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Some properties of a function studied by

De Rham, Carlitz and Dijkstra and its relation
to the (Eisenstein–)Stern’s diatomic sequence

Igor Urbiha
∗

Abstract. We present a novel approach to a remarkable function
D : N0 → N0 defined by D(0) = 0, D(1) = 1, D(2n) = D(n), D(2n +
1) = D(n) +D(n+ 1), studied independently by well known researchers
in different areas of mathematics and computer science. Besides some
known properties we add some new ones (including a relation to the
(Eisenstein–)Stern’s diatomic sequence). Some historical remarks are
added at the end of this paper.
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1. Introduction

Several properties of the function D : N0 → N0 defined by

D(0) = 0, D(1) = 1, D(2n) = D(n), D(2n+ 1) = D(n) +D(n+ 1)

are proved together with brief historical remarks about its occurrence.
Following the definition and some obvious consequences we present several pro-

perties concerning the evaluation of D(n) in terms of the binary representation of n.
One of the remarkable properties is the following (ignoring possible leading zeroes):

D((brbr−1 · · · b2b1b0)2) = D((b0b1b2 . . . br−1br)2) .

Some left to right maxima properties of the sequence (D(n))n∈N0 are given
ending with its asymptotic upper bound.

An explicit formula for D(n) in terms of continuants is given which enables
elegant proofs of many properties. By means of a three term recursion (which
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seems to be new) we give a new proof of another remarkable property: for every
pair of relatively prime natural numbers a and b there exists a unique natural
number n such that a = D(n) and b = D(n+ 1). This implies that the associated
sequence of successive quotients (D(n)/D(n + 1))n∈N enumerates all nonnegative
reduced fractions, each fraction occurring only once.

Next we treat some other properties of the sequence, including the recursions and
properties of ♦(m) = ♦m :=

∑m−1
k=1

1
D(k)D(k+1) and D(n) = Dn :=

∑
0≤k<nD(k).

We also single out the subsequence (D(2n+1))n∈N0 of the sequence (D(n))n∈N0

which plays the crucial role (because D does not depend on the even part of its
argument). Some of its properties are given in Section 2. (’The sequence (D(2n +
1))n∈N0 ’).

Section 3. presents a historical overview of the sequence (D(n))n∈N0 .

1.1. The function D : N0 → N0

In this section we recall some (and prove some new) properties of a remarkable
function D : N0 → N0 defined recursively by (see [D1] and [D2]):

Definition 1.
D(0) = 0, D(1) = 1,
D(2n) = D(n),
D(2n+ 1) = D(n) +D(n+ 1).

(1)

Lemma 1. ∀m, k ∈ N0 D(2k ·m) = D(m).
Proof. Immediate from Definition 1. ✷

Since each number can be written uniquely as n = 2ε(2b + 1) we can combine
the two lines of the definition of D into one line:

D(0) = 0, D(1) = 1, D(2ε(2b+ 1)) = D(b) +D(b + 1),

which clearly shows that D depends only on the odd part of its argument.
The function D is well defined, and to find its value for some given natural

number, say 21, one can proceed as follows:

D(21) = D(10) +D(11) = D(5) + (D(5) +D(6)) =
= 2D(5) +D(3) = 2(D(2) +D(3)) +D(3) =
= 2D(1) + 3D(3) = 2 + 3(D(1) +D(2)) =
= 2 + 3 · 2 = 8

Remark 1. Observe that for all m ∈ N one has D(m) > 0 and D(2m) =
D(m) < D(m)+D(m+1) = D(2m+1) and D(2m+2) = D(m+1) < D(m)+D(m+
1) = D(2m+1).This means that D is an ’up-down’ sequence (i.e. it is ’seesawlike’),
i.e. D(2) < D(3) > D(4) < · · · > D(2k) < D(2k + 1) > D(2k + 2) < · · ·.

Remark 2. The defining property D(2m) = D(m) implies that if we skip every
odd indexed member of the sequence (D(i))i∈N, then we will end up with the original
sequence. Equivalently, if we pick up every second (hence every fourth, every eighth,
every 2k–th) member, we will again obtain the original sequence. This means that
the sequence has some kind of self-similarity (’fractal–like’) property. This also
implies that the odd indexed members of the sequence can be used to define the
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whole sequence. Some properties of that ’core’ subsequence are given in Section 2.
(’The sequence (D(2n+ 1))n∈N0 ’).

Proposition 1. 3|m⇔ 2|D(m), ∀m ∈ N.
Proof. By induction on k := 	m+3

6 
. The induction base k = 0 follows directly
(1 = D(1) = D(2)). Suppose true up to k − 1. Then for k the following six cases
can occur:

Case m = 6k: D(m) = D(6k) = D(3k) = even,

Cases m = 6k ± 1: D(m) = D(6k±1) = D(3k)+D(3k±1) = even + odd = odd,

Cases m = 6k ± 2: D(m) = D(6k ± 2) = D(3k ± 1) = odd,

Case m = 6k + 3: D(m) = D(6k + 3) = D(3k + 1) +D(3k + 2) = odd + odd =
even.

(The property in Proposition 1 is stated in [D2].) ✷

Lemma 2. For all a,m ∈ N0 we have

D(2am+ 1) = aD(m) +D(m+ 1).

Proof. By induction on a and m arbitrary. Case m = 0 is obvious. The
induction base a = 0 and m > 0 is obvious too. Suppose true for a− 1. Then

D(2am+ 1) = D(2 · 2a−1m+ 1) = D(2a−1m) +D(2a−1m+ 1)
= D(m) + ((a− 1)D(m) +D(m+ 1))
= aD(m) +D(m+ 1)

finishes the induction step. ✷

Proposition 2. For all a, b,m ∈ N0, b ≤ a, we have

D(2am+ 2b − 1) = (1 + b(a− b))D(m) + bD(m+ 1).

Proof. By induction on a we prove that

D(2am+ 2b − 1) = bD(2a−bm+ 1) +D(m), for b ∈ [0..a].

Induction base a = 0 is clearly valid. Suppose true for a − 1. Then, if b > 0 (case
b = 0 coincides with Lemma 1)

D(2am+ 2b − 1) = D(2(2a−1m+ 2b−1 − 1) + 1)
= D(2a−1m+ 2b−1 − 1) +D(2a−1m+ 2b−1)
= ((b − 1)D(2a−bm+ 1) +D(m)) +D(2a−1−(b−1)m+ 1)
= bD(2a−bm+ 1) +D(m)
= b((a− b)D(m) +D(m+ 1)) +D(m) (by Lemma2)
= (1 + b(a− b))D(m) + bD(m+ 1). ✷

Corollary 1. For each k ∈ N0 we have

D(2k − 1) = k, D(2k) = 1, D(2k + 1) = k + 1.

It turns out that the sequence (D(n))n∈N is an universal sequence in the sense
that it contains every sequence of positive integers as its subsequence. To prove
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this assertion we need to show that for given a ∈ N and arbitrary k there exist
m > k such that D(m) = a. By Corollary 1 for any given a there exists j such
that D(j) = a. For any k there exists n such that m = 2nj > k and by Lemma 1
D(m) = D(j) = a.

From now on, we shall also consider sequences of ones and zeroes (or 0–1 se-
quences), interpreting them as binary representations of numbers. In that way,
instead of writing 45 = 25 + 23 + 22 + 1 = (101101)2, we shall write 45 = 101101.
Moreover, to simplify the notation we abbreviate 00 . . .0︸ ︷︷ ︸

k

and 11 . . .1︸ ︷︷ ︸
k

by 0k and 1k

respectively. E.g. we abbreviate 110001111 by 120314.
We shall freely mix both notations on purpose, using a more appropriate one

when needed (slightly abusing notation when other possibilities lead to a more
cumbersome writing). For example, instead of writing 288 = 28 + 25 = (28 + 24 +
23 +21 +1)+5, we may write 288 = 100100000 = 102105 = 100011011+101 =
100011011 + 5 = 10312012 + 5 = 283 + 101, also 2k = (11 . . .1︸ ︷︷ ︸

k

)2 + 1 = 1k + 1.

An empty sequence will be denoted by ε. Also, 10 =00 = ε.
If m is a finite 0–1 sequence, then |m| will denote its length. By definition

|ε| = 0.
Note that if m is a binary representation of the number n, then m0 represents 2n

and m1 represents 2n+1. Sometimes, a sequence representing number m ∈ N will
be denoted by m and vice versa (so expressions m1 = 2m+1 or m03104 = 28m+24

are meaningful).
Leading zeroes can be safely ignored or added at the beginning of a sequence if

necessary, since the number represented remains the same, (i.e. 5 = 101 = 0101 =
00101 = . . .).
Now Definition 1 can be rephrased as follows:

Definition 2. The function D can be defined on the set of all finite 0–1 se-
quences by

D(1) = 1, D(0) = 0,
D(m0) = D(0m) = D(m),
D(m1) = D(m) +D(m+1).

(2)

Due to D(0) = 0, it may be added that D(ε) = 0.
Now Corollary 1 can be restated as follows

Corollary 2. For each k ∈ N0 we have

D(1k) = k, D(10k) = 1, D(10k−11) = k + 1 (k > 0).

Proposition 2 can now be rewritten as
Proposition 3. For every finite 0–1 sequence m and for all s, r ∈ N0 we have

D(m0r1s) = (1 + rs)D(m) + sD(m + 1) = (1 + rs− s)D(m) + sD(m1). (3)

Proof. By Proposition 2 we firstly get D(m0r1s) = (1+ rs)D(m)+ sD(m+ 1)
Then by Definition 2 D(m1) = D(m) +D(m + 1), and the proof follows. ✷

Let us now restate a recursion for D(n) involving the leading block of 1’s in the
binary representation of n.
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Lemma 3. For every finite 0–1 sequence m and for every k ∈ N we have

D(1k0m) = D(1k−10m) +D(1m), (4)

or in standard notation

D((2k − 1) · 2r +m) = D((2k−1 − 1) · 2r +m) +D(2r−1 +m) (m < 2r−1).

Proof. By induction on the length |m| of the sequence m (k arbitrary).
Induction base: m= ε, i.e. |m| = 0

D(1k0m) =
= D(1k0ε) = D(1k0) = D(1k) (by Definition 2)
= k (by Corollary 2)
= D(1k−10) +D(1) = D(1k−10ε) +D(1ε) = D(1k−10m) +D(1m).

Induction step: Suppose that D(1k0m) = D(1k−10m)+D(1m) is valid for every
k ∈ N and every sequence m of length < d. Let n be a 0–1 sequence of length d.
The case n = m0 is trivial.
In case n = m1 we have |m| = d− 1. Then by Definition 2 we have

D(1k0m1) = D(1k0m) +D(1k0m + 1)

= D(1k0m) +
{
D(1k0m′), if m′ = m + 1 < 2d−1

D(1k10s) , if m + 1 = 2d−1

(5)

Subcase (m′ = m + 1 < 2d−1): Here we have

D(1k0n) = D(1k0m1) = D(1k0m) +D(1k0m′)
= D(1k−10m) +D(1m) +D(1k−10m′) +D(1m′) (by induction assumption)
= (D(1k−10m) +D(1k−10m′)) + (D(1m) +D(1m′))
= D(1k−10m1) +D(1m1) (by Definition 2)
= D(1k−10n) +D(1n).

Subcase (m + 1 = 2d−1): Here m = 1d−1 and the l.h.s. of (5) equals

D(1k0m1) = D(1k011d)
= (1 + 1 · d)D(1k) + dD(10k) (by Proposition3)
= (d+ 1)D(1k) + dD(1)
= (d+ 1)k + d · 1 = k + d+ kd (by Corollary 2).

The r.h.s. of (5) for this subcase equals:

D(1k01d−1) +D(1k10d−1) =
= (1 + 1 · (d− 1))D(1k) + (d− 1)D(1k + 1) +D(1k+1) (by Proposition3)
= dk + (d− 1) · 1 + (k + 1) = k + d+ kd (by Corollary2). ✷

Lemma 4. For every finite 0–1 sequence m and for every k ∈ N0 we have

D(1k0m) = D(m) + kD(1m).
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Proof. By induction on k using Lemma3. ✷

Lemma 5. Let l ∈ N0. Then for any 0–1 sequence n we have

D(10ln) = lD(n) +D(1n).

Proof. Case l = 0 is clear. Suppose l > 0: D(10ln) = D(100l−1n) =
D(0l−1n)+D(10l−1n) (by Lemma3) = D(n)+D(10l−1n) = D(n)+(l−1)D(n)+
D(1n) (by the induction hypothesis) = lD(n) +D(1n). ✷

Proposition 4. For r, s ∈ N we have

D(1r0sm) = (rs − r + 1)D(m) + rD(1m).

Proof. D(1r0sm) = D(m) + rD(10s−1m) (by Lemma4) = D(m) + r((s −
1)D(m) +D(1m)) (by Lemma5) = (rs− r + 1)D(m) + rD(1m). ✷

Let ←−m denotes a sequence obtained by reading the sequence m from right to
left, i.e. ←−−−−−−−−−−−bkbk−1 · · ·b1b0 = b0b1 · · ·bk−1bk, where bi ∈ {0,1}, i = 1, 2, . . . , k; e.g.←−−−−11101 =10111.

Proposition 5. For all finite 0–1 sequences m we have the following mirror
property:

D(m) = D(←−m).

Proof. By induction on the length of m. Induction base is obvious and the
induction step follows from Proposition 4 and Proposition 3. ✷

Now we turn our attention to finding maxima of the function D restricted to
numbers with a given number of bits.

Lemma 6. For n ∈ N let αn be the following numbers:

αn = 2n−1 − 2n−2 + · · ·+ (−1)n−221 + (−1)n−1 (= (2n − (−1)n)/3) ,

and let α±
n = αn ± (−1)n be the neighbours of αn. Then

1. αn = 2αn−1 + (−1)n−1 = α+
n−1 + αn−1,

2. α+
n = 2αn−1,

3. α−
n = 4αn−2.

(The sequence (αn)n∈N is called the Jacobsthal sequence (cf. [Sl], A001045).)
Proof. The first two identities are obvious. For the third we use the recursion

1. twice:
α−

n = αn − (−1)n = 2αn−1 + (−1)n−1 − (−1)n = 2(2αn−2 + (−1)n−2) + (−1)n−1 −
(−1)n = 4αn−2 + 2(−1)n−2 + 2(−1)n−1 = 4αn−2. ✷

Lemma 7. For every n ∈ N we have

D(α−
n ) = Fn−2, D(αn) = Fn, D(α+

n ) = Fn−1,

where Fn is the n–th Fibonacci number (F0 = 0, F1 = 1, Fn = Fn−1+Fn−2, n > 1).
Proof. By induction on n we prove that for every n ∈ N we have D(αn) = Fn.

Induction base:
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D(α1) = D(1) = 1 = F1 and D(α2) = D(1) = 1 = F2.
Induction step: Suppose true for n− 2 and n− 1.

D(αn) = D(α+
n−1 + αn−1) = D(α+

n−1) +D(αn−1) (by Definition 1)
= D(2αn−2) +D(αn−1) = D(αn−2) +D(αn−1) = Fn−2 + Fn−1 = Fn

The rest follows from Lemma 6:
D(α+

n ) = D (2αn−1) = D (αn−1) = Fn−1,
D(α−

n ) = D(4αn−2) = D(αn−2) = Fn−2. ✷

Lemma 8. For all k ∈ [2n−1..2n] we have

D(k) ≤ Fn+1.

Proof. By induction on n.
Induction base: Trivial by direct check (n ∈ {0, 1}).
Induction step: Suppose true up to n − 1. Let k ∈ [2n..2n+1]. Two cases can
occur:

Case k = 2j:
D(k) = D(2j) = D(j) ≤ Fn+1 by induction assumption, so D(k) ≤ Fn+2.

Case k = 4j + 1:
D(k) = D(2j) +D(2j + 1) = D(j) +D(2j + 1) ≤ Fn−1 + Fn = Fn+1.

Case k = 4j + 3:
D(k) = D(2j+1)+D(2j+2) = D(2j+1)+D(j+1) ≤ Fn +Fn−1 = Fn+1.✷

Theorem 1. For every n ∈ N

max{D(k)|k ∈ [0..2n]} = max{D(k)|k ∈ [2n−1..2n]} = Fn+1.

Proof. By Lemma8 Fn+1 is an upper bound. But by Lemma7 this upper bound
is achieved at αn+1 ∈ [2n−1..2n]. ✷

Corollary 3. D(n) = O(nlg φ), where φ is the golden ratio, i.e. φ = 1+
√

5
2 .

Since lgφ ≈ 0.694, it follows D(n) = O
(
n0.7

)
.

Next we shall explain several explicit formulas for D(n). According to Exercise
6.50 in [GKP], p. 314 and its solution on p. 553, D(n) can be written explicitly,
in terms of the binary representation of n = (1a10a2 . . . 1am−10am)2, as follows (cf.
[R]):

D(n) = Km−1(a1, a2 . . . , am−1), (6)

where Kn(x1, x2, . . . , xn) is the continuant polynomial, or simply continuant, de-
fined by the following recurrence (see [GKP], (6.136) and (6.131)):

K0() = 1,
K1(x1) = x1,
Km(x1, . . . , xm) = Km−1(x1, . . . , xm−1)xm +Km−2(x1, . . . , xm−2).

(7)

We have D(13) = K3(2, 1, 1) (= 5) because 13 = (12011100)2, and D(0) = 0 =
K(0) since 0 = (1001)2.
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In [SU] yet another formula forD(n) was obtained: if n−1 = (1a′
10a′

2 . . . 1a′
m′−10a′

m′ )2
then

D(n) = Km′−1(a′1, a
′
2 . . . , a

′
m′)

(e.g. D(13) = K2(2, 2), since 13− 1 = (1202)2).
One basic property of continuants is their mirror symmetry property ([GKP],

(6.131), or [BSQ], p. 100):

Kn(a1, a2, . . . , an−1, an) = Kn(an, an−1, . . . , a2, a1). (8)

We shall also need the following identity: K(1, a, b, c, . . . , z) = K(a+ 1, b, c, . . . , z)
which easily follows from the recurrence given in (7).

For an amazing property of the function D (posed as a problem by Dijkstra, see
[D1], [D3], [ZES]), we give below a short solution (shorter than the solution given
by Proposition 5) in the following

Corollary 4. Let (brbr−1 · · · b2b1b0)2 be a binary representation of the natural
number n. Then for the number ←−n :=

←−−−−−−−−−−−−−
(brbr−1 · · · b2b1b0)2 = (b0b1b2 . . . br−1br)2 ob-

tained from n by reversing its binary representation (and ignoring possible leading
zeroes) we have

D(n) = D(←−n ).

Proof. Let n = (1a10a21a30a4 · · · 1am−10am)2. If we reverse the binary rep-
resentation of n (and ignore all leading zeroes), we get a binary representation
(1am−10am−21am−3 · · · 0a21a100)2 of the number←−n . Then by (6) and mirror symme-
try (8) we get D(←−n ) = K(am−1, am−2, . . . , a2, a1) = K(a1, a2, . . . , am−2, am−1) =
D(n) (see [D1], [D3], [ZES]). ✷

Remark 3. From Definition 1 of D it is evident that D(n+ 1) = b(n), n ∈ N,
where b : N→ N is the hyperbinary partition function defined in [CW]. So one can
also write a formula for b(n).

Corollary 5. For all n ∈ N and for all r ∈ [0..2n] we have D(2n + r) =
D(2n+1 − r).

Proof. For r = 2n there is nothing to prove. So suppose that r < 2n. Then
2n + r = (10a21a30a4 . . . 1am−10am)2 and 2n+1− r = (1a2+10a31a4 . . . 0am−1−110am)2
(or 2n+1− r = (1a2+10a31a4 . . . 0am−2+110am)2 in case am−1 = 1). By (6) and basic
properties of continuants we have D(2n + r) = K(1, a2, a3, a4, . . . , am−1) = K(a2 +
1, a3, a4, . . . , am−1 − 1, 1) (or = K(a2 + 1, a3, a4, . . . , am−2 + 1) in case am−1 = 1)
= D(2n+1 − r). ✷

Remark 4. Yet another (in fact more direct) proof of Corollary 5 can be given
as follows:

Thanks to the property D(2m) = D(m) it is sufficient to consider the
case r odd, i.e. r = 2s+1. Now, the left-hand side is, by Definition 1 of
D, equal to D(2n−1 + s) +D(2n−1 + s+1) and similarly the right-hand
side equals D(2n−s)+D(2n−s−1). Thus the proof immediately follows
by induction. ✷

Remark 5. Corollary 5 implies that, for each k, the sequence D(2k), D(2k +1),
D(2k + 2), . . ., D(2k + 2k − 1), D(2k+1) is palindromic.
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Lemma 9. The sum of all members of the sequence D(2k), D(2k+1), D(2k+2),
. . ., D(2k + 2k − 1), D(2k+1) is equal to 3k + 1, i.e.

∑2k+1

r=2k D(r) = 3k + 1.
Proof. By induction on k.

Induction base: Trivial, since for k = 0, we get
∑20+1

r=20 D(r) = D(1) + D(2) =
2 = 30 + 1
Induction step: We have:

∑2k+2

r=2k+1 D(r) =
∑2k+2

r=2k+1,r oddD(r) +
∑2k+2

r=2k+1,r evenD(r) =

= (
∑2k+1−1

r=2k D(r) +
∑2k+1

r=2k+1D(r)) +
∑2k+1

r=2k D(r) =
= (3k + 3k) + 3k + 1 =
= 3k+1 + 1 ✷

Corollary 6. If x + y = 1k = 2k − 1, then D(1x1) = D(1y1), i.e. if all inner
digits of two odd numbers m and n are complementary, then D(m) = D(n). (See
[D1].)

Proof. If x+y = 1k = 2k−1, then 1y1 = 2k+1 +2y+1 = 2k+1 +2k+1−2x−1
and D(1y1) = D(2k+2− 2x− 1) = (by Corollary 5) = D(2k+1 +2x+1) = D(1x1).
✷

Now we derive a three term recursion (which seems to be new) for D(n). First
we recall the 2–adic order of an integer n, denoted by ε2(n), as the greatest power
of 2 that divides n, i.e. n = 2ε2(n)(2b+ 1).

Proposition 6. Let χ(n) = 2ε2(n) + 1. Then

D(n+ 1) +D(n− 1) = χ(n)D(n). (9)

In particular, for n odd we have D(n+ 1) +D(n− 1) = D(n), and for each n

D(n) | D(n− 1) +D(n+ 1).

(See [Sl], A028415.)
Proof. Let D(n + 1) + D(n − 1) = χ(n)D(n). Clearly χ(1) = 1. For n odd,

n = 2m+ 1, we have

χ(2m+ 1)D(2m+ 1) = D(2m+ 2) +D(2m) = D(m+ 1) +D(m) = D(2m+ 1).

Thus
χ(2m+ 1) = 1. (10)

From
χ(2n)D(2n) = D(2n+ 1) +D(2n− 1) = (by (1)) =

= (D(n+ 1) +D(n)) + (D(n) +D(n− 1)) =
= 2D(n) + χ(n)D(n) = (2 + χ(n))D(n)

we get a recursion χ(2n) = χ(n) + 2, which for n = 2ε2(n)(2m+ 1) gives

χ(n) = 2ε2(n) + χ(2m+ 1) = (by (10)) = 2ε2(n) + 1. ✷
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Remark 6. In the reference [St] Stern has derived a formula almost identical
to the formula (9). He (and Eisenstein, according to [Sl], sequences A064881–
A064885) defined arrays of numbers starting with an array consisting of two non-
negative integers m and n. Each array is generated from the previous one by in-
serting between every pair of adjacent numbers their sum. The second array is
thus m, m + n, n, the third one is m, 2m + n, m + n, m + 2n, n etc. It is
now easy to check that for m = n = 1 its pth row coincides with the sequence
D(2p), D(2p + 1), D(2p + 2), . . . , D(2p+1).

(The same rows of number occur, somewhat unexpectedly, in connection with a
family of tangent circles (Ford’s circles) described in [WB].)

Property 4 ([St], p. 198) states that if a, b, c are three consecutive numbers oc-
curring in the pth row, then a + c = (2k + 1)b, where k = (a + c − b)/2b ∈ N0.
The number b occurs in the (p− k)th row and it is equal to a sum of two adjacent
numbers from the (p− k − 1)th row.

Remark 7. In the reference [R] De Rham starts with two linearly independent
vectors −→i , −→j in a plane. By the geometrical construction he obtained vectors −→i ,−→
i + −→j , −→j . In the next step he got vectors −→i , 2−→i + −→j , −→i + −→j , −→i + 2−→j , −→j .
Each sequence of vectors is obtained from the previous one by inserting their sum
(see Remark 6) between every pair of adjacent vectors, thus generating the Stern’s
diatomic sequence.

Lemma 10. For each n ∈ N0 we have gcd(D(m), D(m + 1)) = 1.
Proof. Suppose that a number d divides bothD(m) andD(m+1). Proposition 6

implies that d also divides D(m+ 2), D(m+ 3), . . ., i.e. for every k > m d|D(k) so
d divides D(2m) = 1, because 2m > m. Therefore d = 1 and for every m ∈ N the
numbers D(m) and D(m+ 1) are relatively prime. ✷

Remark 8. Now we prove one other property discovered by Dijkstra: If m +
n = 2k then D(m) and D(n) are relatively prime (cf. [D1]). If m = n, then
m = n = 2k−1 and D(m) = D(n) = 1. Suppose m < n (this implies m < 2k−1).
Now we have D(n) = D(2k −m) = (by Corollary5) = D(2k−1 +m) = D(10sm) =
(for some s ≥ 0) = D(

←−−−
10sm) = (by Corollary4) = D(←−m0s1) = (by Lemma 3)

= (1 + s)D(m) +D(m + 1). So, if d divides D(m) and D(n), then it also divides
D(m+ 1). Now Lemma 10 implies that D(m) and D(n) are relatively prime.

Remark 9. Corollary4, Definition 1 and Lemma1, imply:

am

k = D(m1k) = D(m1k−1 + 1) +D(m1k−1) =
= D(m + 1) +D(m1k−1) = · · · =
= kD(m + 1) +D(m).

and
bmk = D(10km) = D(←−m0k1) = D(←−m0k−1) +D(←−m0k−11) =

= D(←−m) +D(←−m0k−11) = · · · =
= kD(m) +D(←−m1) = kD(m) +D(1m)

Thus (am

k )k∈N and (bmk )k∈N are both linear progressions. Since D(1m) = D(←−m1)
= D(←−m) + D(←−m + 1), by Lemma10 it follows that D(m) (= D(←−m)) and D(1m)
are relatively prime. So, we have linear progressions, each with the first element
and difference relatively prime. A famous theorem of Dirichlet (1837) says that
there are infinitely many primes in every such linear progression. Where are those
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sequences? In the jth row and the kth column in a table below we put the number
D(2j + k). Note that the jth row corresponds to the same row (and the values of a
function sj) of a table in [Li]. Each column (except, of course, the 0th) corresponds
to one of the sequences (bmk )k∈N.

D(2j+k) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

0 1 1
1 1 2 1
2 1 3 2 3 1
3 1 4 3 5 2 5 3 4 1
4 1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
5 1 6 5 9 4 11 7 10 3 11 8 13 5 12 7 9 2. . .
6 1 7 6 11 5 14 9 13 4 15 11 18 7 17 10 13 3. . .
7 1 8 7 13 6 17 11 16 5 19 14 23 9 22 13 17 4. . .
8 1 9 8 15 7 20 13 19 6 23 17 28 11 27 16 21 5. . .
9 1 10 9 17 8 23 15 22 7 27 20 33 13 32 19 25 6. . .
10 1 11 10 19 9 26 17 25 8 31 23 38 15 37 22 29 7. . .
11 1 12 11 21 10 29 19 28 9 35 26 43 17 42 25 33 8. . .
12 1 13 12 23 11 32 21 31 10 39 29 48 19 47 28 37 9. . .
13 1 14 13 25 12 35 23 34 11 43 32 53 21 52 31 41 10. . .
14 1 15 14 27 13 38 25 37 12 47 35 58 23 57 34 45 11. . .
15 1 16 15 29 14 41 27 40 13 51 38 63 25 62 37 49 12. . .
16 1 17 16 31 15 44 29 43 14 55 41 68 27 67 40 53 13. . .
17 1 18 17 33 16 47 31 46 15 59 44 73 29 72 43 57 14. . .
18 1 19 18 35 17 50 33 49 16 63 47 78 31 77 46 61 15. . .
19 1 20 19 37 18 53 35 52 17 67 50 83 33 82 49 65 16. . .
20 1 21 20 39 19 56 37 55 18 71 53 88 35 87 52 69 17. . .

.
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Sequences (am

k )k∈N can’t be seen so easily in the above table, but they actually co-
incide with the sequences (bmk )k∈N by Corollary5. Let m be a finite 0–1 sequence
beginning with 1 and let n be the shortest sequence such that for some r ∈ N m+n
= 1r, i.e. m + n = 2r − 1. We have: D(1km) = D(1km + n− n) = D(1k+r − n)
= D(2k+r−n) = D(2k+r−1 +n), if n < 2k+r−1, which is true, because n is shorter
than m.

Lemma 11. D(m) = 1⇔ ∃k ∈ N0 m = 2k.
Proof. It follows from Corollary 1 and the fact that for m > 1 D(m) ≥ 1 and

D(2m+ 1) = D(m) +D(m+ 1) ≥ 2. ✷

Theorem 2. If D(m)
D(m+1) = D(n)

D(n+1) , then m = n.
Proof. Obviously, if D(m) or D(n) equals 0, then m = n = 0. Let m and n,

m < n, be the smallest pair (using, say, a lexicographical order on N × N) such
that D(m)

D(m+1) = D(n)
D(n+1) . Then D(n + 1) = D(n)D(m+1)

D(m) . It follows that D(m)|D(n)
because gcd(D(m), D(m + 1)) = 1 by Lemma10. Similarly we get D(n)|D(m) so
D(m) = D(n) and D(m+1) = D(n+ 1). Numbers m and n cannot be of different
parity as due to Remark 1 for k, l ≥ 0 is D(2k)

D(2k+1) < 1 ≤ D(2l+1)
D(2l+2) .

Case m = 2k, n = 2l: D(m) = D(k), D(m+ 1) = D(k) +D(k + 1), D(n) = D(l),
D(n+ 1) = D(l) +D(l + 1).

Case m = 2k + 1, n = 2l + 1: D(m) = D(k) +D(k+1), D(m+1) = D(2k+2) =
D(k + 1), D(n) = D(l) +D(l + 1), D(n+ 1) = D(2l + 2) = D(l + 1).

In both cases we arrive at a pair of numbers k and l, k < l, such that D(k) = D(l)
and D(k+1) = D(l+1), where k < m and l < n. Therefore, we got a pair smaller
than the smallest pair with such property – a contradiction. The conclusion is that
m = n and the proof is finished. ✷

Theorem 3. For any two numbers a, b ∈ N such that gcd(a, b) = 1 there exists
an odd number i ∈ N such that D(i− 1) = a, D(i) = a+ b and D(i+ 1) = b.
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Proof. By induction on m = a+ b.
Induction base: Trivial.
Induction step: Suppose that the statement is true for every m < M . Let a < b
be such that gcd(a, b) = 1 and a + b = M . Then for a1 = a and b1 = b − a we
have: a1 +b1 = b < M , gcd(a1, b1) = gcd(a, b−a) = 1 and by induction assumption
there exists an odd i ∈ N such that D(i − 1) = a1 = a, D(i) = a1 + b1 = b and
D(i + 1) = b1 = b − a. Now we have: D(2i − 2) = D(i − 1) = a, D(2i − 1) =
D(i− 1) +D(i) = a+ b and D(2i) = D(i) = b, and the proof in case a < b is done.

Note that, by Corollary 5, there exists an odd j ∈ N so that D(j − 1) = b,
D(j) = a+ b and D(j + 1) = a, what finishes the proof in case a > b. ✷

Corollary 7. The sequence
(

D(n)
D(n+1)

)
n∈N0

is a sequence of all nonnegative

reduced fractions with each fraction occurring only once.

Proof. Directly from Theorem 2 and Theorem 3. ✷

Now we prove one more recursion for D, different from the one in Proposition 6.

Proposition 7. For each n ∈ N we have

D(n) = D

(
n− 2ε2(n)

21+ε2(n)

)
+D

(
n+ 2ε2(n)

21+ε2(n)

)
.

Proof. For n = 2k(2r + 1) = 2k+1r + 2k we have ε2(n) = k, so

D(n) = D(2r + 1) = D(r) +D(r + 1).

Note that r = (n − 2k)/2k+1, and r + 1 = (n + 2k)/2k+1, with k = ε2(n) implies
the proof. ✷

Definition 3. Let ♦(m) :=
m−1∑
k=1

1
D(k)D(k + 1)

=
∑ m

1

1
D(k)D(k + 1)

δk

(written as a definite sum, [GKP], 2.48). We abbreviate ♦(m) by ♦m.

Proposition 8. For m ∈ N we have

Γm = ♦2m −♦m =
∑

m≤k<2m

1
D(k)D(k + 1)

= 1.

Proof. By induction on m we prove that the above sum reduces to a shorter
sum of the same form. Induction base is obviously valid for m = 1. Suppose that
the statement is true up to m− 1. We have:

Γm =
∑

m≤k<2m

1
D(k)D(k + 1)

=
∑

m≤2k<2m

1
D(2k)D(2k + 1)

+
∑

m≤2k+1<2m

1
D(2k + 1)D(2k + 2)

=
∑

�m
2 �≤k<m

1
D(2k)D(2k + 1)

+
∑

�m−1
2 �≤k<m

1
D(2k + 1)D(2k + 2)

=
∑

�m
2 �≤k<m

1
D(2k)D(2k + 1)

+
∑

�m
2 �≤k<m

1
D(2k + 1)D(2k + 2)

+
[m odd]

D(m)D(m+ 1)
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=
∑

�m
2 �≤k<m

D(2k + 2) +D(2k)
D(2k)D(2k + 1)D(2k + 2)

+
[m odd]

D(m)D(m+ 1)

=
∑

�m
2 �≤k<m

1
D(k)D(k + 1)

+
[m odd]

D(m)D(m+ 1)
(by Definition 1)

=
∑

�m
2 �≤k<2�m

2 �
1

D(k)D(k + 1)
= Γ�m

2 � = 1.
✷

Corollary 8. The function ♦ satisfies the following properties:

1. ♦2m = ♦m + [m > 0],

2. ♦2m+1 = ♦m + 1 + [m>0]
D(2m)D(2m+1) ,

3. ♦m = ♦	m
2 
 + 1 + [m odd]

D(m−1)D(m) ,

4. ♦2ε(2b+1) = ♦b + ε+ 1 + [b>0]
D(2b)D(2b+1) .

Remark 10. As a special case (m = 2n) of Proposition8 we obtain another
proof that nth–level sum of simplicities of fractions in the tree of fractions (see
[CW]) and therefore in Stern–Brocot tree equals 1 (cf. Bogomolny, Lamothe [B]).
We conclude this section by stating some properties of the function D (a primitive
or an antidifference of D) defined by

Definition 4. For n ∈ N we set D(n) = Dn :=
∑

0≤k<n

D(k) =
∑ n

0
D(k)δk.

Proposition 9. Function D satisfies the following recurrence relations:

1. D1 = 0, D2 = 1,

2. Dn = D�n+1
2 �+D�n

2 �+D�n−1
2 � (⇔ D2n+1 = Dn +2Dn+1, D2n = 2Dn +Dn+1).

Proof. It follows from the definition of the function D.

Dn =
∑

0≤k<n

Dk =
∑

0≤2k<n

D2k +
∑

0≤2k+1<n

D2k+1

=
∑

0≤k<�n
2 �
Dk +

∑
0≤k<� n−1

2 �
(Dk +D(k + 1))

= D�n+1
2 � +D�n

2 � +D�n−1
2 �.

Other relations follow directly from the one we just proved. ✷

Corollary 9. We have D2n + D2n+1 = 3(Dn + Dn+1). In particular, for the
level sums of D we have (by an easy induction)

D2n+1 −D2n = (2D2n +D2n+1)−D2n = D2n +D2n+1 = 3(D2n−1 +D2n−1+1) = 3n.
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2. The sequence (D(2n + 1))n∈N0

Special attention should be given to a subsequence of D(n)’s with n odd which
explicates all so-called Lehmer’s dyads (see [Le]), i.e. Stern’s Summengliedern (see
[St]).

Definition 5. Let E(n) := D(2n+ 1) for n ∈ N0.
The sequence (E(n)) appears in [H] and in [Sh] but without reference to D. In

[H] it appears under the name Farey’s sequence. In [Sh] it appears as the direct
limit of numerators of nth–level fractions of the Stern–Brocot tree.

Many properties of E(n) are easier to prove using the properties of its parent
sequence D(n).

The sequence (E(n))n∈N0 is interesting since the sequence (D(n))n∈N0 can be
defined by D(0) = 0, D(2m) = D(m), D(2m+ 1) = E(m).

All results concerning the sequence (E(n))n∈N0 in this section are proved in [SU].
By (6) we can write an explicit formula for E(n). If the binary representation

of n is (1a10a2 . . . 1am−10am)2 then 2n+ 1 = (1a10a2 . . . 1am−10am1100)2 and by (6)
we obtain

E(n) = D(2n+ 1) = K(a1, a2, . . . , am−1, am, 1) = K(a1, a2, . . . , am−1, am + 1).

The numerator of the n–th fraction of the Stern–Brocot tree (in the usual ”book–
like” reading of the nodes in the tree) equals D(J(n)) = E(n− 2�log2 n	), where the
function J is the Josephus’ function defined in [GKP], 1.10.

The sequence of numerators of the n–th level of the Stern–Brocot tree is an
initial segment of length 2n of the sequence (E(n))n∈N (see the sequence A007305
in [Sl]). A level in the tree consists of all nodes that are at the same distance (depth)
from the root downwards. Each level is considered to be ordered from left to right.

For every n ∈ N and every r ∈ [0..2n] we have

E(2n + r) = E(2n+1 − r − 1),

or, in the binary notation, E(1b) = E(1b ), where the sequence of binary digits b is
obtained from b by complementing each digit (0↔ 1).

For every n ∈ N and r ∈ [1..2n−1) we have (cf. Maple code SternBrocotTreeNum
given on the web page of a sequence A007305 in [Sl])

E(2n + r) = E(2n − r − 1) + E(r) = E(2n−1 + r) + E(r).

It turns out that the recurrence E(0) = 1, E(2n + r) = E(2n−1 + r) + E(r) is
equivalent to a recurrence defining the Farey sequence in [H].

Function E satisfies the following relations (E(0) = 1):

E(m) = E
(⌊

m
2

⌋)
+D

(⌈
m
2

⌉)
= E

(⌊
m
2

⌋)
+ E

(
β(�m

2 �)−1

2

)
= (1 + ε2(m))D(β(m)) +D(β(m) + 1).

where β : N → N is a function defined by β(2m) = β(m) and β(2b + 1) = 2b + 1,
i.e. β(m) = m/2ε2(m) or β(2ε(2b + 1)) = 2b + 1, where ε2(n) is the greatest power
of 2 that divides n.
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The function E satisfies the following properties (which were originally derived
from the generating function of E):

2m−1∑
j=1

(−1)j+1E(j) = E(m) and
2m∑
j=1

(−1)jE(j) = D(m). (11)

By setting m = 2k in the second of (11) we get

2k+1∑
j=1

(−1)jE(j) = D(2k) = 1 and
2k+1∑

j=2k+1

(−1)jE(j) = 0.

Finally we state and prove some additional properties of the sequence E:
Proposition 10. For all m ∈ N we have

1. E(2m+ 1) +E(2m) = 3E(m), (m ∈ N0)

2. E(2m) + E(2m− 2) = 2E(m− 1) + E(m),

3. E(2m)− E(2m− 1) = E(m)− E(m− 1).

Proof.

1. E(2m+ 1) +E(2m) = D(4m+ 3) +D(4m+ 1) = χ(4m+ 2)D(4m+ 2) =
χ(2(2m+ 1))D(2m+ 1) = 3E(m),

2. E(2m) + E(2m − 2) = D(4m + 1) + D(4m − 3) = D(2m) + D(2m + 1) +
D(2m − 2) +D(2m− 1) = D(2m− 1) + χ(2m − 1)D(2m− 1) +D(2m + 1)
= 2D(2m− 1) +D(2m+ 1) = 2E(m− 1) + E(m),

3. E(2m) − E(2m − 1) = D(4m + 1) − D(4m − 1) = D(2m) + D(2m + 1) −
D(2m− 1)−D(2m) = E(m)− E(m− 1). ✷

In a similar fashion one can easily prove (for n ∈ N0), using recursions for D
again, the following two identities:

E(4n) = 2E(2n)− E(n), E(4n+ 2) = 4E(n)− E(2n),

which, together with the first property in Proposition 10, show that the sequence E
is a 2–regular sequence (cf. Shallit [Sh]).

3. Historical remarks

Eisenstein started it all. On page 356 of his work ”Über ein einfaches Mittel zur
Auffindung der höheren Reciprocitätsgesetze und der mit ihnen zu verbindenden
Ergänzungssätze” ([E1]), he defined auxiliary function χµ,ν whose properties he
needed while working on laws of reciprocity. According to [Sl] (sequences A064881–
A064885, submitted by Wolfdieter Lang, see [E2]), Eisenstein studied number se-
quences which are known as Stern’s diatomic series today.
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His proofs of those properties were complicated and he (according to Stern)
asked his friend M. A. Stern to help him find simpler proofs. Stern apparently did
not have enough time to work on it since he finished his work [St] 1855, three years
after Eisenstein’s death. (See Remark 6) Stern proved most properties which lead
to enumeration of rational numbers, but he did not state it explicitly, since he was
primarily interested in Eisenstein’s auxiliary function.

D. H. Lehmer studied Stern’s diatomic sequence (see [Le]) and had found many
of its properties.

Function D, which enumerates numerators (and denominators, too!) of Calkin–
Wilf tree, has many faces indeed, although its twin brother, b(m) = D(m + 1) is
encountered more often.

L. Carlitz ”discovered” both functions and named them θ0 = b and θ1 = D. He
defined them as follows: If cn,r = S(n + 1, r + 1) (Stirling number of the second
kind), then for fixed n, θ0(n) denotes the number of odd cn,2r, 2r < n, and θ1(n)
denotes the number of odd cn,2r+1, 2r+1 ≤ n (see [C1] and [C2], for generalization

see [C3]). Carlitz also states that θ0(n) = number of odd binomials
(
n− k
k

)
,

0 ≤ 2k ≤ n. Functions θ0 and θ1 satisfy ”dual” recurrence relations:
θ0(0) = 1, θ1(0) = 0,
θ0(2m) = θ0(m) + θ0(m+ 1),m > 0, θ1(2m) = θ1(m),
θ0(2m+ 1) = θ0(m), θ1(2m+ 1) = θ1(m) + θ1(m+ 1).

Generating function Gb(x) of the sequence (b(k))k∈N was found by Carlitz (see
[C1]):

Gb(x) =
∞∏

k=1

(1 + x2k−1
+ x2k

) = (1 + x+ x2)Gb(x2) =
∞∑

r=0

b(r)xr .

The generating function D of sequence (D(k))k∈N is then, of course, D(x) = xGb(x).
D. A. Lind gathered (see [Li]) all known properties of Stern’s diatomic sequence,

added some new ones and corrected some mistakes.
Dijkstra ”rediscovered” function D in [D3] where he gave Corollary 4 as a prob-

lem. Several solutions were given in [ZES]. Dijkstra named this function fusc in
[D1] and [D2] where he gave an instructive derivation of the iterative algorithm for
calculating D(m).

Algorithm 1. Dijkstra derived the following elegant iterative algorithm for
computing D(n) in [D2]:
n := N; a := 1; b := 0;
WHILE n>0 DO

IF ODD(n) THEN b := a+b ELSE a := a+b; ENDIF
n :=

⌊n
2

⌋
;

ENDWHILE
The final value of variable b equals A(N). He also proved some of its remarkable
properties by investigating the behavior of algorithm during its execution.

Calkin and Wilf in [CW] mentioned that θ0(n) = number of hyperbinary rep-
resentations of the integer n, i.e. the number of ways of writing the integer n as a
sum of powers of 2, each power being used at most twice.

Sloane’s excellent On–Line Encyclopedia of Integer Sequences ([Sl]) is a good
starting point for searching information about these two sequences (actually, for any
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imaginable sequence), although sequence (D(k))k∈N was declared dead in favour of
the sequence (b(k))k∈N. The label of sequence (D(k))k∈N was A028415 and the
label of sequence (b(k))k∈N was A002487. It can be found that for the function χ
defined in Proposition 6, there holds χ(n) = 2

⌊
D(n)

D(n+1)

⌋
+1 (by David Newman, see

Remark 6).
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