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Anaerobic processes are very attractive because of their waste treatment properties
and their capacity for transforming waste materials in order to generate methane, which
can be used as a renewable energy source. A hybrid intelligent control strategy for an an-
aerobic process is proposed in this work; the structure of this strategy is as follows: a) a
control law calculates dilution rate and bicarbonate addition in order to track a methane
production reference trajectory; this control law is based on speed-gradient inverse opti-
mal neural control, b) a nonlinear discrete-time recurrent high-order neural observer is
used to estimate biomass concentration, substrate degradation and inorganic carbon, and
c) a Takagi-Sugeno supervisor, which detects the process state, selects and applies the
most adequate control action, allowing a smooth switching between open loop and
closed loop. The applicability of the proposed scheme is illustrated via simulations con-
sidering a completely stirred tank reactor.
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Introduction

Motivated by the rapid growth of electricity
demand, considering the depletion of fossil fuels,
and due to increased environmental awareness, de-
veloped countries began to investigate the potential
of renewable energy sources.1–3 In recent years,
with varying degrees of success, different renew-
able energy sources have been and continue to be
studied for electric power generation, among them,
geothermal, biomass, solar, wind, hydropower by
micro-turbines and tidal waves.4–6 Research on the
optimization of energy generation in hybrid sys-
tems, which use different renewable sources, are
discussed by Liang et al.7 and Marwali et al.8 Bio-
mass is attractive as a potential energy resource,
and it is an important fuel in several developing
countries.9 There are different reasons for biomass
utilization as an energy source. One of them is that
the amount of traditional petroleum sources for
conventional fuels is not unlimited, while biomass
is potentially renewable.10 Another reason is that re-
placing fossil fuels with biomass would reduce the

net carbon dioxide emissions that are contributing
to the greenhouse warming of Earth.11 Moreover,
biomass fuels have a reasonable heat of combus-
tion, and they usually have low sulfur, nitrogen and
ash content as compared to many coals and oils.12

Biomass may be converted into a variety of energy
forms including heat (via burning), steam, electric-
ity, hydrogen, ethanol, methanol, and methane.13–16

Anaerobic digestion is a biological process by
which organic matter (substrate) is degraded by an-
aerobic bacteria (biomass), in the absence of oxy-
gen. Such degradation produces biogas, consisting
primarily of methane (CH4) and carbon dioxide
(CO2), and stable organic residues. Anaerobic di-
gestion is a complex and sequential process which
occurs in four basic stages: hydrolysis, acido-
genesis, acetogenesis and methanogenesis.17 Each
stage has specific dynamics; hydrolysis, acido-
genesis and acetogenesis are fast stages in compari-
son with methanogenesis, which is the slowest one;
it imposes the dynamics of the process and is con-
sidered as the limiting stage. For this paper, the pro-
cess is developed in a continuously stirred tank re-
actor (CSTR), with immobilized bacteria on a solid
support. A variety of factors affect the rate of diges-
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tion and biogas production, such as pH, temperature
and overloads.18 In addition, some variables and pa-
rameters are hard to measure due to economic or
technical constraints. Then, estimation and control
strategies are required in order to guarantee ade-
quate performance.19 In biological processes, there
exist hardly measurable or nonmeasurable variables
which are necessary for process control. Different
biogas sensors have been developed in order to
measure CH4.

20–22 However, substrate and biomass
measures are more restrictive. A discrete-time re-
current high-order neural observer (RHONO) for
nonlinear systems, which model is assumed to be
unknown is proposed by Alanis et al.23 and
Belmonte-Izquierdo et al.24. This neural observer is
based on a discrete-time recurrent high-order neural
network (RHONN) trained with an extended
Kalman filter (EKF)-based algorithm, using a paral-
lel configuration. In this paper, the RHONO struc-
ture is modified in order to obtain a better estima-
tion. The objective is to estimate biomass concen-
tration, substrate degradation and inorganic carbon
in the anaerobic process. The training of the
RHONO is performed on-line. The variables are es-
timated from CH4 and dioxide flow rates, which are
commonly measured in this process. It is assumed
that pH, YCH4, YCO2 and the process inputs are
on-line measured. Neural networks are considered
as good candidates for nonlinear systems applica-
tions, which deal with uncertainties, and are attrac-
tive due to their simpler implementation, robustness
and the capacity to adjust their parameters on-line;
additionally, the knowledge of the model is not
strictly necessary.25 In order to control the anaero-
bic process, a speed-gradient inverse optimal neural
control is considered; 26 which is developed on the
basis of the above mentioned neural observer. The
controllers are designed to regulate bicarbonate in
the reactor by two control actions: a base supplying
(binc,k) and dilution rate (Din,k) changes. Speed-gra-
dient inverse optimal neural control is an adequate
and novel algorithm in biological systems.27 The
aim of the inverse optimal control is to avoid the
solution of the HJB (Hamilton-Jacobi-Bellman)
equation,28,29 diminishing implementation complex-
ity.30 A fuzzy supervisor is implemented in order to
apply control actions to reject large disturbances on
input substrate and to track a methane reference tra-
jectory production. A Takagi-Sugeno supervisor31,32

detects the process state, selects and applies the
most adequate control action, allowing a smooth
switching between open loop and closed loop. The
process works in open loop in presence of small
disturbances. For large disturbances, the supervisor
allows the control actions to be applied avoiding
washout; after that, the process returns to open loop
operation. In general, the supervisor improves the

performances of the anaerobic process and is feasi-
ble for application in real processes, since the con-
trol scheme shows a good compromise between ef-
ficiency and complexity.

Mathematical model

A functional diagram of anaerobic digestion is
proposed by Beteau33 as shown in Fig. 1. Biomass
is classified as: X1, corresponding to hydrolytic,
acidogenic and acetogenic bacteria, and X2, which
represents methanogenic bacteria. On the other
hand, the organic load is classified in S1, the com-
ponents equivalent glucose, which model complex
molecules and S2, the components equivalent ace-
tate, which represent the molecules directly trans-
formed in acetic acid. This classification allows the
process to be represented by a fast stage, which in-
volves hydrolysis, acidogenesis and acetogenesis
and a slow stage, which corresponds mainly to
methanogenesis.

Thus, a discrete-time nonlinear mathematical
model of the process is deduced in Carlos-Hernan-
dez et al.17 On one side, the biological phenomena
are modeled by ordinary differential equations (1),
which represent the dynamic part of the process as:

X X k Xk k k d k1 1 1 1 1 1, , , ,( ) ,� � � ��

S S R X D S Sk k k k k in k k1 1 1 6 1 1 1 1, , , , , ,( ),� � � � ��

X X k Xk k k d k2 1 2 2 2 2, , , ,( ) ,� � � ��

S S R X R Xk k k k k k2 1 2 3 2 2 4 1 1, , , , , ,� � � � �� �
� �D S Sk in k k( ),, ,2 2

(1)

IC IC R R X R Xk k k k k k� � � � �1 2 3 2 2 5 1 1� �, , , ,

� � �� �k k k k in k kR R X D IC IC1 3 2 2, , ,( ),

Z Z D Z Zk k k in k k� � � �1 ( ),,

where �1,k is the growth rate (Haldane type) of X1,k

(h–1) at step k, �2,k the growth rate (Haldane type) of
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X2,k (h–1), kd1 the death rate of X1,k (h–1), kd2 the
death rate of X2,k (h–1), Dk the dilution rate ( h–1),
S1in,k the fast degradable substrate input (mol L–1),
S2in,k the slow degradable substrate input (mol L–1),
IC inorganic carbon (mol L–1), Z the total of cations
(mol L–1), ICin,k the inorganic carbon input (mol
L–1), Zin,k the input cations (mol L–1), �k is a coeffi-
cient considering law of partial pressure for the dis-
solved CO2 and R1, . . .,R6 are the yield coefficients.

The growth rate for X1,k and X2,k are described
by equations (2) and (3) respectively:
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where �1max (h–1) and �2max (h–1) are the maximum
growth rate for the X1,k and X2,k biomasses respec-
tively, kS1 (mol L–1) and kS2 (mol L–1) are the growth
saturation for the biomasses, ki1 (mol L–1) and
ki2 (mol L–1) are the inhibition constants by sub-
strate excess, HS is non ionized acetic acid (mol L–1).
and S1,k (mol L–1) is slow stage substrate.

On the other side, the physical-chemical phe-
nomena (acid-base equilibriums and material con-
servation) are modeled by algebraic equations (4).

HS S S� � ��
2 0,

H S K HSa
� � � � 0,

H B K COb d
� � �2 0, (4)

B CO ICd� � �2 0,

B S Z� � �� 0,

where HS is non ionized acetic acid (mol L–1), S–

ionized acetic acid (mol L–1), H+ ionized hydrogen
(mol L–1), B measured bicarbonate (mol L–1), CO2d

dissolved carbon dioxide (mol L–1), Ka is an
acid-base equilibrium constant, Kb is an equilibrium
constant between B and CO2d.

Finally, the gaseous phase (CH4 and CO2) is
considered as the process output:

Y R R XCO k k k k2 2 3 2 2, , ,� � � (5)

X R R XCH k k k4 1 2 2 2, , ,� � (6)

� is a pressure partial coefficient for CO2 defined as:

� k

d

t h d

CO

P K CO
�

�
2

2

(7)

where Pt is atmospheric pressure (Pa), Kh is a gases
Henry constant (mol L–1 Pa–1) and CO2d defined as
before. Biomass growth, substrate degradation and
CO2 are good indicators of CH4 production34 and
biological activity inside the reactor. These vari-
ables can be used for monitoring the process and to
design an inverse optimal neural control.

Discrete time neural observer

A nonlinear discrete-time recurrent high-order
neural observer (RHONO) for unknown nonlinear
systems in the presence of external disturbances
and parameter uncertainties is described in Alanis
et al.23 This observer is based on a discrete-time re-
current high-order neural network (RHONN)
trained with an extended Kalman filter (EKF) based
algorithm. Let us consider the next nonlinear sys-
tem, which is assumed to be observable:

x F x u dk k k k� � �1 ( , ) ,

y h xk k� ( ),
(8)

where x � Rn is the state vector of the system, u � Rm

is the input vector, y � Rp is the output vector,
h(x(k)) is a nonlinear function of the system states,
d(wk) � Rn is a disturbance vector and F(·) is a
smooth vector field and Fi(·) its entries; hence (8)
can be also expressed component-wise as:

x x x xk k i k n k
T� � �[ ] ,, , ,1

d d d dk k i k n k
T� � �[ ] ,, , ,1

x F x u d i ni k i k k i k, ,( , ) , , , ,� � � � �1 1
(9)

x h xk k� ( ).

For system (9), a Luenberger-like neural ob-
server is proposed, with the following structure:

� [ � � � ] ,, , ,x x x xk k i k n k
T� � �1

� ( � , ) ,,x w z x u g ei k i
T

i k k mi k� � �1 (10)

� ( � ); , , ,y h x i nk k� � �1

with gmi � Rp, ui is the external input vector to the
NN and zi is a function of states and inputs to each
neuron; the weight vectors are updated on-line with
a decoupled extended Kalman filter (EKF). The
output error is defined by:

e y yk k k� � � , (11)

and let us define the wi
* estimate as wi; then, the

weights estimation ~
,wi k and state observer ~

,x i k er-
rors are stated, respectively, as
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~
, ,

*w w wi k i k i� � (12)

~
� ., . ,x x xi k i k i k� � (13)

For more details on the design and the stability
analysis of this RHONO, we refer the reader to the
results presented in Sanchez et al.35

In this paper, considering the RHONO advan-
tages mentioned in section 1 and due to the require-
ment of nonmeasurable variables estimation for dis-
crete-time speed gradient inverse optimal neural
control, we propose the use of a discrete-time
RHONO structure, which estimates the variables of
the methanogenesis stage: biomass (X2,k), substrate
(S2,k) and inorganic carbon (ICk); the biomass is
used in the supervisor structure; the substrate and
the inorganic carbon are estimated for comparison
(with real measures) in future researches. The
observability property of this anaerobic digestion
process is analyzed by Alcaraz-Gonzalez et al.36 It
is concluded that substrates (S1,k and S2,k), bio-
masses (X1,k and X2,k) and inorganic carbon (ICk) are
observable states. In Fig. 2, the proposed observer
scheme is displayed and its formulation is shown
by equations (14).

where k is a real number representing a time sam-
ple, xk+1 � Rn is the state vector of the anaerobic
system, uk_Din,k, uk_bin,k � Rm the inputs vector, yk � Rp

the output vector of the anaerobic system, �y k � Rp

the output vector estimated as a function of � ,x k

CH4, CO2 and pH measurements, S1in, S2in � Rn

substrates disturbances vector, ek the output error,
F(·,·) and wi

Tzi(·,·) a smooth vector fields.

� ( � ) ( � ) ( ), , ,X w S X w S X w S ICk k k k2 1 11 2 12
2

2 13�

	

� � � �

� � �w S X D w S X b g ek in k k inc k m k14
2

2 15
2

2 1( � ) ( � ) ,, , , ,

� ( � ) ( � ) ( ), , ,S w S S w S S w S ICk k k k2 1 21 2 22
2

2 23�

	

� � � �

� � �w S S D w S S S g ek in k k in k m k24
2

2 25
2

2 2 2( � ) ( � ) ,, , , ,

(14)

IC w S IC w S IC w S Xk k k k

	

�

	 	

� � � �1 31 32
2

33 2( ) ( ) ( � ),

� � �
	 	

w S IC D w S IC b g ek in k k inc k m k34
2

35
2

3( ) ( ) ,, ,

where wij is the respective on-line adapted weight
vector; � , �

, ,X Sk k2 2 and IC k

	
are the estimated

states; S( · ) is the sigmoid function defined as
S(x) = 
 tanh(�x), S2(·) is the square of the sigmoid
function; (gm1, gm2, gm3) are the Luenberger-like ob-
server gains, ek is the output error, Din,k, S2in,k and
binc,k are defined as before.

EKF training algorithm

The Kalman filter (KF) provides an efficient
computational solution to estimate the state of a lin-
ear dynamic system with additive state and output
white noises.35 For KF-based NN training, the net-
work weights become the states to be estimated. In
this case, the error between the NN output and the
measured plant output can be considered as additive
white noise. If, however, the model is nonlinear, the
use of KF can be extended through a linearization
procedure; the resulting filter is the well-known
EKF. Since the NN mapping is nonlinear, an
EKF-type is required. The training goal is to find
the optimal weight values, which minimize the pre-
dictions error. In this work, an EKF-based training
algorithm37–40 described by (15) is used.

w w K ei k i k i i k i k, , , , ,� � �1 �

K P H Mi k i k i k i k, , , , ,�

P P K H P Qi k i k i k i k
T

i k i k, , , , , , ,� � � �1 (15)

M R H P Hi k i k i k
T

i k i k, , , , ,[ ] ,� � �1

e y y i ni k k k,
� , , ,� � � �1

where ei,k � RP is the observation error, Pi,k � RLixLi
is the prediction error covariance matrix at step k,
wi,k � RLi is the weight (state) vector, Li is the re-
spective number of neural network weights, y � RP

is the plant output, �y k � Rp is the NN output, �i is
the learning rate, Ki,k � RLixP is the Kalman gain
matrix, Qi,k � RLixLi is the NN weight estimation
noise covariance matrix, Ri,k � RPxP is the error
noise covariance, and Hi,k � RLixP is the matrix for
which each entry (Hij) is the derivative of the i-th
neural output with respect to ij-th NN weight, (wij).
Where i =1,…, n and j =1,…, Li . Usually Pi, Qi and
Ri are initialized as diagonal matrices, with entries
Pi,0, Qi,0 and Ri,0 respectively. It is important to remark
that Hi,k, Ki,k and Pi,k for the EKF are bounded.41

Speed-gradient inverse
optimal neural control

As mentioned above, speed-gradient inverse
optimal neural control is an adequate algorithm,
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whose application in biological systems is novel.27

The aim of the inverse optimal control consists of
designing a stabilizing feedback control law, based
on an a priori known control Lyapunov function
(CLF) which ensures that the stabilizing control law
optimizes a cost functional.30 Let us consider the af-
fine in the input discrete-time nonlinear system:

x f x g x uk k k k� � �1 ( ) ( ) (16)

where x � Rn is the state of the system, u � Rm is
the control input, f(x) and g(x) are smooth maps
with f(x) � Rn, g(x) � Rnxm , k � Z+ = {0, 1, 2,…}.
f(0) = 0 and rank {g(x)}=m 
 �x k 0. In Ornelas et
al.30 the following cost functional is associated with
system (16):

V z l z u R z uk n n
T

C n n

n k

( ) ( ( ) ( ) )� �
�

�

� (17)

where zk = xk – x�,k with x�,k as the desired trajectory
for xk; zk � Rn; V (zk) : Rn � R+; l(zk) : Rn � R+ is a
positive semidefinite function and RC(zk) : Rn� Rmxm

is a real symmetric positive definite weighting ma-
trix. The cost functional (17) is a performance mea-
sure.42 The entries of RC(zk) can be functions of the
system state in order to vary the weighting on con-
trol efforts according to the state value.42 Consider-
ing state feedback control, we assume that the full
state xk is available. Equation (17) can be rewritten
as

V z l z u R z uk k k
T

C k k( ) ( ) ( )� � �

� � �
� �

�

� ( ( ) ( ) )l z u R z un n
T

C n n

n k 1

(18)

� � � �l z u R z u V zk k
T

C k k k( ) ( ) ( )1

where V(zk+1) depends on both xk and uk by means
of xk+1 in (16). In order to establish the conditions
that the optimal control law must satisfy, we define
the discrete-time Hamiltonian H43 as

H z u l z u R z u V z V zk k k k
T

C k k k k( , ) ( ) ( ) ( ) ( )� � � ��1 (19)

A necessary condition that the optimal control
law uk should satisfy is �H/�uk = 0,42 which is
equivalent to calculate the gradient of (19) with re-
spect to uk, then
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1 1
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Therefore, the optimal control law is formu-
lated as

u R z g x
V z

zk k
T

k

k

k

* ( ) ( )
( )

.�� � �

�

1

2

1 1

1

�

�
(21)

For control law (21) in order to ensure trajec-
tory tracking of system (16), a discrete-time CLF is
proposed,30 with the form:

V z z P z P Pc k k
T

k k k k
T( ) ,� � �

1

2
0 (22)

This will be achieved by defining an
appropiate matrix Pk; moreover it will be estab-
lished that the control law (21) with (22), which is
referred to as the inverse optimal control law,
optimizes a cost functional of the form (17). Conse-
quently, the control law takes the following form:

u R z g z P g xk C k
T

k k k
* ( ) ( ) ( )�� �

�
�
�

�
�
� �
�

1

2

1

2

1

� �g x P f x xT
k k k k( ) ( , ),� 1

(23)

Pk and RC(zk) are positive definite and symmet-
ric matrices; thus, the existence of the inverse in
(23) is assured. To compute Pk, which ensures sta-
bility of the system (16) with (23), the speed-gradi-
ent (SG) algorithm is used. Control law (23) at ev-
ery time step depends on the matrix Pk. Let us de-
fine the matrix Pk at every time step k as:

P p Pk k C� (24)

where PC = PC
T > 0 is a given constant matrix and

pk is a scalar parameter to be adjusted by the SG al-
gorithm.26 Then, (23) is transformed into:

u
p

R z
p

g x P g xk

k

C k

k T
k C k

* ( ) ( ) ( )�� �
�

�
�

�

�
� �
�

2 2

1

� �g x P f x xT
k C k k( ) ( , ),� 1

(25)

The dynamic variation of parameter pk in (24)
results in

p pk k� � �1

�
�

8
2

2

� d k

T
k C k C k

T
k k

C k k
T

f x P g x R z g x f x

R z p g
,

( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( ))x P g xk C k
3

(26)

which is positive for all time step k if p0 > 0. There-
fore, positiveness for pk is ensured and requirement
Pk = Pk

T>0 for (24) is guaranteed. With the control
Lyapunov function as defined by (22) and p pk �
( p is a constant value when the SG algorithm con-
verges) the control law is inverse optimal in the
sense that it minimizes the cost functional (17),
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which is proposed such that l(zk) ponders the states
and RC(zk)ponders the control.26

In order to apply the control law (25) to the an-
aerobic process, the following analysis is required,
for which the proposed RHONO is presented as an
affine system:

f X IC w S X w S Xk k k k1 2 11 2 12
2

2( � , ) ( � ) ( � ), , ,
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According to (25), the inverse optimal control
law is formulated as

u D R z g x P g xk in k C k
T
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where the positive definite matrix Pk = pk PC is cal-
culated by the SG algorithm, R zC k( ) is a constant
matrix, g x k( � ) and f x k( � ) are matrices as in (27)-(28)
and f x x f x f xk k k ref k( � , ) ( � ) ( ), ,� �� �� �1 1

The tracking of a desired trajectory, defined in
terms of the plant state xi,k formulated as (1) can be
established as the following inequality:

|| || || � || || � ||, , , , , ,x x x x x xi i k i k i k i i k� �� # � � � (31)

where ||.|| stands for the Euclidean norm, �

,x i k is the
observed state, xi,� is the desired trajectory signal,

which assume smooth and bounded. This proposi-
tion is possible based on the separation principle for
discrete-time nonlinear system.30 From (31), we es-
tablish the following requirements for the neural
network tracking and control solution:

Requirement 1:

lim || � ||, ,
t

i k i k iX x
��

� # $ (32)

with $i a small positive constant.

Requirement 2:

lim || � ||, ,
t

i i k iX x
��

� #� $ (33)

An on-line neural observer trained with ex-
tended Kalman filter based on (15) ensures (32),44

while (33) is guaranteed by a discrete controller de-
veloped using the inverse optimal control tech-
nique.

Hybrid intelligent control scheme

Anaerobic digestion is able to work adequately
without control for an interval of operating condi-
tions and even in presence of small disturbances.
However, for large disturbances, a control law is re-
quired in order to maintain process stability. Then,
supervision of key variables is a very important
task. The ODL/X2 is the quantity of organic load
that a unit of biomass can treat in a working day
and is important regarding process stability.17 It is
defined as:

ODL X D A S Xin k/ / �

,2 2 20 2� (34)

where Din,k is the dilution rate (h–1), A2 a disturbance
amplitude on the substrate input S2in (mol L–1), S20

the initial value of the substrate S2 (mol L–1) and is
the estimated biomass X2 (mol L–1).

In the presence of a disturbance in S2in, ODL/X2

can abruptly increase up to a value, which exceeds
the conditions of stability limits (critical value);
therefore the process tends to washout, that means,
the absence of active microorganisms and then the
increase of nontreated substrate. If ODL/X2 is above
its critical value, then a control law must be applied
in order to allow biomass growth, and hence, di-
minishing ODL/X2 and stabilizing the system. In
contrast, if the ODL/X2 is under its critical value
then the system can work in open loop. Depending
on the ODL/X2 value, commutation between operat-
ing modes (open loop, closed loop) is done by a
Takagi-Sugeno fuzzy supervisor.45 This commuta-
tion takes place progressively in order to avoid
abrupt switching. The fuzzy set is defined as in Fig.
3.
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The Takagi-Sugeno algorithm is used to define
the supervisor. From empirical knowledge, each
fuzzy set is associated with a control action; then
three fuzzy inference rules are deduced:

If ODL/X2 is LOW then u = open loop

If ODL/X2 is AVERAGE then u = binc,k action

If ODL/X2 is HIGH then u = Din,k action

The structure of the hybrid intelligent control is
shown in Figure 4.

The main advantage of this control scheme is to
combine different control actions in order to mini-
mize their drawbacks and profit from their advan-
tages: dilution rate (Din,k) changes reject larger dis-
turbances and supplying a base (binc,k) allows the
process to track reference methane production. The
operation mode in open loop works satisfactorily in
the presence of small disturbances, which represents
saving of energy. Consequently, the most adequate
control action is applied in order to avoid washout.

Simulation results

The whole control strategy for the anaerobic
process is implemented using Matlab™ and param-
eter values are presented in Tables 1, 2 and 3. The

observer is initialized at random values to verify the
estimation convergence. In order to test the ob-
server sensitivity to input changes, a disturbance of
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F i g 3 – Fuzzyfication ODL/X2

F i g . 4 – Hybrid intelligent control scheme

T a b l e 1 – Parameter values for anaerobic digestion model

Kinetic parameters Initial conditions

Symbol Value Unit Symbol Value Unit

�1max 0.205 h–1 X1,0 5.6836 mol L–1

ks1 0.26 mol L–1 S1,0 0.0537 mol L–1

ki1 16.333E-4 mol L–1 X2,0 0.0068 mol L–1

�2max 0.017 h–1 S2,0 0.0037 mol L–1

ks2 2.18E-5 mol L–1 IC0 0.0817 mol L–1

ki2 8.22E-3 mol L–1 Z0 0.0551 mol L–1

Equation parameters Din 0.1 h–1

Symbol Value Unit S1in 10 mol L–1

kd1 0.035 h–1 S2in 0.07 mol L–1

kd2 0.0085 h–1 ICin 0.0051 mol L–1

R1 0.99 Zin 0.0051 mol L–1

R2 0.99

R3 345

R4 0.0666

R5 0.0005

R6 5

Ka 1.7E-5 mol L–1

Kb 1.7E-7 mol L–1

Kh 0.065 mol L–1 Pa–1

Pt 1 Pa

T a b l e 2 – Parameter values for neural observer

Symbol Value Unit Symbol Value Unit

w11, w12, w13, w14, w15 0.0068 mol L–1 gm1 0.12

w21, w22, w23, w24, w25, w26 0.0037 mol L–1 gm2 0.09

w31, w32, w33, w34, w35 0.0817 mol L–1 gm3 0.09

P1,0 1500 �1 2

P2,0 1000 �2 1

P3,0 1500 �3 10

Q1,0 1.5 �X 21 0.0102 mol L–1

Q2,0 1.5 �S21 0.0046 mol L–1

Q3,0 0.2 IC
	

0.1223 mol L–1

R1,0 150

R2,0 150

R3,0 1.5



50 % S2in increase in the input substrate is incepted
at t = 200 hours. The performance of the proposed
RHONO and the input disturbance substrate is il-
lustrated in Fig. 5.

It is clear that the biomass, substrate, and inor-
ganic carbon are well estimated. Additionally, ro-
bustness of the proposed RHONO is tested in the
presence of a 80 % disturbance in 200 < t < 500,
different initial conditions and parameters variation
in the biomasses growth. A 10 % negative variation
in the maximum rate growth of the hydrolytic,
acidogenic and acetogenic bacteria (�1max) and a
10 % positive variation in the maximum rate
growth of the methanogenic bacteria (�2max). Pa-
rameter values are in Table 4 and the performance
of the proposed RHONO is illustrated in Fig. 6.

System states are well estimated and the ro-
bustness of the proposed RHONO to parameters
variations is verified. Thus, the proposed neural ob-
server is a good alternative to estimate those impor-
tant states of the considered anaerobic process.
Model and observer validation are found in Bel-
monte et al.46

As mentioned in section 5, the inverse optimal
neural control algorithm requires reference trajecto-
ries. In a previous work48 anaerobic system was
controlled in the presence of disturbances with a PI
L/A controller which avoided inhibition; the pro-
cess presented a suitable behavior which was re-
flected in trajectories for methane production.
Therefore these trajectories represent an adequate
dynamic behavior of the anaerobic process for
growth biomass and methane production in the
presence of disturbances and are smooth. Hence,
they are selected as reference trajectories for in-
verse optimal neural control. The hybrid control
scheme is tested in the presence of a 100 % distur-
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T a b l e 3 – Controller parameters

Symbol Value Unit Symbol Value Unit

RC1 0.6 RC2 0.4

PC1,11 2.8E4 PC2,11 729

PC1,12 0.25E4 PC2,12 437

PC1,13 0.23E4 PC2,13 291

PC1,21 0.25E4 PC2,21 437

PC1,22 0.05E4 PC2,22 729

PC1,23 0.04E4 PC2,23 629

PC1,31 0.23E4 PC2,31 291

PC1,32 0.04E4 PC2,32 629

PC1,33 0.05E4 PC2,33 729

gS1 1600 gS2 500

F i g . 5 – State estimation for a 50 % disturbance
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F i g . 6 – State estimation for parameters variation F i g . 7 – Trajectories tracking states for a 100 % disturbance



bance on S2in, incepted at t=200 hours. Trajectories
tracking for states and YCH4 are illustrated below.

When the disturbance is introduced in the input
substrate, an adequate control law must be applied
in order to allow biomass growth, and hence, di-
minishing ODL/X2 and stabilizing the system. As
can be seen the process operates in open loop be-
cause disturbance is small; this is because ODL/X2

belongs to the associated fuzzy set corresponding to
open loop (Fig. 3). This situation implies that the
anaerobic digestion process is able to work ade-
quately without control in the presence of this small
disturbance. Thus, trajectory tracking for the states
is achieved as illustrated in Fig. 7 and the error ap-
proaches zero in steady state. The YCH4 is calcu-
lated with equation (6), which is based on the sys-
tem observed states. As can be seen, the reference
is reached; Fig. 8 displays the inputs binc,k and Din,k.

The proposed hybrid control scheme is also
tested introducing a 150 % disturbance in S2in

incepted at t=200 hours, as illustrated in Fig. 9.

For this case, the supervisor operates in closed
loop because the disturbance is large and closed
loop control is required. During disturbance,
ODL/X2 increases its value until reaching a level
corresponding to HIGH fuzzy set. Therefore the
system goes to closed loop operation mode apply-
ing control action Din,k. During the evolution pro-
cess, ODL/X2 diminishes its level and starts to be-
long to HALF fuzzy set. Thus control action binc,k is
applied and the control action Din,k is stopped. Fi-
nally, ODL/X2 diminishes its value until belonging
to the fuzzy set associated to open loop. This situa-
tion implies that the disturbance has been rejected
completely. Under these last conditions, supervisor
stops the action binc,k and the process returns to its
operation in open loop. Thus, trajectory references
for the states are reached with error approaching
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F i g . 8 – Input signals for a 100 % disturbance

F i g . 9 – Trajectories tracking states for a 150 % disturbance



zero at steady state as illustrated in Fig. 9. Also,
YCH4 reaches its reference and the corresponding
error approaches zero at steady state. Fig. 10 dis-
plays the control signals binc,k and Din,k.

The proposed hybrid control scheme is also
tested introducing a 200 % disturbance in S2in

incepted at t=200 hours, as illustrated below.

As can be seen in Fig. 11, the proposed scheme
detects a large disturbance and applies the adequate
control action until the disturbance is rejected. Thus
trajectory tracking is efficient and the error ap-
proaches zero at steady state. YCH4 reference is
reached with a small error at steady state as is illus-
trated in Fig. 11. Fig. 12 displays the control signals
binc,k and Din,k. System operation is ensured due to
the control strategy applied, even though a large
disturbance is incepted. For the case of disturbances
larger than 200 % in S2in, the oscillation induced by
the observer prevents the supervisor from control-
ling the process. Therefore, the system tends to
washout; a critical value exists for which the super-
visor cannot control the bio-process due to the mag-
nitude of the disturbances.
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F i g . 1 0 – Control signals for a 150 % disturbance

F i g . 1 1 – Trajectories tracking for a 200 % disturbanceF i g . 1 2 – Control signals for a 200 % disturbance



Finally, controller tolerance to change of the
system parameters is tested; such variation is
incepted as a disturbance in the bacteria concentra-
tion, �1max and �2max as presented in Table 4, and a
disturbance in the input substrate of 200 % S2in in-
crease incepted at t=200 h as in Fig. 11. Perfor-
mance of the system is illustrated in Fig. 13.

As illustrated in Fig. 13, the closed loop per-
formance presents a transient state error which is
due to parameters variation in rate growths that af-
fect directly the kinetic; the control scheme acts in
order to track the trajectory which is achieved at
steady state with a small error. The control trajecto-
ries are illustrated in Fig. 14.

System states are well estimated and the robust-
ness of the proposed RHONO to parameters varia-
tions is verified. Thus, the proposed neural observer
is a good alternative to estimate those important
states of the considered anaerobic process. Model
and observer validation are found in Belmonte et
al.46 Fuzzy PI control for the same process is dis-
cussed in Belmonte et al.46 There, the goal was not
to track specific trajectories, but to avoid washout.
PID control is unsuitable for time-varying trajectory
tracking. Due to these two facts, comparison with
these control schemes is not included in this paper.
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F i g . 1 3 – Trajectories tracking for parameter variation

F i g . 1 4 – Control signals for parameter variation

T a b l e 4 – Parameter values variation

Symbol Value Unit

�

,X 2 1 0.0116 mol L–1

�

,S2 1 0.0052 mol L–1

IC
	

0.1386 mol L–1

�1max 0.1845 h–1

�2max 0.0188 h–1



Conclusions

In this paper, a hybrid intelligent control
scheme for an anaerobic wastewater treatment pro-
cess is proposed in order to produce methane and
avoid washout. A nonlinear discrete-time recurrent
high-order neural observer (RHONO) is used to es-
timate the biomass concentration, substrate degra-
dation, and inorganic carbon; then this observer is
transformed into an affine mathematical model with
the aim of applying speed-gradient inverse optimal
neural control. Once this model is obtained, an in-
verse control law, based on it, is developed. The
fuzzy supervisor detects biological activity inside
the tank reactor, on the basis of estimated biomass,
and applies a control action. The goal is to force the
system to track desired reference, which is
achieved; simulation results show how the hybrid
intelligent control is able to stabilize the methane
production along desired trajectories in the pres-
ence of disturbances, and avoiding washout. Thus,
control action fulfills the objectives of rejecting dis-
turbances, and of obtaining a high efficiency of the
process, which is reflected in a good production of
biogas. This research will be pursued in order to
evaluate the application in real-time of the proposed
control scheme to an anaerobic prototype process.
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L i s t o f s y m b o l s

YCH4 � methane production, mol h–1

YCO2 � carbon dioxide production, mol h–1

Din � dilution rate, h–1

binc � provided bicarbonate, mol L–1

X1 � hydrolytic, acidogenic and acetogenic bacteria,
mol L–1

X2 � methanogenic bacteria, mol L–1

S1 � fast degradable substrate, mol L–1

S2 � slow degradable substrate, mol L–1

IC � inorganic carbon, mol L–1

S1in � fast degradable substrate input, mol L–1

S2in � slow degradable substrate input, mol L–1

ICin � inorganic carbon input, mol L–1

Zin � input cations

� � pressure partial coefficient

Ri � yield coefficients

HS � non ionized acetic acid, mol L–1

H+ � ionized hydrogen, mol L–1

B � measured bicarbonate, mol L–1

CO2d � dissolved carbon dioxide, mol L–1

Ka � acid-base equilibrium constant

Kb � equilibrium constant between B and CO2d
�X 2 � biomass estimated, mol L–1

IC
	

� inorganic carbon estimated, mol L–1

�S 2 � Substrate estimated, mol L–1

ek � output error, mol h–1

ei,k � observation error, mol h–1

RP � espacio euclidiano de dimensión P

Xk+1 � discrete state of the system

V(.,.) � Lyapunov function

x�,k � desired trajectory

Pk � positive definite symmetric matrix gain

uk � control law

J � cost function

ODL/X2� quantity of organic load treated by biomass
unit by day, mol L–1 h–1

A2 � disturbance amplitude, mol L–1

A b b r e v i a t i o n s

TS � Takagi-sugeno

CSTR � continued stirred tank reactor

NN � neural network

RHONO � recurrent high-order neural observer

RHONN � recurrent high-order neural network

KFE � Kalman extended filter

SG � speed-gradient
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