4) < (Rg,dg,rg) < (R1,d1,71),
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where the arrow <— replaces the words follows from.
Thus we have to prove that (Ri,di,71),. .., (Rs,ds,7s) given by (2.5), (2.6), (2.7)
and (2.8) have the properties that holds (2.3). The proof is very easy.
So, for example, the proof that
the relations (2.5) =— (ﬁl,dl,fl) = (Rg,da,12)
can be as follows. First we have

R% _ d% Ry (RQ + 79+ \/(RQ +T’2)2 — d%) — Ry <R2 + 79 — \/(RQ +7’2)2 —d%)

27 2v/(Rg + 12)% — d2
= R».

In the same way can be found that % = dy and

AR+ )t~ (B =) _
2 (R — &)

2 2
o 2 2 .2 R2—d} 2Rydim _ 2
or (R1+d1 7'1) -+ ( o1 + W =Tr3.

This proves Theorem 2. O

Corollary 2.1. It is valid
Ri+di —ri = R3+d5—r5 = R+ di —ri = R§ + d§ — 3,
Ridy = Rods = Ryqdy = Rgds.
Analogously holds for the solutions (Rj,d;,r;), j =3,6,5,7.

The following corollary refers to one relatively very simply way how
using relations (1.9) can be obtained Fuss’ relations.

Corollary 2.2. Let (Ry,di,71) € Ri such that Ry > dy + r1 and let
(Rg,da,r3) be given by (Ra,da,re) = (Rl,dl,fl). Then from

(Rla Czl, fl) = (R2a d27 T2)
after rationalization and factorization we get the following relation
(2.11) (R% —d% —2R1T1) F5(R1,d1,7’1) ZO,

where R?2—d? —2Rr = 0 is Euler relation for triangle and F5(R,d,r) = 0
18 Fuss’ relation for bicentric pentagons.

_ This relations can be obtained more simply using one of the relations
R1 = Rg, d1 = dg, fl =T9. So from
R2 _ d2
Ll _pR <R1—?"1+\/(R1—7“1)2—d%>
27‘1
we get the relation (2.11).
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In the same way can be proceed and get Fuss’ relations F7 (R, d,r) = 0,
Fy(R,d,r) = 0 and so on. (Of course, computer capacity needs to be
enough for chosen n. Cf. with the method given in [6] using relations
(11) and (12).)

Now, let n = 17. Let by Fi5'”(R,d,r) = 0 be denoted Fuss’ relation
for bicentric 17-gons whose rotation numbers are odd integers from the
set {1,2,...,8} and let by Fi5*”(R,d,r) = 0 be denoted Fuss’ relation
for bicentric 17-gons whose rotation numbers are even integers from the
set {1,2,...,8}. (These relation can be obtained using relations (11)
and (12) in [6].) Let for R and d in F5'”(R,d,7) = 0 be put R = 7,
d = 1. Then the solutions of the equation F5'>(7,1,7) = 0 are

r1 = 5.999949896. . ., r3 = 5.646332581 ...,

rs = 4.117389221 ..., r7 = 1.883868466 . .. .
Also the solutions of the equation F}5%~(7,1,7) = 0 are

ro = 5.958123110..., r4 = 5.001520087 ...,

r¢ = 3.060512535. . ., rg = 0.635878342 ... .

Here let us remark that using relation (1.15) given in [5] for calculation
tangent lengths can be found that 17-gons from the class Cg) (7,1,r5), j =

1,...,8, have rotation number j. Also let us remark that each triple
(R1,s1,t1) where Ry =7, sy =1, t1 =rj, j =1,...,8, determines one
coset

{(Rla S1, tl)) (RQ) 52, t2)7 (R37 53, tS)a (R4a S4, t4)} 5
where
(R, s2,t2) = (Ry, 81, 11), (Rs, s3,t3) = (Ra, 32,12),
(R47 54, t4) = (R37 §3> f3)> (Rb S1, tl) = (R47 §47 2?4)

Thus can be obtained 8 cosets. Using these cosets can be verified the
all relations in Theorem 1 and Theorem 2. In this connection let us
remark that between triples (7,1,7;), j =1,...,8, there is no two such
that (R, d, 7j) = (7,1,7;), where R = 7, d = 1. Thus the obtained cosets
contain 32 solutions of Fuss’ relation F17(R,d,r) = 0. The half of those
refer to F}5'7(R,d,r) =0, i = 1,2.

Now will be in short about some interesting facts concerning solutions
of Fuss’ relation F,(R,d,r) = 0, where n > 3 is an odd integer, and the
solutions of fuss relation Fy,(R,d,r) = 0.

i) Let n =3 and let (Ry,dy,7r1) € Ri be a solution of Euler’s relation
for triangles

(2.12) R? —d* —2Rr = 0.
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Let Ro, do, po and Rq, 61, p1 be given by

Ri =R <R1—T1+\/(R1—r1)2—d%>,

(ngRl <R1—T’1—\/(R1—T1)2—d%>,

py = (R1—m)* —di,

and

R? =R, <R1+7"1+\/(R1+7”1)2—d%>>

(5%:R1 (R1+T1—\/(R1—|—’I“1)2—d%),
pi=(Ri+m)° —di.

Then Rg — (53 — Ropo =0 and Fﬁ(Rl,(sl,pl) = 0.
The proof is easy. R
Here let us remark that in this case when n = 3 it holds (R, do, po) =

(R17d17T1)‘
iy) Let n =5 and let (R;,d;,7i), i = 1,2, be such that
(2.13&) Fél)(Rl,dl,Tl) = 0, Fé2)(R2,d2,’r’2) =0
and

(2.13b) (Ry,d1,71) = (Ra,d2,72), (Ra,da,72) = (Ry,dy,m1).
Let R1, 61, p1 and R3, d3, p3 be given by

(2.148,) 'R% =R (Rl +r + \/(Rl + 7’1)2 — d%) ,
(2.14b) (5% =Ry <R1 +7ry — \/(Rl + 7”1)2 — d%) s
(2.14c¢) pi = (Ri+m1)* —di,
(2.15a) R% =Ry <R2 —7ro+ \/(RQ —1r9)? — d%) ,
(2.15b) (532) = RQ <R2 — 7o — \/(RQ — ?”2)2 — d%) 5
(2.15¢) p3 = (Ry —12)* — d3.
Then
(2.16) Flo(R1,01,m) =0, Fiy(Rs,83,p3) =0,
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and
(2.17a) RI+67—pt = R34+ 03— p2 = R2+d} — 13 = R3+d3 — 3,
(217b) R151 - R353 - Rldl = Rgdg,

(2.17¢) (R1,01,p1) = (R1,d1,m1), (Rs,03,p3) = (Ra, da,72).

Proof. Using computer algebra it is not difficult to prove that holds (2.16).
The proof that holds (2.17) is straightforward. O

Here is an example. Let Ry = 7, di = 2, r; = 4.789111662....
Then F5(1)<R1,d1,7’1) = 0, (RQ,dZ,TQ) = (Rlaézlafl)y

R, = 12.800443630..., d; = 1.093712093..., p; = 11.618225070...,

R3 = 5.327840993 ..., 0J3 = 2.627706048 ..., p3 =2.286114440....
It is not difficult to check that (2.14)—(2.17) is valid.

is) Let n =7 and let (R;,d;,r;) € R3, i =1,2,3, be such that
F7(1)(R1,d1,’f'1) 207 F7(2)(R2,d2,7‘2) :07 F7(3)(R37d37r3) =0
and

(R1,d1,71) = (Ra,d2,12), (Ra,da,2) = (R3,ds,r3), (Ra,ds,73) = (Ry,dy,71).
Let (R;,0i,pi), i = 1,5,3, be given by

p3 = (Rs +r3)* — d3.
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Then

(2.18) F{}(R1,61,p1) =0, F (Rs,05,p5) = 0, F{y (Rs,83,p3) = 0
and

(2192a) RZ 402 —pl=RE+ 2 —pi=RE+02—p2=R}+d3 -1}
=Ri+d5—r3=R3+d}—r3

(2.19b) R161 = Rsds = Rads = Rudy = Rods = Ryds,
(2.19¢)
(R1,61,p1) = (R1,d1,7m1), (Rs,05,p5) = (Ra,d2,r2), (Rs3,03,p3) = (R3,d3,73).

Proof. Using computer algebra it is not difficult to prove that holds (2.18).
The proof that holds (2.19) is straightforward. O

Here is an example. Let Ry = 7, di = 2, r1 = 4.979113505. ...
Then

F7(1)(R1,d1,7"1) - 07 (RQ,dQ,?"Q) = (élvdAla/ﬁl)a (R37d3ar3) - (R276227722)7

R1 = 12.904674670..., &7 = 1.084878182..., p; =11.81097627...,
Ry =4.176948329 ..., 05 = 3.351729276..., p5=0.6874283825...,
Rs3 = 5.250893089 ..., d3 =2.666213111..., p3 = 2.544040464 ... .

It is not difficult to check that (2.18)—(2.19) is valid.

In the same way can be found that analogously holds for n = 9
and n = 11. (If odd n > 11 then the capacity of usual (standard)
computer is insufficient.) In short about the case when n = 11.

Let Fl(?(Ri,di,ri) =0,7=1,...,5, such that
(Ri, Czl,fz) = (Rgoi,dgoi,’l“Qoi), 1= 1, ey 5,

where 201 =2,202=4,204=3,203=06,205 = 1. (See later on
Definition 3.)
Let

(2.20a) 'RZQ = R; (Ri +ri+ /(R + Ti)z — d?) , 1=1,3,5,

(220b) /R’%l—i == Rl <Rl — T + (RZ - TZ')2 - d?) 5 1= 2,4.

(For brevity writing we here omit writing ¢; and p;, i = 1,3,5,2,4.)
Then

F(Ri6i,p) =0, i=1,3,5,
F2(211_i) (Ri1—is011—i, p11—i) =0, i =2,4.
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The other relations are analogical to those given for n = 7. (Cf. (2.20a)
and (2.20b) with (2.9) and (2.10).)

Now, before stating the following conjecture, we list some notation
which will be used. Let (R, ),dn k,7n i denotes a solution of Fuss’
relation F\F) (R, d,r) = 0. This solution, for brevity, will be often written
as (n, k). Let Rop k, don ks Tonk, if k is odd, be given by

(2.21a) R%n,k =Ry k(R + T + \/(Rnk + Tnk)? — di,k)v
(2.21b) 3 = Ry (Ruge + T — \/(Rn,k +rg)? = d2 ),
(2.21¢) 120k = Rop +1p)? — d2,

and let Roy, p—k, donn—ks Tonn—k, if k is even, be given by
(222) B = Rup(Bug— tnge+ /(B — n ) — &2 ),

(2.22D) d%n,n—k =Ry k(Rop — ok — \/(Rn,k - 7an,k)Q - di,k)?

(222¢) 3= (Rog — 1) — d2

It is easy to see that from (2.21) it follows

(2.23a) Ry, o+ doyy— 1o, =R+ di g — 10
(2.23b) Rop kdon i = Ry kdp i
and from (2.22) it follows
(223C) R%n,nfk + d%n,nfk - T%n,nfk - R121,k + d?L,k‘ - erL,k’
(223d) RQn,nfden,nfk = Rn,kdn,k'
Now from the above relations we get the following relations
(2236) R%n,n—k + d%n,n—k - T%n,n—k = R%n,k + d%nk - r%n.k
(223f) RQn,n—den,n—k = R?n,den,k

Also can be easily seen that
(223g) Ton,kT2nn—k = tartm,
where

(2.24) 3 = (Ruk + dnp)’ — 1ok = (Ronge + donge)” — 13,1

2 2
= (RQn,n—k: + dQn,n—k) ~ Toann—k>
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(2.25) 12, = (Rok — dn)” — 125 = (Ronge — don )’ — 151
= (Ronn—k — d2n,n—k)2 — Tgnvn_k.
Thus maximal and minimal tangent lengths ¢;; and ¢,, are the same
for each of the classes
(Rp s Ao k) s (Ron ks don ks Tonk) > (Ronn—ks donn—k» T2nn—k) -

Conjecture 3. Let n > 3 be a given integer and let (R, i, dp iy Tn k) be
a solution of Fuss’ relation Fflk)(R, d,r) =0. Then

F2(S) (RQRJC? dQn,kv TZn,k) = 0, lf k s Odd,

but

(n—k) , )
FQn (R2n,n—k7d2n,n—ka T?nm,—k) =0, ka 15 even.

This conjecture is easy to prove for the case when d = 0. The proof
is as follows.
Without loss of generality we can take R, ; = 1. Then

360k . 360k

Tk = COS tn = sin ——.
" on > 2n

Using formula (2.21) we have

360k

k
R%mk =2 <1 + cos o 360

), Ton.k = 1 + cos ,
’ 2n

from which it follows

360k
2 _ P2 2 a2
t2n,k‘ - RQn,k = Top k= S

or t2n,k = tn,lc-

Thus we have
ton k 360k
2.26 — =tan —.
( ) Ton k an 4n
Now using formulae (2.22) we get

360k 360k
R? =2(1-
Znn—k ( D™ on '

from which it follows that also t9, ,—r = tp%. Thus , in this case we
have

) ,  Topn—k = 1 —cos

ton.n—k 360k
2.27 : = cot .
( ) Tnn—k 4n

Here we use the following fact. If 0 < a < 90, then arctan a+arccot a =
90. Thus arctan % + arccot % = 90, from which it follows

360k  360(n — k)

n 4n

arccot
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Connecting this conjecture with Conjecture 2 we get analogical situ-
ation as in the considered cases when n =5,7,9,11. So,

(RZn,ka CzZn,ka 7A’2n,k) = (}?2%,71,7]{?7 CZQTL,TL*]C7 f2n,nfk) = (Rn,ka dn,ky Tn,k:)-
Here is an example. (Notation (n,d) will be used.) Let n = 5. Then

5.1 (5,2)
(10{1) (1_0,3)
\ \
(20,1) (20,9) (20,3) (20,7)
b o~ > ~N b = b ~
(40,1) (40,19) (40,9) (40,11) (40,3) (40,17) (40,7) (40,13)
and so on. and so on.

The arrow with symbol + denotes that relations (2.21) are used and
the arrow with symbol — denotes that relations (2.22) are used.

Now will be something more about partition and ordering of rotation
numbers.

Definition 1. Let S be the set given by (1.1) and let by o be denoted
binary relation on S defined as follows. Let x and y be any given element

from S. Then
xoy if and only if  f(x) =y.
For example, if n = 11 then 51 since f(5) = 1.

Definition 2. Let by ¢ be denoted binary relation of S defined as follows.
Let x and y be any given elements from S. Then

T oy
if and only if there are elements x1, ..., T, Tpr1 from S such that
TOTL, L10X2, - Tk QTk+1, Th+10Y-

For example, if n = 11 then 3 92 since 304, 403,305,501, 1p2.
From Corollary A.1 it is easy to see that x ¢y for each element y from
the coset C,., where C,, is the coset which contains the element . Thus
0 is an equivalence relation on S. This relation determines the same
partition of the set S as the function f.
It seems to be reasonably to investigate validity of the following con-
jectures(denoted by j1, jo, j3)-
j1) Let n > 7 be a prime number and let {Cy, ..., C,,} be partition of the
set {1,2,..., ”T_l} determined by function f. Let C; = {a1,as,...,a,}
be a coset of this partition such that

fla1) = ag, f(a2) = as, "'7f(a1)) =ai.
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Then
(2.28) n} (a%—l—a%%—'--—l—ag),
(2.29) n| ((a1a2)® + (azaz)® + -+ + (avar)?) .
Here let us remark that ordering a; — as — -+ — a, — a1

determined by function f is a necessary condition. So, if n = 11,
then

(1-2)2 4+ (24 +(4-3)2+(3-5)%+(5-1)2 =462 = 11 - 42,
but
(1-2)2+(2-3)*+(3-4)2 + (4-5)* + (5-1)* = 609,

and 609 is not divisible by 11.
j2) Let {1,a1,aq,...,a,} be a coset which contain integer 1 and

1—=a —ax— - —a,— 1
Then
either n‘ ((a1a2 e au)Q + 1) or n‘ ((a1a2 . au)2 _ 1) )

j3) Let C; = {aj1,ai2,...,ai}, @ = 1,...,k, be cosets obtained for a
prime n, where a;1 — a0 — - a; — a1, 1 =1,..., k. Then
n‘ ((a11a21)2 + (a12a22)2 +-+ (alua2v)2) )

n‘ ((a11a21a31)2 + (a12a22a32)2 +-+ (alva2va3v)2) )

and so on.

We have found that the above conjectures are true for many prime
numbers.
Here are some examples.

Exzample 1. Let n = 17. (See Example Al.) Then
17 (17 + 22 + 42+ 8%) 17] (3 + 6> +5° +7%)) ,
17] ((1-2)* + (2-4)* 4+ (4-8)* + (8- 1)%),

17/ ((3-6)* + (6-5)* + (5-7)* + (7-3)%)

17] ((1-3)2+(2-6)* 4+ (4-5)* + (8- 7)%) .
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Exzample 2. Let n = 31. (See Example A3.) Then

31 (12 + 22 + 4% + 82+ 15%), 31| (3% + 6% + 122 + 7% + 14?)),
31| (5% + 102 + 117 + 92 4 13%) ,

31 ((1-2)2+(2-4)% + (4-8)* + (8- 15)% + (15 - 1)),

31 ((3-6)% +(6-12)% + (12-7)% + (7 14)?) + (14 3)?),

31| ((5-10)% + (10 - 11)* + (11- 9)* + (9 - 13)*) + (13- 5)?)

31 ((1-3)*+(2-6)>+ (4-12)* + (8-7)* + (15 - 14)?),

31| ((3-5)2 4 (6-10)% + (12 11)? + (7-9)%) + (14 - 13)?),

31| ((1-5)*+ (2-10)* + (4- 11)* 4+ (8- 9)%) + (15 - 13)?)..

Ezxample 3. Let n = 19. Here is only one coset and it is valid

1-2—-4—-8—-+3—-6—-7T—5—-9—1,

(2.30) 19] (12 +2% + 42 + 87 + 32+ 6> + T2 + 52 + 97),
19 ((1-2)% 4+ (2-4)% + (4-8)* + (8-3)* + (3-6)?
(2.31) +(6-7)2+(7-5)+(5-9)% + (9-1)?).

Definition 3. Let on the set S be defined binary operation o in the
following way. Let a and b be any given element from S and let ab =
ng+r, where ¢ >0 and 0 <r <n. Then

-1

(2.32a) aob=rifr< n?’
-1
(2.32b) aob=n—7rifr> nT

For example, let n = 17. Then we have cosets {1, 2,4, 8} and {3,6, 5,7}
and it is valid
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ol 2 4 8 3 6 5 7
oll 2 4 8 111 2 4 8 3 6 5 7
111 2 4 8
9l2 4 8 1 212 4 8 1 6 5 7 3
414 8 1 2 414 8 1 2 5 7 3 6
818 1.2 4 8|8 12417365
o 3 6 5 7 ..........................
318 1 2 4 313 6 5 7 8 1 2 4
611 2 4 8
519 4 8 1 66 5 7 3 1 2 4 8
714 8 1 2 5|5 7 3 6 2 4 8 1
77 3 6 5 4 8 1 2

THEOREM 3. The binary operation o is commutative and associative.

Proof. Let a, b, c be any given element from S. The proof that aob = boa
follows from the equality ab = ba and Definition 3. The proof that
(aob)oc =ao(boc) follows from relations (for usual multiplication and
addition)

(ab)e = a(bc) =ng+r, ab=nq +r1, bc=ng+rs,
(ng1 +ri)c=nqg+r, alngs+ry) =nqg+r,

where ¢, q1, g2 are nonnegative integers and r,r1, o are positive integers
less than n. Namely, from these relations it follows

ric = arg(mod n),

that is, r1c = ngs + r3, ary = ngq + r3 where g3 and g4 are nonnegative
integers and 73 is a positive integer less than n. Thus
n—1
2 )
n—1
2

(aob)oc=ao(boc)=r3 if r3<

(aob)oc=ao(boc)=n—r3 if rz>

THEOREM 4. Let a and b be any given elements from S. Then
a — b if and only if b=2o0a.

Proof. If 2 0 a = 2a then by Definition A we have a — 2a. But if
20a>"T_1thena—>n—2a. O
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Corollary 4.1. Let a and b be any given elements from S such that
a —b.
Then for each element k from S it is valid
koa— kob.
Proof. By Theorem 4 and Theorem 3 it is valid
koa—2o(koa)=ko(20a)="Fkob.
O

Definition 4. Let n > 3 be an odd integer. Let C = {a1,az,...,a,}
be a coset obtained starting from n and using function f. Let k be any
given integer from the set S. Then the product k o C is given by

koC=A{koay,...,koay}.

THEOREM 5. Let (Cl = {al,ag, ey CLU} and (CQ = {bl, bg, PN ,bv}
be any given two cosets obtained starting from a prime number n > 5.
If Cq is the coset which contain integer 1, say, a1 = 1, then for each
t=1,...,v it is valid

a;o{ay,...,an} ={ai,...,ap},

bio{ai,...,apn} ={b1,...,by}.
Proof. By Definition 4 we have that

a;o{l,as,...,a,} = {aj,a;0a2,...,a;0a,}
and by Corollary 4.1 it is valid
a; —> Q; 0 a9 — -+ — A; O Ay.
From this, by properties of function f, it is clear that
a;o{l,ag,...,a,} = {a1,a9,...,a,}.

In the same way it can be concluded that the second assertion of
Theorem 5 also holds good. O

For example, let n = 31. Then we have cosets
(2.33)
Cy ={1,2,4,8,15}, Co = {3,6,12,7,14}, C3 = {5,10,11,9,13}

and it is valid
15041,2,4,8,15} = {1,2,4, 8,15},
30{1,2,4,8,15} = {3,6,12,7,14},
50{1,2,4,8,15} = {5,10,11,9,13}.
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Corollary 5.1. Let C; be coset which contains integer 1. Then (Cy, o)
is an Abelian group.

Definition 5. Letn and k be as in Definition 4. Let C; = {a1,ag,...,a,}
and Cy = {by,ba,...,b,} be any given cosets obtained starting from
prime n and using function f. Then product Cy o Cq is given by

CioCy={ajoby,...,a10by,...,a,0b1,...,a,0by,}.

For example, let n = 17. Then we have cosets C; = {1,2,4,8} and
Ce ={3,6,5,7} and it is valid

Here is one more example. Let n = 31. Then we have cosets given
by (2.33) and it is valid

o ‘ (Cl (CQ (Cg
C|C C C3
C|C C3 C
C3|Cs C Cq

THEOREM 6. Let n > 5 be an odd integer with property that each
coset obtained starting from n has the same number of elements. Let

Cy ={a1,...,ar}, Co={b1,...,b}
be any given cosets obtained starting from n and let
a; —>ag — - —>a, —»ay, by —by—---—b, — by
Then for each i =1,...,v we get the same coset
a; o {b1,ba,...,by}.

Proof. By Corollary 4.1 we can write

ajoby —ayoby — -+ —ajob,,

azo0b; —azoby — - = azob,,

ayoby = a,o0by — -+ — a, 0b,.

Now from the element aq o b1 in the first row and the element as o by in
the second row, since a; — ag, can be concluded that

a10b1—>a20b1.

From this, by properties of function f, it is clear that the coset which
refers to the first row is the same as the coset which refers to the second
row. In the same way can be concluded that the coset which refers to
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the second row is the same as the coset which refers to the third row.
And so on.
This proves Theorem 6. O

Now can be easily seen that the following corollary of Theorem 6 is
also true.

Corollary 6.1. Let n be as in Theorem 6 and let C,Cs,...,C,, be all
cosets obtained starting from this n. Then

({C1,Cy,...,Cp},0)

is an Abelian group.

Notice 3. We have calculated all cosets for each odd n, prime and not
prime, between 2 and 1000. For each prime integer we found that each
coset has the same number of elements. Also we found that the same
holds for each odd n between 2 and 1000 if from the set {1,2,..., "T_l}
are eliminated elements, which are not relatively prime to n. We believe
that every odd n has this property and that this can be proved. In
this connection, here, in short, concerning cosets whose elements are
not relatively prime to n.

Concerning elements which are not relatively prime to n we prove the
following theorem.

THEOREM 7. Letn > 3 be any given odd integer and let Q) be the set
given by

(2.34) Qz{x:xé{l,&...,
Let f1 : Q — Q be mapping given by
filz) =2z if 22 € Q, but fi(z) =n—2x if 2z & Q.

Then function f1 determines a partition of the set Q.

n—1

} and GCD(z,n) > 1}.

Proof. 1t is easy to see that
GCD(z,n) >1 = GCD(2z,n) > 1,
GCD(z,n) >1 = GCD(n —2z,n) > 1.

Let, for example, n = 63. Then we have cosets
Cy ={1,2,4,8,16,31} where 1 -2 -4 — 8 — 16 — 31 — 1,
Cy = {5,10,20,23,17,29} where 5 — 10 — 20 — 23 — 17 — 29 — 5,
Cs = {11,22,19,25,13,26} where 11 — 22 — 19 — 25 — 13 — 26 — 11,
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whose elements are relatively prime to 63 and the following cosets
Cy ={7,14,28} where 7 — 14 — 28 — 7,
Cs = {3,6,12,24,15,30} where 3 — 6 — 12 — 24 — 15 — 30 — 3,
Ce ={9,18,27} where 9 — 18 — 27 — 9,
Cy7 = {21} where 21 — 21,

whose elements are not relatively prime to 63.

THEOREM 8. Let n > 3 be any given odd integer and let T be the set

given by
n—1
T=<12,... .
{7 b b 2 }

Let fo : T — T be mapping such that

2 if 2¢ € T,
fa(x) = {n -2z if2x ¢ T.

Then fo determines a partition of the set T.

Proof. Tt follows from Theorem A.1 and Theorem 7 since

fo(x) = f(x) if x €8, fo(x) = fi(x) if x € Q.
O

Corollary 8.1. If partition of the set T determined by function fo has
only one coset then n is a prime number.

Of course, conversely is not always valid and the following conjecture
is strongly suggested.

ja) If the partition of the set T determined by function fo has the
property that each coset has the same number of elements then
n is a prime number. (Before we have state conjecture ji, jo,
Js-)
We have found that this conjecture is a true one for each odd n be-
tween 2 and 200.

THEOREM 9. Let n > 5 be any given prime number and let h be
given by
n—1
2
Let the partition of the set S determined by function f has only one
coset and let it be denoted by Cy. Then this coset can be written as
Cy = {1,2,22,...,2"1} and ordering of its elements is given by

h =

152522 5. 52t 590 where 20 = 1.
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Proof. The proof is easy and can be as follows. By Definition 3 we have

ok ook —oghtljrob+l < M1
oF L ohtlgpoktt 5 1
2
Thus in each case 28 — 281 since in the second case by Definition 3 we
have 281 = n — 2k+1, O

So, if n =11 then 1 — 2 — 22 — 23 — 2% — 25 since 2° = 3, 2¢ = 5,
20 = 1.

Corollary 9.1. If there is no integer j > 1 such that 2"7 =1 then we
get only one coset. But if there is an integer j > 1 such that 27 =1
then we get more then one coset.

For example, if n = 13 then there is no integer j > 1 such that
26/7 = 1. But if n = 17 then there is j = 2 such that 28/2 = 1.

Notice 4. 1t is easy to see that analogously holds for odd n which is not
a prime. So in this case, if by ¢ is denoted the number of elements from
the set {1,2,..., ”771} which are not relatively prime to n, then instead
of relations 2" = 1 and 2" = 1 we have relations

oh—a =1, o0h—d/i =1,

For example, if n = 9 then ¢ = 1 and 247! = 1 (since 20202 = 402 =
9—-8=1). If n =15 then ¢ = 3 and 2773 = 1. If n = 63, then ¢ = 13
and 7 = 3. In this case we have 2¥ =26 —1.

The end of the article we shall finish by establishing some groups
whose elements are certain classes of bicentric n-gons.

Using operation o given by (2.32) the following group concerning bi-
centric n-gons can be defined. For brevity writing and without loss of
generality we can take n = 17. Then coset which contain integer 1 is
given by C; = {1,2,4,8} where 1 -+ 2 — 4 — 8 — 1. Let (Ry,dy,71)
be a solution of Fuss’ relation Fl(;) =0 and let (R;,d;, ), i = 2,4,8 be
given by

where we used notation given by (1.9).
Thus, each of the triples (R;, d;,r;), ¢ = 2,4,8 is determined by triple
(Ri,d1,71). Let, for brevity, by T; be denoted triple (R;,d;,r;), i =
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1,2,4,8 and let in the set {T1,T5, Ty, Ts} be defined binary operation A
given by
Ty AT; =Ty, 1,5 = 1,2,4,8.

Then ({T1,T%, Ty, T3}, A) becomes a group isomorphic with the group
({1,2,4,8},0). The isomorphism is given by k — Ty, k = 1,2,4,8. This
property can be interesting since (R;,d;,7;), ¢ = 1,2,4,8, are classes of
bicentric 17-gons relevant to coset C;. The class determined by triple
(R;,d;, ;) has the property that

R;: radius of circumcircle of the class,
r;: radius of incircle of the class,
d;: distance between centers of circumcircle and incircle.

Also let us remark that this property is in some way connected with
Conjecture 2.

Concerning groups ({741, T», Ty, Ts}, A) and ({1, 2,4, 8}, 0) the follow-
ing group may also be interesting. Let (R1,d1,71) be a solution of Fuss’
relation Fi7(R,d,r) = 0 such that C{.(Ry,dy,r1) is a class of bicentric
17-gons whose rotation number is 1. Let t); and t,, be given by

(2.35) tm = \/(R1 +di)2 =7},  tm= \/(Rl —dy)? — 2.

As can be easily seen, tj; and t,, are maximal and minimal tangent
lengths of the class 0117(R1, dy,r1). Thus, for every length ¢; such that
tyy >t > ty, there is a bicentric 17-gon whose first tangent has the
length t;. Now let (RQ, do, T‘Q), (R4, dy, ’1“4) and (Rg, dsg, ’I“g) be such that
holds relation (1.9), that is

(R, dy,m2) = (Ry,d1,71), (Rs,ds,74) = (Ra, da, 72), (Rs, ds, 7s) = (R4, ds, 74

Then C¥ (Ry,dk, k), k = 2,4,8 are classes of bicentric 17-gons whose
rotation numbers are 2,4, 8. From relation (2.1) in Theorem 1 it follows
that also as in the case (2.35) we have

(2.36)

\/(Ri +d;)? —r? =ty and \/(R; — d;)? — r? = t,, for each i = 2,4,8.
From relations (2.35) and (2.36) it is clear that there are bicentric 17-
gons Pl PL PL PE such that first tangent in each of them has the
length ¢;. Using computer algebra we have found that for numerous
examples the following is valid. If ¢1,%s,...,t17 are tangent lengths of

the 17-gon P[. whose rotation number is 1, then tangent lengths of the
17-gon Plk7 whose rotation number is k € {2,4, 8}, is given by

(2.37) b1, 014k t12ky - - -5 L1416k
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It seems that this property can be proved using relation (1.9) and com-
puter with larger capacity. Something more in this connection will be
below concerning bicentric pentagons.

Here we restrict ourselves to the obvious fact that permutations

Pr = (t1, bk b2k, - - - tiviek), s B =1,2,4,8

form a group with respect to composition which is isomorphic with the
group ({1,2,4,8},0). (Cf. with Corollary 2.1.2 in [3]).

As can be seen the relation (1.9) has one of the key role in the present
article. Using this relation we shall now show that for bicentric pen-
tagons the following is valid.

Let (R1,d1,7r1) be a solution of Fuss’ relation F5(1)(R7 d,r) = 0 and
let (Rg,d2,72) be a solution of Fuss’ relation F5(2)(R, d,r) = 0 such
that (Rg,d2,19) = (Rl,dl,ﬁ). Let t; be any given length such that
ty >ty > ty,, where

t%w = (Rl + d1)2 — 7’%, t%n = (R1 — d1)2 — 7‘%.

(By Theorem 1 it is also valid t3, = (Ro+d2)? =73, 2, = (Re—d3)*—
r3.)

Let A;... A5 be a pentagon from the class Cél)(Rl, dy,r1) whose first
tangent has the length t;, and let By,..., Bs be a pentagon from the
class C’éQ)(Rg, da,r2) whose first tangent has also length ¢;. For brevity
writing we shall take t; = tp;. Let by t1,%s,...,t5 be denoted tangent
lengths of the pentagon A; ... As and by t1, fs, . . ., t5 be denoted tangent
lengths of the pentagon Bj ...Bs, where t; = t; = t);. Using formula
for calculation tangent lengths given by (1.15) in [5] we get the following
expressions

= f2 =2y

2 — R2+d2 M

~ (R% — d%)Z — 4R2d27“%
(R2 = d2)% + 4Rydyr? ™

3 =

- (p*q* + 2p*¢* — 3p* — 2p°¢* + 2p*¢* + ¢*)
p(plg* —2ptq® +p* + 2p*¢* + 2p*¢* — 3¢*)

M

~ 1%
t5 = StMy
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where
b = pBg® — Ap3eb + 6p8q% — ApBe® + P + ApSeB + 4pSeS — ApPe?
— 4p°q® — 10p*q® + 4p® + 6pq" + 4p*¢® — 4p*¢® + ¢°,
6 :p8q8 +4p8q6 o 10p8q4 +4p8q2 +p8 o 4p6q8 +4p6q6 _|_4p6q4
—4pBq® 4 6pt® — dpteS + 6piat — 4p2d® — 4p2eS + ¢°.

Replacing Ra, do 73 in the expressmns for tg, ts, t4, t5 by Rl, dl, 71,
respectively, we get to = t3, t3 = t5, t4 = to, t5 = t4, that is,

ti = ti4(i—1)2-

Here let us remark that the expresswns for t2, td, t4, ts are obtained
in the same way as the expressions for to, ts, t4, t5 only writing Ry, d;
rq instead of Ro, do, 75. Also let us remark that, for example, in the
proof that 4 = ty we get t4 — to = cFél)(Rl,dl,rl), where ¢ # 0 and
FY(Ry,dy,ri) = 0.

Here is an example. Let Ry = 7, di = 2, r1 = 4.789111662. ..
and Ro = 4.698157318.... ., do = 2979891701 ..., ro = 0.942351978. ...
Then t; = t1 =ty = 7.720000623 ... and

ty =tz = 1.705275004 . . ., t3 = t5 = 4.233333683.. . .,
ty =ty = 4.233333683 ..., ts =ty = 1.705275004 . . . .

In the same way can be found that analogously holds for n = 7 and
n =9. (For odd n > 9 needs computer with large capacity.)

APPENDIX

In order that the article be convenient for reading and useful in fur-
ther investigation, here is an appendix where for some odd n we state
partition and ordering.

1: Let n =3. Then S = {1} and 1 — 1 since f (35%) — 1.

2: Let n=>5. Then S={1,2} and 1 -2 — 1.

3: Let n="7. Then S={1,2,3} and 1 -2 — 3 — 1.

4: Let n =9. Then S = {1,2,4} and 1 - 2 — 4 — 1. Since Q = {3}
we have 3 — 3.

5: Let n=11. Then S={1,...,5}and1 -2 -4 —-3—5— 1.
6: Let n=13. Then S={1,...,6}and1 -2 —-4—-5—-3—6— 1.
7: Let n = 15. Then S = {1,2,4,7} and 1 -+ 2 — 4 — 7 — 1. Since

Q={3,5,6} we have 3 - 6 — 3 and 5 — 5.
8 Let n=17. Then1 -2 4 —-8 —+1land3—>6 —5—7— 3.
9: Letn=19. Then1 -2 —+4—-8—+3—>6—7—5—9— 1.
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10: Let n = 21. Then S = {1,2,4,5,8,10} and Q = {3,6,7,9} and we
havel 42 —>4—-8—=>5—->10—1, 3—=6—9—3.

11: Let n=23. Thenl1 -2 -4 —-8—-7—-9—-5—-10—-3 =6 —
11 — 1.

12: Let n = 25. Then S = {1,2,3,4,6,7,8,9,11,12} and Q = {5,10}
and we have 1 -2 -4 -8 -9 —->7—=11 -3 =6 — 12 — 1,
and 5 — 10 — 5.

13: Let n =27. Then S = {1,2,4,5,7,8,10,11,13} and Q = {3,6,9, 12}
and we have 1 -2 >4 —-8 =11 —-5—->10—->7— 13 — 1,
3—6—12—3, 9— 9since 252 =9.

14: Let n=29. Thenl1 -2 —+4—-8—-13—-3—>6—>12—>5— 10—
9—-11—-7—14 — 1.

15: Let n = 31. See Example A.3.

16: The case when n = 22° + 1 where k = 1,2,3,..., can be interesting
in itself.
If k=1 then n =5 and we have cosset C; = {1, 2}.
If k = 2 then n = 17 and we have cosets C; = {1,2,4,8} and
Cy ={3,6,5,7}.
If kK = 3 then n = 257 and we have cosets
Cy1 =1{1,2,4,8,16, 32,64, 128},
Cy ={3,6,12,24,48,96, 65,127},
Cs = {5, 10, 20, 40, 80,97,63,126},
Cy ={7,14,28,56,112,33,66, 125},
Cs = {9,18,36,72,113,31,62, 124, },
Ce = {11,22,44,88,81,95,67,123},
Cy ={13,26,52,104,49, 98,61, 122},
Cs = {15, 30,60, 120, 17,34,68,121},
Cy = {19, 38,76,105,47,94,69,119},
Cio = {21,42,84,89,79,99, 59, 118},
Cy11 ={23,46,92,73,111,35,70,117},
Cq2 = {25,50,100,57,114,29,58,116},
Cy13 ={27,54,108,41,82,93,71,115},
Ci14 = {29,58,116, 75,50, 100,57, 114},
Cy5 = {37,74,109, 39, 78,101, 55,110},
Cy6 = {43, 86,85,87,83,91, 75,107},
where we write C; = {a;1,a;2,...,a;8}, it =1,...,16, if

;1 — A2 —> - —» A8 — Q41
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It seems that for n = 22" + 1, where kK = 1,2,3,..., there are
92°~k=1 clagses and that each class has 2F elements. Thus, by Corol-

lary 9.1, we have the equality 2"7 = 1, where j = 22h—k-1,

Also it seems that in the case when n = 22" + 1 can be proved
before the stated conjectures (denoted by ji, jo, j3)-

The possibility of construction polygons whose rotation numbers
are from the class C; (which contain integer 1) deserve to be investi-
gated in connection with the ordering in this class.

Generally, can be said that it remains much more for investigation
about partition and ordering in connection with bicentric polygons.
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