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Soft sensors for the on-line estimation of kerosene 95 % distillation end point (D95)
in crude distillation unit (CDU) are developed. Experimental data are acquired from the
refinery distributed control system (DCS) and include on-line available continuously
measured variables and laboratory data which are consistently sampled four times a day.
Additional laboratory data of kerosene D95 for the model identification are generated by
Multivariate Adaptive Regression Splines (MARSplines).

Soft sensors are developed using different linear and nonlinear identification methods.
Among the variety of dynamic models, the best results are achieved with Box Jenkins
(BJ), Output Error (OE) and Hammerstein–Wiener (HW) model. Developed models were
evaluated based on the Final Prediction Error (FPE), Root Mean Square Error (RMSE),
mean Absolute Error (AE) and FIT coefficients. The best results for diagnostic purposes
show BJ model. For continuous estimation of D95, OE and HW models can be used.
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Introduction

Strict product quality requirements and pollutant
emission standards impose the need for effective
measurement and process control in industrial plants.
Therefore, a large number of process variables need
to be monitored using appropriate measuring de-
vices. The main problems are expensive analyzers
and unreliability of on-line instrumentation.

Soft sensors are focused on assessing system
state variables and product quality, thus replacing
physical sensors and laboratory analysis. Application
of soft sensors for estimating non-available or
hard-to-measure process variables is very interesting
in the process industry. Usually, there are a large num-
ber of continuously measured values, and these may
serve as input signals for the soft sensor.1 They can
work in parallel with real sensors, analyzers, measur-
ing devices, allowing fault detection schemes devoted
to the sensor’s status analysis to be implemented.2–3

Furthermore, they can take the place of sensors which
are down for maintenance, in order to keep control
loops working properly and guarantee product specifi-
cation without undertaking conservative production
policies, which are usually very expensive.

Different model structures can be used to
model real systems. In the field of industrial appli-
cations, the focus is on parametric (polynomial)
structures in both linear and nonlinear versions.4 In

the last decade, soft sensor applications for the dis-
tillation unit product properties have been studied
extensively.5–13 In most industrial applications, the
soft sensor design procedure based on data-driven
approaches follows the sequence of the stages
shown in Fig. 1.
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Model development

Since the development of dynamic models de-
mands an equal number of input and output data,
additional output data were generated by Multi-
variate Adaptive Regression Splines algorithm
(MARSpline). MARSplines algorithm operates as
multiple piecewise linear regression, where each
breakpoint estimated from the data defines the “re-
gion of application” for a particular (very simple)
linear equation.14 The MARSplines algorithm
builds models from two-sided truncated functions
(basis functions) of the predictors (x) with the fol-
lowing form:
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The MARSplines for a dependent variable y,
and M terms, can be summarized as:
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where x is the predictor in the k�th of the m�th prod-
uct. For order of interactions K=1 the model is ad-
ditive, and for K=2 the model pairwise interactive.

Linear model identification

A frequently used model for the on-line estima-
tion is the OE model:
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q is time-shift operator; �( )y k is a model output at
time k, u(k) is an input at time k and i is the number
of model inputs.

where:
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is polynomial matrix over q–1, Bi is the matrix of di-
mensions n( �y)*n( �y), b are the polynomial coeffi-
cients of polynomial matrix Bi(q), nb is the number
of past input samples, and nk is input delay ex-
pressed by the number of samples,
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Fi is the matrix of dimensions n( �y) · n(u), f are
the polynomial coefficients of polynomial matrix
Bi(q), nf is the number of past model output sam-
ples.

In order to obtain a BJ model that can describe
the disturbance properties, the OE model can be ex-
panded with a parametric disturbance matrix:
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Ci is matrix with dimensions n(y)*n(�), c are
the polynomial coefficients of polynomial matrix
Ci(q), nc is the number of past prediction error,
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is polynomial matrix over q–1;

Di is matrix with dimensions n( �y)*n(es), d are

the polynomial coefficients of polynomial matrix
Di(q), nd is the number of past simulated prediction
errors.

Nonlinear model identification

While the linear model structure is fully de-
fined by the chosen regressors, the nonlinear model
structure additionally depends on nonlinear func-
tion characteristics.

It is quite a common situation that, while the
dynamics itself can be well described by a linear
system, there are static nonlinearities at the input
and/or output. A model with a static nonlinearity at
the input is called a Hammerstein model, whereas a
model with output nonlinearity is a Wiener model.13

The block diagram in Fig. 2 represents the structure
of a Hammerstein-Wiener model.

w(k) = f(u(k)), is a nonlinear function trans-
forming input data u(k). w(k) has the same dimen-
sion as u(k).

x(k) = (Bi(q)/Fi(q))w(k) is a linear transfer
function, where Bi and Fi are polynomial matrices
of the linear Output-Error model. x(k) has the same
dimension as y(k).

y(k) = h(x(k)) is a nonlinear function that maps
the output data x(k) of the linear block to the system
output. w(k) i x(k) are internal variables that define
the input and output of the linear block, respec-
tively.

Nonlinearity of the HW model is described by
static neural network:
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F i g . 2 – Structure of the Hammerstein-Wiener model



The network is described with sigmoid func-
tion:

�( )s
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where  is scalar, � is a raw vector such that �(x – �)
is a scalar, and n is the number of nonlinear units.15

The model structure selection step is strongly
influenced by the purpose of the soft sensor design.
Optimal model structure parameters were deter-
mined by optimization methods: Gauss-Newton,
adaptive Gauss Newton, Levenberg Marquardt, gra-
dient Search and partial least squares method.

OE and HW models do not require past sam-
ples of measured output (variable inferred by the
soft sensor) when using validation data i.e. they de-
pend only on previous measured inputs and previ-
ous model output.

The models were evaluated based on RMSE,
AE, FIT and FPE values15 defined by:
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where y is the measured output, �y is the simulated
or predicted model output, and y is the mean of y.
100 % corresponds to a perfect fit, and 0 % indi-
cates that the fit is no better than guessing the out-
put to be a constant ( �y y� ).

Akaike’s Final Prediction Error (FPE) criterion
provides a measure of model quality by simulating
the situation where the model is tested on an esti-
mation set and independent validation set. Accord-
ing to Akaike’s theory, the most accurate model has
the smallest FPE.13,15

Akaike’s Final Prediction Error (FPE) is de-
fined by the following equation:
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where V is the loss function, d is the number of esti-
mated parameters, and N is the number of values in
the estimation data set.

The loss function V is defined by the following
equation:
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where �N represents the estimated parameters and �
is output model error

Process description

Since the CDU is the first unit in the sequence
of refinery processing, it is essential that the quality
of fractionation products (unstabilized naphtha,
heavy naphtha, kerosene, light gas oil, heavy gas
oil, atmospheric residue), be monitored and con-
trolled. This requires that many properties should
be measured online so that the unit can be effec-
tively controlled through a feedback mechanism.12

Heavy naphtha, petroleum, and light gas oil frac-
tions are further used for blending of diesel fuel.
These are being drained away as side fractions of
the crude distillation column. Thereby, a very im-
portant product property to continuously measure
and maintain is kerosene 95 % distillation point
(D95).16 Naphtha distillation properties are deter-
mined in the course of laboratory assays. Labora-
tory analyses are obtained by an automated distilla-
tion analyzer, which determines boiling range char-
acteristics of various petroleum products at atmo-
spheric pressure under appropriate conditions,
based on the EN ISO 3405 standard (Petroleum
products – Determination of distillation characteris-
tics at atmospheric pressure). The end distillation
point or final boiling point is defined as the maxi-
mum thermometer reading obtained during the test.
However, because a fuel’s end point is difficult to
measure with good repeatability, the fuel’s 95 %
distillation point (D95) is commonly used. D95
must be maintained because very low values for
D95 imply a shift to kerosene-oriented diesel fuels.
This can decrease engine efficiency as well as in-
crease maintenance requirements. Higher values for
D95 can indicate very sloppy distillation operations
and/or spiking with inappropriate components.
Higher values can also increase soot going to the
emissions control systems or into the atmosphere,
and can increase maintenance requirements.

The section of the column with diesel fuel
product and variables used for the estimation are
given in Fig. 3.

Based on Pearson’s correlation coefficients
(R), PLS analysis and process expert experiences,
the following variables have been chosen as the in-
fluence variables on distillation end point:

– column top temperature – (TTOP), TR-6104;

– kerosene temperature – 23rd tray (TK), TR-6197;
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– light gas oil temperature – 19th tray (TLGO),
TR-6198;

– heavy gas oil temperature –14th tray
(THGO),TR-6199;

– pumparound temperature – (TPA), TR-6103
and

– pumparound flow rate – (FPA), FI-6130.

Results and discussion

Data from the real plant were obtained in the
period of ten months in a way to involve different
process regimes, and therefore different quality re-
quirements for diesel fuel. Diesel fuel samples were
collected equidistantly four times a day from the
plant and kerosene 95 % distillation point (D95)
were determined.

The number of each input data (sampled every
5 minutes) must correspond to the number of output
data, thus requiring additional output data. This was
generated by the multivariate adaptive regression
splines algorithm (MARSpline). Figs. 4 and 5 show
trends of input kerosene temperature variable TK,
measured and splined output variables. It could be
observed that changes in input obviously impacted
the MARSpline output response, which approves
using the MARSpline technique for generating the
additional output data.

Data preprocessing was performed prior to
model development. According to Shannon’s sam-
pling theorem, the chosen sampling time was 5
minutes. The extreme values were removed from
the data using the “three sigma” rule. 17 Also, mean
values and trends were removed from input data.
Data filtering were also performed.14 From the cho-
sen model inputs (TTOP , TK , TLGO, THGO , TPA and
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F i g . 3 – Crude distillation column section



FPA), the variables with the greatest influence on
D95 are the temperature of light gas oil, heavy gas
oil, kerosene temperature, the pumparound temper-
ature and flow.

Further, the important inputs were chosen
based on PLS and Pearson correlation analysis as
shown in Table 1. If the variables are mutually in-
dependent, then the correlation coefficient equals
zero or close to zero, and if they are dependent, the

correlation coefficient ranges from –1 to 1. A posi-
tive correlation between variables indicates that the
variables are directly proportioned, and vice-versa.
For the input selection, the threshold value for the
correlation coefficients was set to 0.2.

The PLS analysis is shown in Table 2. The
measure of importance of variables is given by its
modeling power. A variable with a modeling power
equal to one is completely relevant for building the
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F i g . 4 – The plot of kerosene temperature

F i g . 5 – Comparison of laboratory assays and splined output data

T a b l e 1 – Correlation analysis

D95

FUK –0,1432

TVRH –0,4128

TTB –0,0279

TK 0,6282

TLPU 0,5115

TTPU 0,2641

TGMR 0,3409

FGMR –0,4979

D95 1,0000

T a b l e 2 – PLS analysis

Number of components is 2 in PLS model

variables power importance

TTPU 0,778448 1

TK 0,590544 2

TLPU 0,445702 3

TGMR 0,400394 4

FGMR 0,385990 5

TVRH 0,334384 6

FUK 0,113363 7

TTB 0,052389 8



PLS model. Variables with modeling power close to
the “number of components” divided by the “num-
ber of variables” are regarded to be less or non-sig-
nificant, like FUK and TTB.

Real plant data were divided into two sets. The
first 70 % of data were chosen for modeling (esti-
mation), while the remaining 30 % of independent
data were chosen for validation purposes. Initially,
more than ten types of models have been devel-
oped. The linear models developed in the prelimi-
nary investigation included: Finite Impulse Re-
sponse models (FIR), AutoRegressive model with
eXogenous inputs (ARX), AutoRegressive Moving
Average with eXogenous inputs (ARMAX), BJ,
OE, state space models etc. Nonlinear models in-
cluded: nonlinear FIR, nonlinear ARX and HW
models with piecewise linear, sigmoid, wavenet,
and other types of networks.

From a variety of developed models, the best
results achieved are shown in Table 2. The optimal
structure of the BJ model comprises 2 past samples
of each 6 inputs, 2 past samples of model prediction
errors, 2 past samples of simulated model predic-
tion errors, 1 past sample of model prediction out-
put and input time delay of 5 minutes, as shown in
Table 1. The model shows very high FIT coefficient
and very low RMS, FPE and AE from the experi-
mental data. The average absolute deviation of the
laboratory-determined distillation end point temper-
ature is around 1.5°C, which is approximately in
the range of measurement uncertainty. This kind of
model can be used for advanced process control
and fault detection when the measured output val-
ues are available. Fig. 4 shows good correspon-
dence between measured and predicted outputs on
the validation set.

The optimal structure of the OE model consists
of 2 past samples for each of the 6 inputs with 5
minutes time delay each, 6 past samples of model
prediction as shown in Table 1. The OE model
shows high FIT coefficient and low RMS, FPE and
absolute deviation from experimental data. Dy-
namic response, shown in Fig. 5, exhibits very
good correspondence of measured and prediction
data on the validation set.

The Hammerstein-Wiener model consists of lin-
ear dynamic block and two nonlinear static blocks,
i.e. input and output static nonlinearities. Parameters
of nonlinear HW model nb, nf, nk and the number of
nonlinear units (n) are shown in Table 1.

Linear block in the model is a matrix of the
transfer functions containing 2 past samples for
each of the 6 inputs with 5 minutes time delay each,
and 3 past samples of model prediction. Static
nonlinearities of all 6 inputs are presented with sig-
moid network containing 10 units. The HW model
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T a b l e 3 – Model description

Parameters BJ OE HW

na – – –

nb 2 2 2

nk, min 5 5 5

nc 2 – –

nd 2 – –

nf 1 6 3

n – – 10

T a b l e 4 – Model comparison

Parameters BJ OE HW

V 1,59 6,06 4,85

FPE 1,59 6,06 4,97

FIT, % 93,51 83,50 81,07

RMS, °C 1,48 2,33 2,74

AE, °C 0,89 1,81 2,15

F i g . 6 –– Comparison between measured and predicted out-
puts on validation set for BJ model

F i g . 7 –– Comparison between measured and predicted out-
puts on validation set for OE model



shows satisfactory FIT coefficient and acceptable
RMS, FPE and AE. The dynamic response in Fig. 6
shows a satisfactory match between measured
and prediction data on the validation set. The OE
and HW models do not use past outputs for predic-
tion, so they can be used for D95 continuous esti-
mation.

Conclusion

Based on continuous temperature and flow
measurements of adequate process streams, the dy-
namic soft sensor models for the estimation of 95 %
distillation end point were developed. Data was col-
lected from DCS and laboratory assays. Because of
the rare laboratory output data, the MARSpline
generation method for additional output data was
provided. Different dynamic linear and nonlinear
models were developed using several identification
methods.

The average absolute deviations of all model
results lie within acceptable tolerance limits for
on-line implementation. The BJ model shows the
best performance and can be employed as the soft
sensor within advance process control or for diag-
nostic purposes. The OE and HW models show
somewhat inferior performances but still can be
successfully used for the prediction of the kerosene
95 % distillation end point and process control pur-
poses.

By real plant application of the developed soft
sensors, considerable savings could be expected, as
well as compliance with strict regulations for prod-
uct quality specifications.
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A b b r e v i a t i o n s

PLS � Partial Least Squares method

TOP � column top

K � kerosene

LGO � light gas oil

HGO� heavy gas oil

PA � pumparound

FIT � coefficient for the goodness of the fitted model,
%

L i s t o f s y m b o l s :

Bi(q) � polynomial matrix

Fi(q) � polynomial matrix

Ci(q) � polynomial matrix

Di(q) � polynomial matrix

�(s) � logsig function

g(k) � sigmoid network

T � temperature point, °C

F � flow variable, kg m–3

K � order of interactions

es � past simulated model errors
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