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Introduction 

In 1985 Martin (1) described an objective way of measuring enamel thickness in longitudinal 

sections of primate teeth (see also 2). Average enamel thickness (AET) was calculated as the area 

of enamel (c) divided by the length of the enamel-dentine junction (e) (Fig. 1). This was further 

corrected for body size by scaling to the square root of the bi-cervical dentine cap area (b). Relative 

enamel thickness (RET) made it thus possible to compare enamel thickness between teeth in the 

same mouth and between the teeth of different taxa and has been used in a number of studies 

dealing with hominoid taxonomy, phylogeny, and paleodiet (e.g., 1, 3-10). The dentine as defined by 
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Martin (1) also includes pulp and dentine formed after crown completion during root growth. 

In this study we asked how the area of dentine formed in the same time as enamel at crown 

completion compares with the enamel formed in a range of hominoid teeth. To that purpose, we 

added a new variable, the area of dentine formed at crown completion (d), and calculated the 

average dentine thickness (ADT) as being the quotient of d divided by e (see Fig. 1). We asked how 

in longitudinal section does tooth size and shape influence ADT, and if ADT mirrors the pattern 

shown by AET. This should give new elements on the degree of developmental integration between 

enamel and dentine. Finally, we examined the variation in proportion of the pulp chamber within the 

dentine cap. 

 

Materials and methods 

The sample includes histological and microCT longitudinal sections from 52 hominoid permanent 

maxillary and mandibular teeth, including 24 modern humans, 14 Neandertals, 5 chimpanzees (Pan 

troglodytes), 4 orangutans (Pongo pygmaeus), 3 Proconsul nyanzae, and single specimens from 

Gorilla gorilla, and Hispanopithecus laietanus (Table 1). 

Bucco-lingual sections were physically or virtually extracted from the tooth record. For molars, 

mesial and distal sections were compiled to give the broadest possible picture of how ADT varies 

within the crown in this preliminary study. Virtual sections were generated from 3D models using 

Avizo 7 (VSG) following previously established sectioning protocols (10-12). Physically and virtually 

produced sections closely approximate one another (13), and therefore data were tabulated from 

both techniques. 

The following variables were digitally measured or calculated using MPSAK 2.9 (in 14): the area of 

the enamel cap (c; mm²), the bi-cervical dentine cap area (b; mm²), the length of the enamel-dentine 

junction (e; mm), the area of dentine formed at crown completion (d; mm²), the area of pulp formed 

at crown completion (p = b-d; mm²), the AET (c/e; mm), the ADT (d/e; mm), the enamel area as a 

percent of dentine area formed at crown completion (100 * c/d), and the pulp area as a percent of 

Martin's dentine cap area (100 * p/b). 

Standard box and whisker plot revealing the interquartile range (25th-75th percentiles: boxes), 1.5 

interquartile ranges (whiskers) and the median values (black line) were represented. 
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Results and discussion 

As previously described in a broader context (e.g., 10, 15-18), results show that AET increases from 

anterior to posterior teeth (trend in the modern human sample shown in Fig. 2). However ADT for 

the same teeth changes very little from anterior to posterior (Fig. 3). Even when this small sample of 

modern human teeth is supplemented with a varied selection of modern and fossil hominoid teeth, 

ADT between tooth types changes little from anterior to posterior (Fig. 4). This suggests that within 

hominoids, tooth shape has less effect on ADT than on AET and average odontoblast secretory 

rates are little different between tooth types. 

With special reference to the first molars (M1), ADT does not exactly mirror AET (Figs. 5 and 6). For 

instance, orang-utans have enamel that more closely approaches Neandertals and modern humans 

in average enamel thickness than chimpanzees. But orang-utans have far greater ADT than either 

thin-enameled chimpanzees or thicker enameled Neandertals and modern humans. This 

demonstrates that ADT can vary independently of AET. 

When expressed as a percent of dentine area formed at crown completion, enamel areas in modern 

human, Neandertal and chimpanzee M1s are not obviously different from one another, but 

orangutan M1s show lower values (Fig. 7). This indicates more clearly that within a tooth type, the 

amount of enamel formed with respect to dentine in the same time period is not tightly linked or 

integrated. One or other or both tissues can form variable amounts of average thickness 

independent of the other. Indeed, each may be adaptive in different ways. 

When expressed as a percent of Martin’s dentine cap area, the pulp area at crown completion is 

greater in chimpanzee M1s than in modern human, Neandertal, and orangutan M1s (Fig. 8). This 

might in part be because the pulp cavity within the crown of the tooth is positioned higher in teeth 

where the coronal dentine experiences less wear (19-21). 

 

Concluding remarks 

These preliminary results show the relevance of measuring the area of dentine formed at crown 

completion to address paleobiological questions. ADT varies much less with tooth size and shape 

than AET from anterior to posterior in modern humans and among hominoids in general, and it does 

not consistently mirror AET, indicating that both tissues are not tightly linked during their 

development. Measuring the percent of enamel area formed with respect to the dentine area formed 

within the same time period is an alternative way of comparing relative enamel thickness between 

teeth. However the results need to be confirmed on larger ground and interpreted in the context of 
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rates of enamel and dentine formation during crown development. There remains also then the 

issue of finding sufficient numbers of tooth sections where dentine formation has not continued on 

as secondary dentine formation beyond the time of enamel (crown) completion. Alternatively, teeth 

where accentuated markings at the end of crown completion are also clearly reflected in the crown 

dentine are another means of defining ADT in fully formed teeth. 
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taxon incisors canines 
pre 

molars 
M1 M2 M3 Total 

modern humans 4 2 3 7 6 2 24 

Neandertals    14   14 

Pan troglodytes    4 1  5 

Pongo pygmaeus    4   4 

Proconsul nyanzae    1 2  3 

Gorilla gorilla    1   1 

Hispanopithecus laietanus    1   1 

Total 4 2 3 32 9 2 52 

M1: first molars; M2: second molars; M3: third molars 

 

Table 1. Composition of the hominoid maxillary and mandibular permanent tooth sample 
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Figure 1. Sketch of a longitudinal section in a molar showing measurements used to determine 

average and relative enamel thicknesses, and average dentine thickness. Average enamel thickness 

(AET) scales the area of the enamel cap (c: in light gray) to the length of the enamel-dentine junction 

(e). Relative enamel thickness (RET) is calculated as the AET divided by the square root of the 

dentine and pulp area (b: dark+white). Average dentine thickness (ADT) scales the area of dentine 

formed at crown completion (d: green) to e. 

 
 

 

Figure 2. Average enamel thickness (c/e; mm) in modern human permanent teeth. I: incisors; C: 

canines; P: premolars; M1: first molars; M2: second molars; M3: third molars. N = 24. 
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Figure 3. Average dentine thickness (d/e; mm) in modern human permanent teeth. I: incisors; C: 

canines; P: premolars; M1: first molars; M2: second molars; M3: third molars. N = 24. 

 

 

Figure 4. Average dentine thickness (d/e; mm) in modern humans, Neandertals, Pan troglodytes, 

Pongo pygmaeus, Proconsul nyanzae, Gorilla gorilla, and Hispanopithecus laietanus permanent teeth. 

I: incisors; C: canines; P: premolars; M1: first molars; M2: second molars; M3: third molars. N = 52. 
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Figure 5. Average enamel thickness (c/e; mm) in modern human (N = 7), Neandertal (N = 14), 

chimpanzee (N = 4), and orangutan (N = 4) permanent first molars. 

 

 

 

Figure 6. Average dentine thickness (d/e; mm) in modern human (N = 7), Neandertal (N = 14), 

chimpanzee (N = 4), and orangutan (N = 4) permanent first molars. 
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Figure 7. Enamel area as a percent of dentine area formed at crown completion (100 * c/d) in modern 

human (N = 7), Neandertal (N = 14), chimpanzee (N = 4), and orangutan (N = 4) permanent first 

molars. 

 

 

Figure 8. Pulp area at crown completion as a percent of Martin's dentine cap area (100 * p/b) in 

modern human (N = 7), Neandertal (N = 14), chimpanzee (N = 4), and orangutan (N = 4) permanent 

first molars. 

 


