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On NP - polyagroups

Janez Ušan∗ and Radoslav Galić†

Abstract. In the present paper: 1) an NP–polyagroup is defined
as a generalization of an n−group for n ≥ 3; and 2) NP–polyagroups of
the type (s, n− 1) is described as algebras of the type < n, n− 1, n− 2 >
[=< k · s + 1, k · s, k · s − 1 >; k > 1, s ≥ 1 ].
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1. Preliminaries

Definition 1. Let n ≥ 2 and let (Q, A) be an n-groupoid. We say that (Q, A) is
a Dörnte n-group [ briefly: n-group ] iff it is an n-semigroup and an n-quasigroup
as well.

Remark 1. A notion of an n-group was introduced by W. Dörnte in [1] as a
generalization of the notion of a group. See, also [2–4].

Proposition 1 [10]. Let n ≥ 2 and let (Q, A) be an n-groupoid. Then the
following statements are equivalent :

(i) (Q, A) is an n-group;

(ii) there are mappings −1and e of the sets Qn−1 and Qn−2, respectively, into the
set Q such that the following laws hold in the algebra (Q, {A, −1, e}) [ of the
type 〈n, n − 1, n− 2〉 ]

(a) A(xn−2
1 , A(x2n−2

n−1 ), x2n−1) = A(xn−1
1 , A(x2n−1

n )),

(b) A(e(an−2
1 ), an−2

1 , x) = x and

(c) A((an−2
1 , a)−1, an−2

1 , a) = e(an−2
1 ); and
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(iii) there are mappings −1and e of the sets Qn−1 and Qn−2, respectively, into the
set Q such that the following laws hold in the algebra (Q, {A, −1, e}) [ of the
type 〈n, n − 1, n− 2〉 ]

(ā) A(A(xn
1 ), x2n−1

n+1 ) = A(x1, A(xn+1
2 ), x2n−1

n+2 ),

(b̄) A(x, an−2
1 , e(an−2

1 )) = x

(c̄) A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).

Remark 2. e is a {1, n}-neutral operation of an n-groupoid (Q, A) iff algebra
(Q, {A, e}) of the type 〈n, n−2〉 satisfies the laws (b) and (b̄) from Proposition 1 [: [7]
]. The notion of an {i, j}-neutral operation (i, j ∈ {1, ..., n}, i < j) of an n-groupoid
is defined in a similar way [: [7] ]. Every n-groupoid has at most one {i, j}-neutral
operation [: [7] ]. In every n-group (n ≥ 2) there is an {1, n}-neutral operation [: [7]
]. There are n-groups without an {i, j}-neutral operation with {i, j} 	= {1, n} [ :[9]
]. In [9], n-groups with {i, j}-neutral operations, for {i, j} 	= {1, n} are described.
Operation −1from Proposition 1 [ (c), (c̄)] is a generalization of the inverse operation
in a group. In fact, if (Q, A) is an n-group, n ≥ 2, then for every a ∈ Q and for
every sequence an−2

1 over Q

(an−2
1 , a)−1def

= E(an−2
1 , a, an−2

1 ),

where E is a {1, 2n−1}-neutral operation of the (2n−1)-group (Q,
2

A);
2

A (x2n−1
1 )

def
=

A(A(xn
1 ), x2n−1

n+1 )[: [8] ]. (For n = 2, a−1 = E(a); a−1 is the inverse element of
element a with respect to the neutral element e(∅) of the group (Q, A).)

Definition 2. Let k > 1, s ≥ 1, n = k · s + 1 and let (Q, A) be an n−groupoid.
Then, we say that (Q, A) is a partiallys−associative (briefly: Ps–associative)
n−groupoid iff for every i, j ∈ {t · s + 1|t ∈ {0, 1, . . . , k}}, i < j, the following law
holds

A(xi−1
1 , A(xi+n−1

i ), x2n−1
i+n ) = A(xj−1

1 , A(xj+n−1
j ), x2n−1

j+n )

[: < i, j > −associative law ].
Remark 3. For s = 1 (Q, A) is a (k + 1)−semigroup; k > 1. A notion of an

s-associative n-groupoid was introduced by F.M. Sokhatsky (for example [5]).
Definition 3. Let k > 1, s ≥ 1, n = k · s + 1 and let (Q, A) be an n−groupoid.

Then, we say that (Q, A) is a P–polyagroup of the type (s, n − 1) iff it is a
Ps−associative n−groupoid and an n−quasigroup.
A notion of a polyagroup was introduced by F.M. Sokhatsky (for example [6]).

2. Auxiliary propositions

Proposition 2 [10]. Let n ≥ 2 and let (Q, A) be an n−groupoid. Furthermore,
let the < 1, n > −associative law hold in (Q, A), and let for every an

1 ∈ Q there
be at least one x ∈ Q and at least one y ∈ Q such that the following equalities
A(an−1

1 , x) = an and A(y, an−1
1 ) = an hold. Then, there are mappings e and −1

respectively of the sets Qn−2 and Qn−1 into the set Q such that the following laws

A(e(an−2
1 ), an−2

1 , x) = x, A(x, an−2
1 , e(an−2

1 )) = x,

A((an−2
1 , x)−1, an−2

1 , x) = e(an−2
1 ), A(x, an−2

1 , (an−2
1 , x)−1) = e(an−2

1 ),
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A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = x and

A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) = x

hold in the algebra (Q, {A,−1 , e}).
(See, also [11].)

Proposition 3. Let k > 1, s ≥ 1, n = k ·s+1 and let (Q, A) be an n−groupoid.
Also, let

(a) the < 1, s + 1 > −associative [< (k − 1) · s + 1, k · s + 1 > −associative ] law
hold in the (Q, A); and

(b) for every x, y, an−1
1 ∈ Q the following implication holds

A(x, an−1
1 ) = A(y, an−1

1 ) ⇒ x = y
[ A(an−1

1 , x) = A(an−1
1 , y) ⇒ x = y ].

Then (Q, A) is a Ps−associative n−groupoid.
Sketch of the proof.
A(A(xn

1 ), x2n−1
n+1 ) = A(xs

1, A(xs+n
s+1 ), x2n−1

s+n+1) ⇒ A(ys
1, A(A(xn

1 ), x2n−1
n+1 ), yn−1

s+1 )

= A(ys
1, A(xs

1, A(xs+n
s+1 ), x2n−1

s+n+1), y
n−1
s+1 ) ⇒ A(A(ys

1, A(xn
1 ), x2n−1−s

n+1 ), x2n−1
2n−s, y

n−1
s+1 )

= A(A(ys
1, x

s
1, A(xs+n

s+1 ), x2n−1−s
s+n+1 ), x2n−1

2n−s, y
n−1
s+1 ) ⇒ A(ys

1, A(xn
1 ), x2n−1−s

n+1 )

= A(ys
1, x

s
1, A(xs+n

s+1 ), x2n−1−s
s+n+1 ).

(See, also [10,11].) ✷

3. Results

Definition 4. Let k > 1, s ≥ 1, n = k · s + 1 and let (Q, A) be a Ps−associative
n−groupoid. We shall say that (Q, A) is a near–P–polyagroup (briefly: NP–
polyagroup) of the type (s, n − 1) iff for every i ∈ {t · s + 1|t ∈ {0, 1, . . . , k}}
and for all an

1 ∈ Q there is exactly one xi ∈ Q such that the equality

A(ai−1
1 , xi, a

n−1
i ) = an

holds.
Remark 4. Every P–polyagroup of the type (s, n − 1) is an NP–polyagroup of

the type (s, n − 1).
Example 1. Let (Q, ·) be a group and let α be a mapping of the set Q into the

set Q. Let, also, for each x5
1 ∈ Q

A(x5
1)

def
= x1 · α(x2) · x3 · α(x4) · x5.

Then (Q, A) is an NP–polyagroup of the type (2,4). Moreover, if α is not a permu-
tation of the set Q, then (Q, A) is not a 5−quasigroup.

Theorem 1. Let k > 1, s ≥ 1, n = k · s + 1 and let (Q, A) be an n−groupoid.
Then, (Q, A) is an NP–polyagroup of the type (s, n− 1) iff there are mappings
−1 and e respectively of the sets Qn−1 and Qn−2 into the set Q such that the
following laws hold in the algebra (Q, {A,−1 , e}) [ of the type < n, n− 1, n− 2 > ]:
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(i) A(A(xn
1 ), x2n−1

n+1 ) = A(xs
1, A(xs+n

s+1 ), x2n−1
s+n+1),

(ii) A(x, an−2
1 , e(an−2

1 )) = x and

(iii) A(a, an−2
1 , (an−2

1 , a)−1) = e(an−2
1 ).

[See, also Proposition1, Remark 2 and Theorem2]
Proof. 1)⇒: Let (Q, A) be an NP–polyagroup of the type (s, n − 1). Then, by

Proposition 2, there is an algebra (Q, {A,−1 , e}) of the type < n, n − 1, n − 2 > in
which the laws (i) − (iii) hold.

2)⇐: Let (Q, {A,−1 , e}) be an algebra of the type < n, n − 1, n − 2 > in which
the laws (i) − (iii) hold. We prove respectively that in that case the following
statements hold:

1◦ For every x, y, an−1
1 ∈ Q the following implication holds

A(x, an−1
1 ) = A(y, an−1

1 ) ⇒ x = y.

2◦ (Q, A) is a Ps−associative n−groupoid.
3◦ (∀ai ∈ Q)n−2

1 (∀x ∈ Q)A(e(an−2
1 ), an−2

1 , x) = x.

4◦ (∀ai ∈ Q)n−2
1 (∀x ∈ Q)A((an−2

1 , a)−1, an−2
1 , a) = e(an−2

1 ).

5◦ For every x, y, an−1
1 ∈ Q the following implication holds

A(an−1
1 , x) = A(an−1

1 , y) ⇒ x = y.

6◦ For every x, y, an−1
1 ∈ Q and for all t ∈ {1, . . . , k−1} the following implication

holds

A(at·s
1 , x, an−1

t·s+1) = A(at·s
1 , y, an−1

t·s+1) ⇒ x = y.

7◦ For every i ∈ {t · s + 1|t ∈ {0, 1, . . . , k}} and for all an
1 ∈ Q there is at least

one xi ∈ Q such that the following equality holds A(ai−1
1 , xi, a

n−1
i ) = an.

The proof of the statement of 1◦ :
By n ≥ 3 (: n = k · s + 1, k > 1, s ≥ 1), we conclude that the following series of

implications holds:
A(x, as−1

1 , a, an−2
s ) = A(y, as−1

1 , a, an−2
s ) ⇒

A(A(x, as−1
1 , a, an−2

s ), as−1
1 , e(an−2

s , as−1
1 ),

n−2−s
a , e(as−1

1 ,
n−2−s+1

a )) =

A(A(y, as−1
1 , a, an−2

s ), as−1
1 , e(an−2

s , as−1
1 ),

n−2−s
a , e(as−1

1 ,
n−2−s+1

a )) ⇒
A(x, as−1

1 , A(a, an−2
s , as−1

1 , e(an−2
s , as−1

1 )),
n−2−s

a , e(as−1
1 ,

n−2−s+1
a )) =

A(y, as−1
1 , A(a, an−2

s , as−1
1 , e(an−2

s , as−1
1 )),

n−2−s
a , e(as−1

1 ,
n−2−s+1

a )) ⇒
A(x, as−1

1 , a,
n−2−s

a , e(as−1
1 ,

n−2−s+1
a )) =

A(y, as−1
1 , a,

n−2−s
a , e(as−1

1 ,
n−2−s+1

a )) ⇒ x = y.

The proof of the statement of 2◦ :
By (i), 1◦, n ≥ 3 and by Proposition 3, we conclude that (Q, A) is a Ps−associative

n−groupoid.
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The proof of the statement of 3◦ :
A(e(an−2

1 ), an−2
1 , a) = b ⇒ A(A(e(an−2

1 ), an−2
1 , a), an−2

1 , (an−2
1 , a)−1)

= A(b, an−2
1 , (an−2

1 , a)−1) ⇒ A(e(an−2
1 ), an−2

1 , A(a, an−2
1 , (an−2

1 , a)−1))

= A(b, an−2
1 , (an−2

1 , a)−1) ⇒ A(e(an−2
1 ), an−2

1 , e(an−2
1 ))

= A(b, an−2
1 , (an−2

1 , a)−1) ⇒ e(an−2
1 ) = A(b, an−2

1 , (an−2
1 , a)−1) ⇒

A(a, an−2
1 , (an−2

1 , a)−1) = A(b, an−2
1 , (an−2

1 , a)−1) ⇒ a = b
[: 2◦, (iii), (ii), (iii), 1◦].

The proof of the proof of 4◦ :
A((an−2

1 , a)−1, an−2
1 , a) = b ⇒ A(A((an−2

1 , a)−1, an−2
1 , a), an−2

1 , (an−2
1 , a)−1)

= A(b, an−2
1 , (an−2

1 , a)−1) ⇒ A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , (an−2

1 , a)−1))

= A(b, an−2
1 , (an−2

1 , a)−1) ⇒ A((an−2
1 , a)−1, an−2

1 , e(an−2
1 ))

= A(b, an−2
1 , (an−2

1 , a)−1) ⇒ A(e(an−2
1 ), an−2

1 , (an−2
1 , a)−1)

= A(b, an−2
1 , (an−2

1 , a)−1) ⇒ e(an−2
1 ) = b

[: 2◦, (iii), (ii), 3◦, 1◦].

The proof of the statement of 5◦ :
Since the < 1, n > −associative law [:2◦] as well as the statements 4◦ and 3◦

hold in (Q, A), we conclude that for every x, y, a ∈ Q and for every sequence an−2
1

over Q the following series of implication holds:
A(a, an−2

1 , x) = A(a, an−2
1 , y) ⇒ A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , x))

= A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , y)) ⇒ A(A((an−2

1 , a)−1, an−2
1 , a), an−2

1 , x)

= A(A((an−2
1 , a)−1, an−2

1 , a), an−2
1 , y) ⇒ A(e(an−2

1 ), an−2
1 , x)

= A(e(an−2
1 ), an−2

1 , y) = x = y.

The proof of the proof of 6◦ :
A(at·s

1 , x, ak·s
t·s+1) = A(at·s

1 , x, ak·s
t·s+1) ⇒ A(b(k−t)·s

1 , A(at·s
1 , x, ak·s

t·s+1), bk·s
(k−t)·s+1)

= A(b(k−t)·s
1 , A(at·s

1 , y, ak·s
t·s+1), b

k·s
(k−t)·s+1) ⇒

A(A(b(k−t)·s
1 , at·s

1 , x), ak·s
t·s+1, b

k·s
(k−t)·s+1) = A(A(b(k−t)·s

1 , at·s
1 , y), ak·s

t·s+1, b
k·s
(k−t)·s+1)

⇒ A(b(k−t)·s
1 , at·s

1 , x) = A(b(k−t)·s
1 , at·s

1 , y) ⇒ x = y
[:2◦, 1◦, 5◦].

The proof of the proof of 7◦ :

a) t = 0 : A(x, an−2
1 , a) = b ⇔

A(A(x, an−2
1 , a), an−2

1 , (an−2
1 , a)−1) = A(b, an−2

1 , (an−2
1 , a)−1) ⇔

A(x, an−2
1 , A(a, an−2

1 , (an−2
1 , a)−1)) = A(b, an−2

1 , (an−2
1 , a)−1) ⇔

A(x, an−2
1 , e(an−2

1 )) = A(b, an−2
1 , (an−2

1 , a)−1) ⇔
x = A(b, an−2

1 , (an−2
1 , a)−1)

[:2◦, (iii), (ii)].
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b) t = k : A(a, an−2
1 , x) = b ⇔

A((an−2
1 , a)−1, an−2

1 , A(a, an−2
1 , x)) = A((an−2

1 , a)−1, an−2
1 , b) ⇔

A(A(an−2
1 , a)−1, an−2

1 , a), an−2
1 , x)) = A((an−2

1 , a)−1, an−2
1 , b) ⇔

A(e(an−2
1 ), an−2

1 , x) = A((an−2
1 , a)−1, an−2

1 , b) ⇔
x = A((an−2

1 , a)−1, an−2
1 , b)

[:2◦, 4◦, 3◦].
c) 0 < t < k : A(at·s

1 , x, ak·s
t·s+1) = b ⇔ A(b(k−t)·s

1 , A(at·s
1 , x, ak·s

t·s+1), b
k·s
(k−t)·s+1)

= A(b(k−t)·s
1 , b, bk·s

(k−t)·s+1) ⇔
A(A(b(k−t)·s

1 , at·s
1 , x), ak·s

t·s+1, b
k·s
(k−t)·s+1)

= A(b(k−t)·s
1 , b, bk·s

(k−t)·s+1)

[:6◦, 2◦]. ✷

By a simple imitation of the proof of Theorem 1 it is possible to prove that the
following proposition holds:

Theorem 2. Let k > 1, s ≥ 1, n = k · s + 1 and let (Q, A) be an n−groupoid.
Then, (Q, A) is an NP–polyagroup of the type (s, n− 1) iff there are mappings
−1 and e respectively of the sets Qn−1 and Qn−2 into the set Q such that the
following laws hold in the algebra (Q, {A,−1 , e}) [ of the type < n, n − 1, n− 2 >]:

(i) A(x(k−1)·s
1 , A(x(k−1)·s+n

(k−1)·s+1 ), x2n−1
(k−1)·s+n+1) = A(xk·s

1 , A(x2n−1
k·s+1)),

(ii) A(e(an−2
1 ), an−2

1 , x) = x and
(iii) A((an−2

1 , a)−1, an−2
1 , a) = e(an−2

1 ).
Similarly, it is possible to prove that the following proposition holds. (See, also

[10,11].)
Theorem 3. Let k > 1 s ≥ 1, n = k · s + 1 and let (Q, A) be an n−groupoid.

Then, (Q, A) is an NP–polyagroup of the type (s, n− 1) iff there are mappings
−1 and e respectively of the sets Qn−1 and Qn−2 into the set Q such that the
following laws hold in the algebra (Q, {A,−1 , e}) [ of the type < n, n − 1, n− 2 >]:

(1) (i) from Theorem1 or (i) from Theorem2;
(2) (ii) from Theorem1; and
(3) A((an−2

1 , a)−1, an−2
1 , A(a, an−2

1 , x)) = x.
Theorem 4. Let k > 1 s ≥ 1, n = k · s + 1 and let (Q, A) be an n−groupoid.

Then, (Q, A) is an NP–polyagroup of the type (s, n− 1) iff there are mappings
−1 and e respectively of the sets Qn−1 and Qn−2 into the set Q such that the
following laws hold in the algebra (Q, {A,−1 , e}) [ of the type < n, n − 1, n− 2 >]:

(1) (i) from Theorem1 or (i) from Theorem2;
(2) (ii) from Theorem2; and
(3) A(A(x, an−2

1 , a), an−2
1 , (an−2

1 , a)−1) = x.
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[7] J.Ušan, Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ.
of Novi Sad, Math. Ser. 18(1988), 117-126 (In Russian.)
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