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Summary 

The theory of torsion of thin walled beams of open cross-sections with influence of 
shear on the basis of the classical Vlasov’s theory of thin-walled beams of open cross-sections 
for beams with single and double symmetrical cross-sections is developed. It is proved that 
the beam subjected to torsion with influence of shear exerted by couples in the beam cross-
sections is also subjected to bending due to shear in the plane orthogonal to the plane of 
symmetry. The beam is subjected to torsion with influence of shear only in the case of double 
symmetrical cross-sections. The principal cross-section axes as well as the principal pole are 
defined according to the classical theory of thin-walled beams of open sections. Illustrative 
examples are given, as well as a comparison with the finite element method. 

Key words: torsion of thin-walled beams, influence of shear, open sections,  
single and double symmetrical section, analytic method; FEM 

1. Introduction 

In classical theories of torsion of thin-walled beams with open cross-sections the 
warping of the cross-section due to shear is neglected [1-4]. 

By analogy to the advanced theories of bending, in an engineering approach [5-11], the 
concept of shear factors is considered in torsion [12-20]. 

In the case of single symmetrical cross-sections, the effect of bending due to shear in the 
plane orthogonal to the beam plane of symmetry, as the result of torsion with influence of 
shear, has not been sufficiently investigated [12,13,16,20]. Still, some results are available 
where numerical methods are applied [21-23]. 

In this paper, an analytical solution for shear factors in torsion will be investigated; the 
stress distributions along the beam cross-section contour will be given in the analytic form, as 
well as the stresses and displacements along the beam length. Beams with single and double 
symmetrical cross-sections under various torsion load conditions will be considered. The 
results will be compared with the finite element method. 
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2. Strains and displacements 

The displacement of an arbitrary point S(x,s) of the middle surface of a thin-walled 
beam of open cross-section with one axis of symmetry subjected to torsion can be expressed 
as 

0

d d
d

d d

s

S x

v
u y s

x x 
       , (1) 

where ( )x   is the angle of torsion, i.e. the rotation of the cross-section middle line as a 
rigid line with respect to a cross-section pole P, in the axis of symmetry, ( )v v x  is the 
displacement of the pole P in the y-direction, ( )y y s  is the orthogonal coordinate, 

( , )x x x s    is the shear strain in the middle surface, s is the curvilinear coordinate of the 

middle line,   is the tangential axis on the curvilinear coordinate s; Oxyz is the orthogonal 
coordinate system, where the z-axis is the axis of symmetry (Fig. 1); 

0
d

s

Ph s   ,    d dPh s  , (2) 

where ( )s   is the  sectorial coordinate for the pole P and ( )P Ph h s  is the distance of the 

tangent through the arbitrary point S at the middle line from the pole P. 

   
 Fig. 1  Cross-section middle-line Fig. 2  The equilibrium of the element of the wall 

Here ( 0) 0s   , so Eq. (1) may be expressed as 

0
d

s

S xu y s      ,    d dx    ,    d dv x  ; (3) 

where ( )x   is the relative angular displacement of the middle line as rigid line with 
respect to the pole P and ( )x  is the angular displacement of the middle line as rigid line 
with respect  to the z-axis. 

Thus, it is assumed that the cross-section middle line is displaced in the longitudinal 
direction due to warping, as in the case of the ordinary theory of torsion, expressed by the first 
member of Eq. (3), and in addition, due to the influence of shear, expressed by the second and 
third members of Eq. (3). 

The displacements may be separated as follows 

t a    ,    av v , (4)   

where ( )t t x   is the angular displacement of the cross-section as plane section with 

respect to the pole P , as in the case of the classical theories of thin-walled beams of open 

cross-sections, ( )a a x   and ( )a av v x  are  the additional displacements due to shear.  
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Then 

t a    ,  d dt t x   ,  d da a x   ,   d da av x   . (5) 

The strain in the beam longitudinal direction may be then expressed as  

2 2

2 2 0

d d
d

d d

s x
x

u v
y s

x x x x
 


    
  .  (6) 

3. Stresses and displacement 

By ignoring the normal stresses in the transverse directions, Hooke’s law may be 
written as 

x xE      x xG   , (7) 

where E is the modulus of elasticity and G is the shear modulus.  

Thus 

2 2

2 2 0

d d
d

d d

s x
x

v E
E E y s

x x G x
 


   

 . (8) 

From the equilibrium of a differential portion of the beam wall, it may be written 

 
0

1
d ( )

s
x

x

t
s f x

t x




 
    

 ,    ( ) ( , ) ( )x Mf f M x M T x  ; 

( )t t s  is the wall thickness (Fig. 2). 

If .x x const   , the shear stress, referring to (8), can be expressed as 

3 3

3 3

1 d d
( ) ( )

d dx M z

v
T E S s S s

t x x 


  
    

  
, 

0

( ) d
s

zS s y A  , 
0

( ) d
s

S s A   , d dA t s . (9) 

Eq. (9) may be rewritten as 

3 3

3 3

d d

d dx z

E v
S S

t x x 
   

   
 

, 
*

dz

s

S y A   , 
*

d
s

S A    , d dA t s  , d ds s   , (10)  

where )(** sSS zz  is the moment of the cut-off portion of area with respect to the z-axis, 

( )S S s 
  is the sectorial moment of the cut-off portion of area with respect to the sectorial 

coordinate ω, s is the curvilinear coordinate of the cut-off portion of the beam wall of area 

( )A A s  , from the free edge, i.e. where 0x  . 

It is assumed that the normal stress given by Eq. (8) and the shear stresses given by Eqs. 
(9) and (10) are constant across the wall thickness. According to the assumption that cross-
sections maintain their shape during deformations, the St. Venant pure torsion may be 

included by the linearly distributed component V V
, ( , )x V x x s   , 

V
x t tM I  ,  (11) 
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where ( )t tM M x  is the moment of pure torsion, given as 

3d 1
, d .

d 3
t

t t t t t L
M GI GI I t s

x

       (12) 

Thus, the total shear stress tot tot ( , )x x x s    is  

tot V
x x x      .  (13) 

4. Equilibrium equations 

It is assumed that the beam is loaded by couples in the cross-section planes, i.e. by 
moments per unit length ( )P Pm m x : 

dP zL
m p y s  , (14) 

where ( , )z zp p x s  is the surface loads with respect to the z-axes and L is the cross-section 

middle line length. 

For a portion of the beam wall, the following equilibrium equations can be written 

 
cos d d 0

x
y

L

t
F x s

x





 
  , 

  d
d d d d 0

d
x t

P P
L

t M
M x h s x m x

x x


   
   (15) 

where 

d
d d d d

d
t t

tL L

M M
s M s x x

x x

  
    

 


 . 

Taking into account Eqs. (2), Eqs. (15) can be rewritten as 

 
d 0

x

L

t
y

x



 ,    

  d
d 0

d
x t

PL

t M
m

x x





  
 .  (16)  

By integrating by parts one has 

   2
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y y s

x s x
    

  
    

 ,    2

1

d
d 0

d

e

x x t
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Le

t t M
s m

x s x x
  

 
  

    
    

  (17) 

where 1e and 2e  are the boundaries, where 0x  .  

Thus,   

 
d 0

x

L

t
y s

x s
 

 
   

 ,       d
d 0

d
x t

P
L

t M
s m

s x x



 

   
   

 . (18) 

By substituting Eqs. (9) and (12) one has  
4 4

4 4

d d
0

d d
z z

v
EI EI

x x



  ,     

4 4

4 4

d d

d d
z

v
EI EI m

x x
  


  , (19) 

where: 2dz A
I y A  , dz z A

I I y A     , 2d
A

I A   , d dP tm m M x   ; 

i.e. recalling Eq. (12) 
2

2

d d

dd
t t

P t P tm m GI m GI
xx

 
    .  (20) 
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If y and   are the principal coordinate, i.e. if the pole P is the principal pole, when 
0z zI I   , Eqs. (19) take the following simple forms 

4

4

d
0

d

v

x
 ,     

4

4

d

d
EI m

x 

 , (21) 

5. Internal forces and shear stresses 

Integration of the shear stress components x  over the cross-sections gives 

cos d 0x
A

A   ,      dx P
A

M h A   ,  (22)  

where ( )M M x   is the sectorial moment of torsion with respect to the pole P. 

Substitution of Eq. (10) into Eqs. (22) gives 
3

3

d
0

d

v

x
 ,      

3

3

d

d
M EI

x 


  , (23) 

where: cos d cos d dA t s t y   , d d dP Ph A h t s t   , d 0z zL
S I    , d

L
S I   . 

Referring to Eqs. (21) and (23) gives 

d dM x m   . (24) 

Thus, by substituting Eq. (19) into (10), the shear stress component x can finally be 

written as  

x
M S

I t
 







 . (25) 

According to the assumption .x x const   , it follows, referring to (24), that 

m const  . Referring to (20), if Pm const , then d dx const  ., d dtM x const . 

That could be accepted only as an approximation; or the case when the St. Venant shear 
component (11) may be ignored with respect to the warping component (25). 

6. Internal forces and normal stresses 

Integration of the normal stresses over the cross-sections gives 

dxA
B A   ,       d 0xA

y A  , (26) 

where ( )B B x  is the bimoment. 

By substituting Eq.(8) into Eqs. (26), the following can be written 
2

2

d

d
B EI B

x





   ,      
2

2

d
0

dz z

v
EI M

x
  , (27) 

where 

0
d d

s x

A

E
B A s

G x
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


 
  ,      

0
d d

s x
z

L

E
M y A s

G x
 


  , (28) 

i.e. referring to Eq. (25)  
2

d
A

SE
B m A

GI t
 




 
  

 
 ,      dz

z L

E S S
M m s
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 




 

   . (29) 
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Referring to Eqs. (23) and (27), it follows 
3

3

d d d

d d d

B B
EI M

x x x



 


    ,      
3

3

dd
0

d d
z

z

Mv
EI

x x



  , (30) 

and according to Eq.(21) 
4 2 2

4 2 2

dd d d

d d d d

MB B
EI m

x x x x




 


      ,     
4

4

d
0

dz

v
EI

x
 ,  (31) 

where according to Eqs. (13) and (20) 

P tM M M  ,     d dP Pm M x  .  (32) 

It is assumed that .m const  ; for .m const  , Eqs. (30) and (31) give an approximate 

solution to the problem.  

The normal stress given by Eq. (8), referring to Eqs. (24), (25) and (27), can be 
expressed as 

0
d

s
z

x
z

B B E m S M
s y

I I G I t I

 
 
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  


     .  (33) 

The internal forces given by Eq. (29) can also be written as 

P

EI
B m

GI
 

  ,     z
z y

P

EI
M m

GW


   , (34) 

where 
2

2
dP

A
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A

I t






 

  
 
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2

dzP
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z
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I I t






 

   (35) 

are the shear factors with respect to the  -displacements and to the v-displacements during 
the  -displacements, respectively; 

2 dP P

A

I h A  ,    
0

P
P

I
W

h
  (36) 

are the polar second moment of area with respect to the principal pole P and the polar section 
modulus with respect to the pole, respectively; 0h is the distance of the tangent through the 

arbitrary starting point 0M  (where the principal coordinate   is equal to zero) from the 

principal pole P. 

Hence, the normal stresses given by (33) can also be written as 

0
d

s y
x

P P

EE SB E
m m s m y

I GI GI t GW
 
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 

 


    . (37) 

7. Differential equations with separated displacements 

Eqs. (27), according to Eqs. (34) and (35) can be expressed as 
2

2

d

d P

mB

x EI GI
 




   ,     

2

2

d

d
y

P

v
m

x GW





  . (38) 

Eqs. (38), referring to Eqs. (4) can be separated as 
2

2

d

d
t B

EIx 


  ,   

2

2

d

d
a

P

m
GIx



 

  ,   
2 2

2 2

d d

d d
ya

P

v v
m

GWx x





   . (39)   
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Integrating the 2nd and 3rd of Eqs. (39), taking into account Eq. (24) gives 
d

d
a

a
P

M

x GI
      ,     

d

d
ya

a
P

Mv

x GW
 

    (40)   

where the integration constants are ignored; it is assumed that the angular displacements 

a and a do not depend on the boundary conditions. 

The first of Eqs. (39) is the well known equation of the classical theory of torsion of 
thin-walled beams, where 

3

3

d d

dd
t B

EI M
xx

 


    ,  
4 2

4 2

d dd

dd d
t MB

EI m
xx x


 


     ,  d

d
t

tx

   . (41) 

Eqs. (40) take into account the displacement due to shear. Integrating Eqs. (40) gives 

a
P

B C
GI



   ,    y

a v
P

v B C
GW


  , (42)  

where C and vC  are the integration constants, with respect to the  and v -displacements, 

respectively. 

Eqs. (42) can also be written as 

a
Pr

B
C

GI    ,    a v
Py

B
v C

GW
  ,   P

Pr
I

I


 ,     P
Py

y

W
W


  (43) 

where IPr and WPy are the reduced polar second moment of area and the reduced polar 
modulus of area due to shear, respectively. 

The normal stresses may then be written as 

0
d

s

x
Pr Py

B E E S E
m m s m y

I GI GI t GW


  
 

 


    . (44) 

8. Shear strain energy 

According to Hooke’s law, taking into account Eq. (5), the second of Eqs. (36) and the 
first of Eqs. (40), the average shear stresses with respect to the displacements s , i.e. 0sh , 

can be expressed as 

 , , 0dx av x av a
P

d
G G h M

x W


  
     , (45) 

where ,x av  is the average shear strain with respect to the displacements s , i.e. 0ah . 

The average shear stresses can also be expressed as 

,x av PM W    ,     P PW W  . (46) 

The shear energy of the beam element may be expressed as 

2d
d d

2 xA

x
U A

G   , (47) 

i.e. according to Eq. (25)  
22

2

d
d d

2 A

M Sx
U A

G tI
 



 
  

 
 . (48) 
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The shear energy can be expressed also by average shear deformations as 

  , ,
0 0

d d d
d

2 2 2a x av x av
x x M x M

U M
h G h
 

        .  (49) 

i.e. taking into account the second of Eqs. (36) and Eq. (44) 

2d
d

2 P

x
U M

G I





 . (50) 

The shear factor   can be obtained by equating (50) and (48). The result will be equal 

to the obtained shear factor, given by (35). 

9. Boundary conditions 

Boundary conditions can be defined as follows, at the staring section D, 

0a  ,    0av  . (51) 

Hence, referring to Eq. (43), 

D

Pr

B
C

GI   ,    D
v

Py

B
C

GW
  ,    ( )D DB B x x   (52) 

The total displacements then are 

D
t

Pr

B B

GI
  
  ,    D

Py

B B
v

GW


 , (53)  

For the hinged sections it may be written 

0
D D

tx x x x
 

 
  , 

2

2

d
0

d
D

t

x x
x





   0DB  ; 0
E E

tx x x x
 

 
  , 

2

2

d
0

d
E

t

x x
x





 .  0EB   (54) 

For the clamped sections: 

0
D D

tx x x x
 

 
  ,    d

0
d

D

t

x xx





     0t
D  ;  

2 2

2 2

1 d d
0

d dE E

E D

t t
tx x x x

Ps x x x x

EI EI
GI x x 

  
 

 

 
     

 
 

,  d
0

d
E

t

x xx





    0E  . (55)  

For the free section: 
2

2

d
0

d
D

t

x x
x





      0DB  ;     
3

3

d
0

d
D

t

x x
x





      0DM   . (56) 

10. Double symmetrical cross-section 

For double symmetrical cross-sections the normal stresses given by Eq. (44) become 

0
d

s

x
Pr

B E E S
m m s

I GI GI t


 
 

 


    , (57) 

where due to symmetry  

0y       PyW   , (58) 

i.e. referring to the second equation of Eqs. (35) 

2
d 0z

A

S S
A

t


 

 . (59) 
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The total displacements given by Eq. (53) become 

D
t

Pr

B B

I
  
  ,     0v  , (60) 

11. Illustrative examples 

The I-section with two axes of symmetry (Fig. 3.a) and a symmetrical U-section (Fig. 
3.b) are considered.  

 
Fig. 3  Analysed cross-sections: a) double symmetrical I-section; b) symmetrical U-section 

The shear factors for the double symmetrical I-section, according to Eqs. (58) and (35) 
are: 

0, 6 5y    . (61) 

The shear factors for the symmetrical U-section, according to Eqs. (35) are: 

   
  

22 2

22

18 1 6 10 5 6 2
,

20 2 3 1 6
y

    


  

          
 

 

   
   

22 2 2

2 22

3 18 1 6 2 8 21 18 3

10 1 6 2 3


     


  

          
 

, (62) 

where: 1 1 0 0 0 1, , , , sA bt A ht A A b h L h      , 3 (1 6 )Ph h   . 

Shear factors given by (62), for the U-section beam (b = 5 m, h = 3.5 m, t = 0.2 m) are 
indirectly compared with those presented in [21] as shown in Table 1.   

Table 1  Comparison of shear factors for the U-section 

Presented theory Kim [21] 

35.77375 mP
Py

y

W
W


    3

3 5.77375 mr PyA W    

47.28238 mP
Pr

I
I


   47.28238 mr PrA I   

The comparison of the angle of torsion and the lateral displacement, given by (53), at 
the free end of the cantilevered U-section beam (l = 18 m, b = 5 m, h = 3.5 m, t = 0.2 m) 
subjected to the end moment of torsion Mt = 1000 kNm, with material properties 
E = 30000 kN/m2 and G = 13000 kN/m2 is given in Table 2. 
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Table 2  Comparison of the angle of torsion and the lateral displacement of the U-section beam 

 Presented theory Kim [21] El Fatmi [23] 
rad10 3  4.253 4.236 4.203 

m10 4v  2.172 2.163 2.369 

The range of examples has been carried out by the FEM using Autodesk Algor 
Simulation Pro in order to compare the results with those obtained analytically, by the 
presented theory (TIS – Torsion with Influence of Shear). Shell elements with 5 DOF are 
used. Mesh was generated with square elements with sides of 40h . 

 

Fig. 4  The boundary conditions: a) a simply supported beam; b) a clamped beam 

Due to symmetry, only one half of the beam is modelled. Fig. 4 shows the boundary 
conditions that are used: at the simply supported end and at / 2x l  (Fig. 4.a), at the clamped 
end and at / 2x l  (Fig. 4.b). The sign  means that a certain displacement, translation T or 
rotation R, is constrained. 

The beams under uniformly distributed moments of torsion per unit length mP were 
analysed, where: 

400 mm, (I-sec.), 2 (U-sec.),h b h b h   1 2 0 / 40,t t t h   210 GPa, 0.3E   . 

Some results in comparison with the FEM analysis are presented in Tables 3 and 4 and 
in Figs. 5 and 6. 

The normal stresses in the x-direction at the selected point of the beam cross-section are 
normalised as follows: ,max

Vlasov
x x  , ,max

FEM Vlasov
x x  , where x  is the normal stress in the x-

direction at the selected point obtained analytically by Eq. (75), FEM
x  is the maximal normal 

stress in the x-direction at that point obtained by the FEM, and Vlasov
x max,  is the maximal normal 

stress in the x-direction at the point A (Fig. 3) according to the classical Vlasov's theory. 

Table 3  Normalised maximal normal stresses 

 Double sym. I-section (point A, Fig. 8.a) Symmetrical U-section (point A, Fig. 8.b) 
 Simply supported Clamped Simply supported Clamped 

L/h TIS FEM TIS FEM TIS FEM TIS FEM 
3 1.039 1.041 1.116 1.091 1.025 1.026 1.073 1.057 
5 1.014 1.016 1.042 1.032 1.009 1.010 1.026 1.012 

The maximal angles of torsion are normalised as: Vlasov   and FEM Vlasov  , where   
is the maximal angle of torsion obtained analytically by Eq. (78), FEM FEM

B Pv l   is the 

maximal angle of torsion obtained indirectly by the FEM, where FEM
Bv  is the horizontal 

displacement of the point B obtained by the FEM with / 2Pl h  for a double symmetrical I-

section and P Pl h  for a symmetrical U-section; Vlasov
t   is the maximal angle of torsion 

according to the classical Vlasov's theory. 
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Table 4  Normalised maximal angles of torsion for various ratios L/h 

 Double symmetrical I-section Symmetrical U-section 

 Simply supported Clamped Simply supported Clamped 

L/h TIS FEM TIS FEM TIS FEM TIS FEM 

3 1.277 1.295 2.387 2.359 1.129 1.123 1.644 1.596 

5 1.100 1.105 1.500 1.483 1.046 1.044 1.232 1.206 

 

Fig. 5 Normalised normal stresses at the clamped beam midspan (L=3h):  
a) top flange of the double symmetrical I-section, b) horizontal wall of the symmetrical U-section 

The normalised horizontal displacements of the point B, in the case of double 
symmetrical I-section, are expressed as ,max

Vlasov
B Bv v  and ,max

FEM Vlasov
B Bv v , where Bv  is the total 

horizontal displacements of the point B obtained analytically and Vlasov B
B t Pv h  is the 

horizontal displacement of the point B according to the classical Vlasov's theory, whereas B
Ph  

is the distance between points B and P. 

The normalised horizontal displacements of the point C, in the case of symmetrical U-
sections, are expressed as ,max

Vlasov
C Cv v  and ,max

FEM Vlasov
C Cv v , where Cv  is the total horizontal 

displacements of the point C obtained analytically, FEM
Cv  is the horizontal displacement of the 

point C by the FEM, and Vlasov
C t Pv h  is the horizontal displacement of the point C according 

to the classical Vlasov's theory. Then the total horizontal displacement of the point C of the 
cross-section can be expressed as zMVlasov a

C C C Cv v v v   where a
Cv  is the horizontal 

displacement of the point C due to shear, and zM
Cv  is the horizontal displacement of the point 

C due to bending caused by shear.  

 
Fig. 6  Normalised horizontal displacements at the clamped beam (L=3h): a) total displacement of the point B of 

double symmetrical I-section, b) component displacements of the point C of symmetrical U-section 
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12. Conclusion 

A theory of torsion of thin-walled beams with influence of shear for open cross-sections 
with one axis and two axes of symmetry is developed. The theory is based on the classical 
Vlasov's theory. The shear factors with respect to the torsion are given in the analytic form. 

 It is proved that the beam with single symmetrical sections, loaded by couples in the 
plane of the cross-sections, is also subjected to bending due to shear in the plane orthogonal to 
the plane of symmetry. 

Thus, a new shear factor is introduced, given by (35) and (62), with respect to bending 
due to shear, as a result of torsion, which vanishes for double symmetrical cross-sections. 

For various types of cross-sections with one and two axes of symmetry, the shear 
factors are given in the parametric forms. 

The normal stress can be obtained in the analytic form both along the cross-section 
middle line and the beam length. Both simply supported and clamped beams under uniformly 
distributed moments of torsion per unit length are considered.  

Several examples are analyzed in comparison with the finite element method. Excellent 
agreements of the results for displacements are obtained, as well as for the normal stresses. 
Some discrepancies for normal stresses are noticed by the presented theory and the finite 
element method at the beam ends in the case of clamped ends, as a result of different 
boundary conditions.  

Appendix A: Cross-section functions 

Cross-section functions for the double symmetrical I-section (Fig. A1) are: 

 

Fig. A1  Double symmetrical I-section: Cross-section functions 
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Fig. A2  Symmetrical U-section: Cross-section functions 
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Cross-section functions for the symmetrical U-section (Fig. A2) are: 

 * 0

2z
bt

S h s       0 s h  ,     2* 20

4 P
t b

S s h h
     

      P Ph s h h    ; 

 
* 22 2 2

0

3 2 6 3
12 12

s
P

P P P
S bhb

ds s s h h h hh h
t
                   P Ph s h h    ; 
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* 20 1
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A b t b

S s
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