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Original scientific paper 
The paper presents an analytical and simulation approach for the selection of activation 

functions for the class of neural network controllers for ship’s thermogenerator angular 
velocity stabilization system. Such systems can be found in many ships. A Lyapunov-like 
stability analysis is performed in order to obtain a weight update law. A number of 
simulations were performed to find the best activation function using integral error criteria 
and statistical T-tests.  
 Keywords: activation function, adaptive neural network, tracking problem 
 
 Adaptivni regulator s neuronskim mrežama 
 za stabilizaciju kutne brzine termogeneratora 
 

 Izvorni znanstveni rad 
 U ovom članku opisan je analitičko-simulacijski pristup izboru aktivacijskih funkcija 
za klasu regulatora s neuronskim mrežama koji služe za praćenje referentne vrijednosti kutne 
brzine kod turbogeneratora. Kako bi se odredilo pravilo kojim će se obnavljati težine matrica 
tj. obavljati učenje mreže, potrebno je bilo provesti analizu Ljapunove stabilnosti. Provedeno 
je mnogo simulacija uz različite aktivacijske funkcije, a najbolja aktivacijska funkcija 
određena je pomoću integralnih kriterija, te statističkoga T-testa.  
 Ključne riječi: adaptivna neuronska mreža, aktivacijska funkcija, problem praćenja 
 
 
1 Introduction 
 

 The paper presents a novel procedure for designing adaptive neural network (ANN) 
controller for ship’s thermogenerator angular velocity stabilization system. All of 
thermogenerator system parameters can change in practice, thus the need for adaptive control. 
If all parameters change it is hard to use conventional adaptive control methods that identify 
process parameters. Instead, we use ANN that due to universal approximation property 
identifies the whole process under control rather than process parameters. The use of ANN is 
illustrated on a simplified angular velocity stabilization system for thermogenerator.  
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 Other non-adaptive methods for thermogenerator angular velocity stabilization system 
([1], [2] and many others) are presented. There are also neural network (NN) control 
algorithms which show satisfactory performance for similar systems, but they require off-line 
training, which often cannot be done on real systems ([3], [4], [5] and others). The off-line 
training problem will be removed by adaptive neural network.  

 Adaptive neural network given here does not require a priori training, but is capable of 
on-line training [6]. The controller described here represents an advanced and performance-
enhanced version of NN control scheme given in [7]. A numbers of simulations were 
performed to find the best activation function which is chosen using integral error criteria and 
statistical T-tests as described in [8].  

 The paper is organized as follows. Mathematical preliminaries are given in Section 2. 
It is followed by background on neural networks in Section 3. Section 4 presents a simplified 
model of ship’s thermogenerator angular velocity system, and Section 5 describes the neural 
network control scheme. Section 6 provides an example of simulation-based design. Finally, 
conclusions are given in Section 7. 

 
2 Mathematical preliminaries 

 
 Let R be the real numbers, Rn the real n vectors and Rmxn the real mxn matrices. For a 

matrix [ ]ijaA = , nxmRA∈ , the Frobenius norm is defined as  

∑==
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,
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where tr() is trace operation. The associated inner product is )(, BAtrBA T
F
= . The 

Frobenius norm is denoted by •  throughout this paper, unless otherwise specified. The trace 

of matrix [ ]ijaA =  satisfies . For any mxn or nxm matrix C, we have 
.  

)()( TAtrAtr =
)()( CBtrBCtr =

To prove stability we used proposition which states that a system is uniformly ultimately 
bounded (UUB) if it has a Lyapunov function whose time derivation is negative in an annulus 
of certain width around the origin [9]. 

  
3 Neural network structure 
 

 A mathematical model of an NN ([6]) is shown in Figure 1. This NN has two layers of 
adjustable weights and is known as a two layer NN. The values xk are the NN inputs and ym its 
outputs. Function σ(.) is a nonlinear activation function contained in the hidden layer of the 
NN. The hidden-layer weights are vjk and the output-layer weights are wij. The hidden-layer 
thresholds are θvj and the output-layer thresholds are θwi. The number of hidden-layer neurons 
is L.  
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Figure 1 Two-layer neural network 
Slika 1 Dvoslojna neuronska mreža 

 
Net output is given by  
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where the output vector is . Due to the fact that the thresholds appear as 
the first columns of the weights matrices, we must define the input vector augmented by „1“ 
as . Also, the σ(.) is the augmented hidden-layer function vector, 

defined for a vector  as 

[ T
myyyy L21= ]

][ T
nxxxx K211=

[ ]TLwwww L21= [ ]TLww )()(1 1 σσσ L= .   
The main property of NNs we are concerned with for control is the function 

approximation property. Let f(x) be smooth function from Rn→Rm. Then it can be shown that 
if the activation functions are suitably selected, as long as x is restricted to a compact set 

, then for some sufficiently large number of hidden-layer neurons L, there exist 
weights and thresholds such as  

 nRS ∈

)()()( xxVWxf TT εσ +=       (5) 
The value of )(xε is called the neural network functional approximation error and we can 
always find a number Nε  such that Nx εε ≤)( for all  Sx∈ . 
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The computing power of the NN comes from the facts that the activation functions are 
nonlinear and that weight matrices (W and V) can be tuned through some learning procedure.  

 It has been shown that if the first-layer weights V are fixed, then the approximation 
property can be satisfied by tuning the output weights W. If we use this property, NN output 
becomes . For this to occur must be a basis )(xWy Tφ= )()( xVx Tσφ = [6].  

 For the activation functions, it is common to use the Gaussian activation function, 
sigmoidal functions and hyperbolic tangents.  

 
4 Angular velocity system for thermogenerator 
 

A model of angular velocity system is shown in the figure below. 

 
 
Figure 2 Model of angular velocity system 
Slika 2 Matematički model sustava kutne brzine 

 
 The transfer functions are given as: 
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where  is valve positioning servomotor,  and  are turbines and  is stabilization 
feedback of the valve positioning servomotor. Model input is angular velocity reference 
value.  

3W 4W 5W 6W

 This system is linear and the need for adaptive control or use of the function 
approximation property of the neural network is not obvious. Because all the system 
parameters can and do change during the operation, it is understandable that adaptive control 
scheme would perform better than non-adaptive control.  

The system shown in Figure 2 can be written in state-space form as 
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where yp is the output from the valve positioning servomotor and yt is the output from the first 
turbine.  
 
5 Adaptive neural network control 
 
  We use the neural network shown in Figure 1. If the first layer weights are initialized 
randomly and then fixed to form a basis )(xρ , the NN output (2) becomes  

)(xWy T ρ=       (12) 
 In the system we have a reference value so here we have to solve a tracking problem. 
It is assumed that a reference input is bounded and that this will be true as long as this system 
is in normal mode of operation. In Figure 3 an NN control scheme is presented.  
 

Figure 3 NN control scheme 
Slika 3 NN upravljački model 
 
Control signal is given by  

)(xWkeu T ρ+=      (13) 
where , and the weights updates are provided by  wwe R −=

FWxkwxFW w−= )(ρ&     (14) 
with F any symmetric and positive definite matrix and kw positive design parameter. Weight 
matrix W and vector x are ultimately uniformly bounded (UUB) and the system will be stable 
in Lyapunov sense as long as  
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where . Terms D, P and Q are defined in subsequent stability proof. [ T
TP wyyex = ]

 
Proof follows: 

First we can rewrite state-space form by introducing (13) into (10) 
)(xBWBkwBCkxAxx T

R ρ++−=&      (17) 
Then the following substitutions are introduced: RR Bkwd = , BCkdK = and KdAA −=′ . 
Equation (17) now becomes: 

)(xBWdxAx T
R ρ++′=&       (18) 

Now we have to define the Lyapunov candidate:  

WFWPxxL TT 1

2
1

2
1 −+=      (19) 

with P a diagonal and positive definite matrix. In this design W is a vector because we have 
only one output. The Lyapunov derivate is:  
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By introducing (18) into (20) we obtain 
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The third term in (22) is a well known Lyapunov function for linear system 
( ) and after introducing (14) into (22) equation becomes APPAQ T ′+′=−
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 Let us define ))1()(max( += PBxD ρ . Activation functions are bounded so we can 

replace )(xρ with )(xρ . Also, we can define )(min Qσ  as the minimum singular value of 
matrix Q and )(max Pσ  as the maximum singular value of matrix P. After introducing norms 
we obtain:  
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We can rewrite that equation as  
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 The Lyapunov derivative is negative as long as the term in parentheses in (26) is 
positive. The term in parentheses is positive as long as (15) and (16) hold, thus the system is 
UUB. 

  6



 
6 Simulation based design example 
 

 Simulations to determine the best activation function were performed with the 
following parameters and signals: 

, , , , ,23 =k 8.04 =k 15 =k 4.06 =k sT 53 = sT 3.04 = , )008.0(diagF = , ,
. Weight matrix V is initialized as random numbers between -0.6 and 0.6 

divided by 4 and weight matrix W is initialized as random numbers between -0.6 and 0.6. 
Number of hidden layers is 6 

2.9=wk
putwR )1.0sin(1.0=

[8]. Now we can tell that matrix )(xρ has dimensions 7x1. 
Simulations were performed for given (original) plant parameters as well as for the plant 
parameters increased and decreased by 10%. Simulation time was 1000s. Recorded 
performance indices were Integral of Absolute Error (IAE) 

dtteJ IAE ∫
∞

=
0

)(      (27) 

and Integral of Squared Error (ISE) 
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2)(      (28) 

 Because the weight matrices were initialized randomly, it was necessary to perform a 
number of simulations in order to obtain samples with different IAE and ISE values that allow 
us to compare the mean values and choose the best candidate. We performed fifty simulations 
for every activation function and for every set of parameters. For activation functions we used 
Gaussian, tangent hyperbolic and sigmoid activation functions.  
These activation functions are defined as follows, respectively  
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 Resulting ISE and IAE mean values for different activation functions are given in 
Table 1, Table 2 and Table 3.  
 
Table 1 Mean values of ISE and IAE with original parameters 
Tablica 1 Srednje vrijednosti IAE i ISE kriterija za originalne parametre 

 ISE IAE 
Gauss 0.10828 7.07312 
Sigm 0.02505 3.68759 
Tanh 0.01839 3.20787 

 
Table 2 Mean values of ISE and IAE with decreased parameters 
Tablica 2 Srednje vrijednosti IAE i ISE kriterija za smanjene parametre 

 ISE IAE 
Gauss 0.08254 6.26309 
Sigm 0.02618 3.80704 
Tanh 0.02047 3.39294 

 
Table 3 Mean values of ISE and IAE with increased parameters 
Tablica 3 Srednje vrijednosti IAE i ISE kriterija za povećane parametre 

 ISE IAE 
Gauss 0.19128 9.65296 
Sigm 0.02413 3.58270 
Tanh 0.01696 3.05489 
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 From tables above we can see that NN with tangent hyperbolic activation functions 
shows the best results, but we have to see if differences are statistically significant.  

 First we will check the distribution of recorded IAE and ISE simulation results for all 
activation functions. Normal probability plots are given in Figure 4 to Figure 9. 

 
Figure 4 Normal probability plot for IAE and original parameters 
Slika 4 Normalna razdioba IAE kriterija uz originalne parametre 
 

 
Figure 5 Normal probability plot for ISE and original parameters 
Slika 5 Normalna razdioba ISE kriterija uz originalne parametre 
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Figure 6 Normal probability plot for IAE and decreased parameters 
Slika 6 Normalna razdioba IAE kriterija uz smanjene parametre 
 

 
Figure 7 Normal probability plot for IAE and decreased parameters 
Slika 7 Normalna razdioba ISE kriterija uz smanjene parametre 
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Figure 8 Normal probability plot for IAE and increased parameters 
Slika 8 Normalna razdioba ISE kriterija uz povećane parametre 

 
Figure 9 Normal probability plot for IAE and increased parameters 
Slika 9 Normalna razdioba ISE kriterija uz povećane parameter 

 
From Figure 4  to  Figure 9 we can see that distributions are normal, so now we can 

compare samples by standard T test for hypothesis testing, with H0 hypothesis stating that the 
means are the same and H1 hypothesis stating that one mean is smaller than the other. This 
test is performed with 0.025 level of significance.  

T test results are given in Table 4, Table 5 and Table 6. Subscripts assigned to the criteria 
name show activation function for obtained mean value of integral error.  

 
Table 4 T test results for IAE and ISE and original parameters 
Tablica 4 T test rezultati  za ISE I IAE kriterij uz originalne parametre 

 Test P-value T-value 
IAEtanh<IAEsgm yes 2.20498e-059 -36.71284 
IAEsgm<IAEgss yes 3.62346e-034 -18.57106 
ISEtanh<ISEsgm yes 2.71357e-042 -23.45751 
ISEsgm<ISEgss yes 1.63668e-026 -14.54235 
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Table 5 T test results for IAE and ISE and decreased parameters 
Tablica 5 T test rezultati za ISE I IAE kriterij uz smanjene parametre 

 Test P-value T-value 
IAEtanh<IAEsgm yes 1.03131e-068 -46.91115 
IAEsgm<IAEgss yes 1.29194e-044 -24.99742 
ISEtanh<ISEsgm yes 6.26923e-055 -32.78719 
ISEsgm<ISEgss yes 3.14151e-034 -18.60571 

 
Table 6 T test results for IAE and ISE and increased parameters 
Tablica 6 T test rezultati  za ISE I IAE kriterij uz povećane parametre 

 Test P-value T-value 
IAEtanh<IAEsgm yes 2.93560e-043 -24.08945 
IAEsgm<IAEgss yes 2.09944e-043 -24.18575 
ISEtanh<ISEsgm yes 9.03157e-030 -16.20051 
ISEsgm<ISEgss yes 6.89979e-037 -20.12731 

 
If we look at Table 4 toTable 6 we can see that all results are statistically significant and 

now we can say that NN control with the tangent hyperbolic activation function gives the best 
results in control since it gives the smallest integral errors.  

 Simulation responses for putwR )001.0sin(1.0=  are given in Figures 10 to 12. It can be 
seen that the system is stable in all cases. 
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Figure 10 Error plot for nominal parameters 
Slika 10 Greška za nazivne parametre 
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Figure 11 Error plot for 10% decreased parameters 
Slika 11 Greška za 10% smanjene parametre 
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Figure 12 Error plot for 10% increased parameters 
Slika 12 Greška za 10% povećane parametre 
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7 Conclusion 
 

 The paper presents a practical approach to neural network design for angular velocity 
system for thermogenerator. First, neural network with fixed randomly chosen weights of the 
first layer is defined. Then a Lyapunov-like stability analysis was performed in order to find 
the weights update law. The simulation procedure for the selection of the number of nodes 
and other activation functions is given. 

Described procedure can be easily carried out using a digital computer and can be applied 
for any kind of system with similar dynamics. Resulting control law is always stable and 
ensures good reference tracking. 
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