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Hyperspaces which are products or cones

Ivan Lončar
∗

Abstract. Let C(X) be the hyperspace of all subcontinua of a met-
ric continuum X. Alejandro Illanes has proved that C(X) is a finite-
dimensional Cartesian product if and only if X is an arc or a circle.
In this paper we shall prove, using the inverse systems and limits, that
if X is a non-metric rim-metrizable continuum and C(X) is a finite-
dimensional Cartesian product, then X is a generalized arc or a gener-
alized circle.

It is also proved that if X is a non-metric continuum such that
dim(X) < ∞ and such that X has the cone = hyperspace property,
then X is a generalized arc, a generalized circle, or an indecomposable
continuum such that each nondegenerate proper subcontinuum of X is a
generalized arc.
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1. Introduction

All spaces in this paper are compact Hausdorff spaces and all mappings are con-
tinuous mappings. The symbol ”≈” means ”is homeomorphic to”.The weight of a
space X is denoted by w(X). The cardinality of a set A is denoted by card(A).
We shall use the notion of an inverse system as in [1, pp. 135-142]. An inverse
system is denoted by X = {Xa, pab, A}. We say that X = {Xa, pab, A} is a
well-ordered inverse system if A is a well-ordered set. Let X = {Xa, pab, A} be an
inverse system; an element {xa} of the Cartesian product

∏{Xa : a ∈ A} is called
a thread of X if pab(xb) = xa for any a, b ∈ A satisfying a ≤ b. The subspace of∏{Xa : a ∈ A} consisting of all threads of X is called the limit of the inverse system
X = {Xa, pab, A} and is denoted by limX or by lim{Xa, pab, A} [1, p. 135].

In the sequel we shall use the following results.
Lemma 1. [1, Corollary 2.5.7]. Any closed subspace Y of the limit X of

an inverse system X = {Xa, pab, A} is the limit of the inverse system XY =
{Cl(pa(Y )), pab|Cl(pb(Y )), A}.
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Lemma 2. [1, Corollary 2.5.11]. Let X = {Xa, pab, A} be an inverse system
and B a subset cofinal in A. The mapping consisting in restriction all threads from
X = limX to B is a homeomorphism of X onto the space lim{Xb, pbc, B}.

A generalized arc is a Hausdorff continuum with exactly two non - separating
points a and b. The points a and b are end-points. A generalized arc with end-points
a and b will be denoted by [a, b]. Each separable arc is homeomorphic to the closed
interval I = [0, 1].

A generalized closed curve J is the union of two generalized arcs L1 and L2 with
end-points a and b such that L1 ∩ L2 = {a, b}.

Lemma 3. [2, Theorem 5]. Let X = {Xa, pab, A} be a σ-directed inverse
system of (generalized) arcs. Then X = limX is a generalized arc.

Lemma 4. Let X = {Xa, pab, A} be a σ-directed inverse system of (gener-
alized) circles and monotone bonding mappings. Then X = limX is a generalized
circle.

Proof. Let x, y, z be distinct points of X . There exists an a ∈ A such that
pb(x), pb(y), pb(z) are distinct points of Xb for every b ≥ a. For every b ∈ A, let
Lb ⊂ Xb be the arc with end-points pb(x) and pb(y) which contain pb(z). Let ua

be a point of Xa� La. There exists a point u ∈ X such that pa(u) = ua. For every
b ≥ a let Mb be the arc with end-points pb(x) and pb(y) which contain pb(u). If
c ≥ b, then p−1

bc (Lb) is a continuum (since pbc is monotone) containing pc(x), pc(y)
and pc(z). This means that Lc ⊂ p−1

bc (Lb). Hence pbc(Lc) ⊂ Lb. Similarly, we have
pbc(Mc) ⊂ Mb. It follows that {Lb, pbc |Lc , a ≤ b ≤ c} and {Mb, pbc |Mc , A} are
inverse systems of arcs and monotone bonding mappings whose limits L and M
are generalized arcs (Lemma 3). It is clear that L∪M = X and L∩M = {x, y}. ✷

Let X be a compact space. By 2X we denote the set of all nonempty closed
subsets of X , by C(X) the set of all nonempty closed connected subsets of X and
by X(n), where n is a positive integer, the set of all nonempty subsets consisting of
at most n points [5]. We consider C(X) and X(n) as a subset of 2X . The topology
on 2X is the Vietoris topology and C(X), X(n) are subspaces of 2X .

Let X and Y be compact spaces and let f : X → Y be a continuous map.
Define 2f : 2X → 2Y by 2f(F ) = f(F ) for F ∈ 2X . By [9, 5.10] 2f is continuous
and 2f(C(X)) ⊂ C(Y ) and 2f(X(n)) ⊂ Y (n). The restriction 2f |C(X) is denoted
by C(f).

Let X = {Xa, pab, A} be an inverse system of compact spaces with natural
projections pa : limX → Xa, a ∈ A. Then 2X = {2Xa , 2pab , A}, C(X) =
{C(Xa), C(pab), A} and X(n) = {Xa(n), 2pab | Xb(n), A} are inverse systems. For
each F ∈ 2limX, i.e., for each closed F ⊆ limX, pa(F ) ⊆ Xa is closed and compact.
Therefore, we have a mapping 2pa : 2limX → 2Xa induced by pa, for each a ∈ A.
Define a mapping M : 2limX → lim2X by M(F ) = {pa(F ) : a ∈ A}. Note that
{pa(F ) : a ∈ A} is a thread of the system 2X. Mapping M is continuous and 1-1.
It is also an onto mapping since for each thread {Fa : a ∈ A} of the system 2X the
set F ′ =

⋂{p−1
a (Fa) : a ∈ A} is non-empty and pa(F ′) = Fa. Therefore, M is a

homeomorphism. If Pa : lim 2 X → 2 Xa , a ∈ A, are the corresponding projections,
then PaM = 2pa . Identifying F with M(F ), we have Pa = 2pa .

Lemma 5. [5, Lemma 2.]. Let X = limX. Then 2X = lim2X, C(X) = limC(X)
and X(n) = limX(n).
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2. Inverse σ-systems and hyper-onto representations of con-
tinua

This section contains some special features of inverse systems which are needed in
the next sections.

2.1. σ-complete inverse systems

We say that an inverse system X = {Xa, pab, A} is σ-directed if for each sequence
a1,a2,...,ak ,... of members of A there is an a ∈ A such that a ≥ ak for each k ∈ N.

Theorem 1. [6, Theorem 1.1] Let X = {Xa, pab, A} be a σ-directed inverse
system of compact spaces with surjective bonding mappings and limit X. Let Y be
a metric compact space. For each surjective mapping f:X→Y there exists an a∈A
such that for each b≥a there is a mapping gb : Xb →Y such that f = gbpb.

Let τ be an infinite cardinal number. We say that a directed set A is τ-complete
if for each transfinite sequence a1 ≤ a2 ≤ ... ≤ aα ≤, ..., α < τ, aα ∈ A, there exists
sup aα ∈ A.

We say that a well-ordered inverse system {Xa, pab, A} is continuous if for each
limit ordinal γ, 0 < γ < w(X), the maps pαγ : Xγ → Xα induce a homeomorphism
of the spacesXγ and lim{Xα, pαβ , α ≤ β < γ}. An inverse system X = {Xa, pab, A}
is continuous if for each chain B ⊂ A with supB = γ the maps pαγ : Xγ → Xα

induce a homeomorphism of the spaces X γ and lim{Xa, pab, B}.
An inverse system {Xa, pab, A} is said to be an inverse τ-complete system if

{Xa, pab, A} is continuous and A is τ -complete. An inverse system is said to be an
inverse τ-system if it is τ -complete and w(Xa) ≤ τ, a ∈ A [14, p. 9]. A directed
set A is σ-complete if A is ℵ0-complete. An inverse system is said to be an inverse
σ-system if it is σ-complete and w(Xa) ≤ ℵ0, a ∈ A.

Theorem 2. For each Tychonoff cube Im, m ≥ ℵ1, there exists an inverse
σ-system I = {Ia, Pab, A} of Hilbert cubes Ia such that Im is homeomorphic to
lim I.

Proof. a) Let us recall that the Tychonoff cube Im is the Cartesian product∏{Is : s ∈ S}, card(S) = m, Is = [0, 1] [1, p. 114]. If card(S) = ℵ0, the Tychonoff
cube Im is called the Hilbert cube. Let A be the set of all countable subsets of S
ordered by inclusion. If a ⊆ b, then we write a ≤ b. It is clear that A is σ-directed.
For each a ∈ A there exists a Hilbert cube Ia. If a, b ∈ A and a ≤ b, then there
exists the projection Pab : Ib → Ia. Finally, we have the system I = {Ia, Pab, A}.

b) Let us prove that I = {Ia, Pab, A} is an inverse σ-system. It is clear that
A is σ-directed. Moreover, A is σ-complete. Namely, if a1 ≤ a2 ≤ ... ≤ an, ... is
a countable chain in A, then we have a countable chain a1 ⊆ a2 ⊆ ... ⊆ an, ... of
countable subsets of S. It is clear that a =

⋃{an : n ∈ N} is a countable subset
of S and a = sup an. It remains to prove that I = {Ia, Pab, A} is continuous. Let
B = a1 ≤ a2 ≤ ... ≤ aα, ..., α < τ, aα ∈ A, be a chain with sup aα = γ ∈ A. We
have a transfinite inverse sequence {Iaα , Paαaβ

, B}. Let us prove that a mappings
Paαγ , α < τ induce a homeomorphism of the spaces Iγ and lim{Iaα , Paαaβ

, B}. Let
x ∈ Iγ . It is clear that Paαγ(x) = xaα is a point of Iaα and that Paαaβ

(xaβ
) = xaα

if aα ≤ aβ. This means that (xaα) is a thread in {Iaα , Paαaβ
, B}. Set H(x) =
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(xaα). We have the mapping H : Iγ → lim{Iaα , Paαaβ
, B}. It is clear that H is

continuous, 1-1 and onto. Hence, H is a homeomorphism. Finally, I = {Ia, Pab, A}
is an inverse σ-system since w(Ia) ≤ ℵ0.

c) Let us prove that Im is homeomorphic to lim I. Let x ∈ Im. It is clear
that Pam(x) = xa is a point of Ia and that Pab(xb) = xa if a ≤ b. This means
that (xa) is a thread in I = {Ia, Pab, A}. Set H(x) = (xa). We have the mapping
H : Im → lim I. It is clear that H is continuous, 1-1 and onto. Hence, H is a
homeomorphism. ✷

By a similar method of proof we have the following theorem.
Theorem 3. For each uncountable Cartesian product

∏{Xa : a ∈ A} of con-
tinua Xa there exists an inverse σ-system X = {Xb, Pab, B} of countable infinite
Cartesian products Xb and monotone mappings Pab such that

∏{Xa : a ∈ A} is
homeomorphic to limX.

Theorem 4. Let X be a compact Hausdorff space such that w(X) ≥ ℵ1. There
exists an inverse σ-system X = {Xa, pab, A} of compact metric spaces Xa such that
X is homeomorphic to limX.

Proof. By [1, Theorem 2.3.23.] the space X is embeddable in Iw(X). From
Theorem 2 it follows that Iw(X) is a limit of I = {Ia, Pab, A}, where every Ia is
the Hilbert cube. Now, X is a closed subspace of lim I. Let Xa = Pm(X), where
Pm : Im → Ia is a projection of the Tychonoff cube Im onto the Hilbert cube Ia. Let
pab be the restriction of Pab toXb. We have an inverse system X = {Xa, pab, A} such
that w(Xa) ≤ ℵ0. By virtue of Lemma1 X is homeomorphic to limX. Moreover,
X is an inverse σ-system since I = {Ia, Pab, A} is an inverse σ-system. ✷

Lemma 6. Let B be an infinite subset of a directed set A. There exists a directed
subset F∞(B) of A such that B⊆F∞(B) and card(F∞(B)) = card(B).

Proof. If B is directed, then we let F∞(B) = B. Suppose that B is not
directed. By Bfin we shall denote the set all finite subsets of B. Let ν be any finite
subset of A. There exists a δ(ν) ∈ A such that δ ≤ δ(ν) for each δ ∈ ν. For each
B ⊆ A there exists a set F1(B) = B

⋃{δ(ν) : ν ∈ Bfin}. Put

Fn+1 = F1(Fn(B), (1)

and
F∞(B) =

⋃
{Fn(B) : n ∈ N}. (2)

It is clear that
F1(B) ⊆ F2(B) ⊆ ... ⊆ Fn(B) ⊆ ... (3)

The set F∞(B) is directed since each finite subset ν of F∞(B) is contained in some
Fn(B) and, consequently, δ(ν) is contained in Fn+1(B) ⊂ F∞(B). From card(B) ≥
ℵ0, it follows card({δ(ν) : ν ∈ B}) ≤ card(B)ℵ0. We infer that card(F1(B)) ≤
card(B)ℵ0. Similarly, card(Fn(B)) ≤ card(B)ℵ0. This means that card(F∞(B)) ≤
card(B)ℵ0. Thus

card(F∞(B)) ≤ card(B)ℵ0. (4)

We infer that card(F∞(B)) = card(B). ✷

Let X = {Xa, pab, A} be a usual inverse system of compact spaces and let τ <
card(A) be an infinite cardinal. Consider the set Aτ of all F∞(B), B ⊆ A, card(B) =
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τ , ordered by inclusion. It is clear that Aτ is τ -directed. Each element α of Aτ

is some F∞(B). We define Xα as the limit of {Xa, pab, F∞(B)}. Let α = F∞(B)
and β = F∞(C). If α ⊆ β, then there exists the natural projection qαβ : Xβ =
lim{Xa, pab, F∞(C)} → Xα = lim{Xa, pab, F∞(B)}. It is clear that qαγ = qαβqβγ

if α ≤ β ≤ γ. It follows that {Xα, qαβ, Aτ} is an inverse system.
Theorem 5. Let X = {Xa, pab, A} be an inverse system of compact spaces with

limit X. For each infinite cardinal τ < card(A) there exists a τ-complete inverse
system Xτ = {Xα, qαβ , Aτ} such that X is homeomorphic to lim{Xα, qαβ , Aτ}.

Proof. The proof of the fact that X is homeomorphic to limXτ is the same
as the proof of Theorem 9.4. of [13]. It remains to prove that Xτ is τ -complete.
Let C be a chain of Aτ of the cardinality ≤ τ . Every c ∈ C is some F∞(Bc).
Consider the union

⋃{F∞(Bc) : c ∈ C}. It is clear that it is directed and has
the cardinality ≤ τ . Hence,

⋃{F∞(Bc) : c ∈ C} is a member d of Aτ . Moreover,⋃{F∞(Bc) : c ∈ C} ⊇ F∞(Bc) for each c ∈ C. This means that d ≥ c (in the
ordering of Aτ ) for each c ∈ C. Clearly, if e ≥ c for every c ∈ C, then e ≥ d since d
is defined as the union

⋃{F∞(Bc) : c ∈ C}. ✷

Theorem 6. Let X be a compact space of finite dimension dimX. There exists
an inverse σ-system X = {Xa, pab, A} of compact metric spaces Xa and surjec-
tive bonding mappings pab such that X is homeomorphic to limX and dimXa ≤
dimX.

Proof. By virtue of [7, Theorem 1.] every compact space X is homeomorphic
to the inverse limit of an inverse system of metrizable compacta {Qa, qab, B} with
dimQa ≤ dimX and card(B) ≤ w(X). From Theorem 5 it follows that Qσ =
{Q∆, q∆Γ, Aσ} is a σ-system such that limX and limXσ are homeomorphic. Every
Q∆ is metrizable as the inverse limit of an inverse system over a countable directed
set. Moreover, by [1, p. 504, Exercise 7.3.I.], dimQ∆ ≤ dimX . Denote Aσ

by A and Q∆ by Xa. We obtain the desired inverse system X = {Xa, pab, A} of
compact metric spaces Xa and surjective bonding mappings pab such that X is
homeomorphic to limX and dimXa ≤ dimX . ✷

2.2. Factorizable inverse systems

An inverse system X = {Xa, pab, A} is said to be factorizable [14, p. 24] if for each
continuous real-valued function f : limX → I = [0, 1] there exists an a ∈ A such
that for b ≥ a there exists a continuous function fb : Xb → I such that f = fbpb.

By virtue of Theorem 1 we have the following lemma.
Lemma 7. If X = {Xa, pab, A} is a σ-directed inverse system of compact spaces

with surjective bonding mappings, then X is factorizable.
Theorem 7. [14, Theorem 40.]. If X = {Xa, pab, A} and Y = {Ya, qab, A} are

factorizable inverse τ-systems of compact spaces with surjective bonding mappings,
then for each mapping f : limX → limY there exists a cofinal subset B(f) of A
and the mappings fb : Xb → Yb, b ∈ B(f), such that each diagram

Xb
pbc←− Xc

↓ fb ↓ fc

Yb
qbc←− Yc

(5)
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commutes and the mapping f is induced by the collections {fb : b ∈ B(f)}, i.e.,
each diagram

Xb
pb←− limX

↓ fb ↓ f
Yb

qb←− limY
(6)

commutes. If f : limX → limY is a homeomorphism, then each fb is a homeomor-
phism.

Proof. For the sake of the completeness we give the proof. Let us prove that
there exists a cofinal subset B(f) of A such that every diagram (5) commutes. Let
a ∈ A be any member of A. Set a0 = a. Suppose that ai ∈ A is defined for
each i ∈ N, i < k. We define ak as follows. Consider the mapping fqak−1 :
limX → Yak−1 , where qak−1 : limY → Yak−1

is a natural projection. By Theorem 1
and Lemma 7 there exists ak ∈ A, ak ≥ ak−1, and a mapping fak−1b : Xb → Yak−1

such that every diagram commutes for each b ≥ ak. Hence, ak is defined for every
k ∈ N. We obtain an increasing sequence E = {a0, a1, ..., ak, ...}. There exists
b = supak ∈ A since A is complete. By the definition of ak there exists a mapping
fakb : Xb → Yak

for every k ∈ N. The collection {fakb : k ∈ N} induces the
mapping fb : Xb → lim{Yak

, qakal
, E}. From the continuity of X it follows that

Yb is homeomorphic to lim{Yak
, qakal

, E}. This means that fb : Xb → Yb. It is
clear that b ≥ a. Hence, the subset B(f) of A is cofinal in A and the mappings
fb : Xb → Yb, b ∈ B(f), such that each diagram (5) commutes, induce the
mapping f .

If f is a homeomorphism h, then there exists the set B(h) for the mapping f
and the set B(h−1) for f−1. Let B(h) = B(h) ∩ B(h−1). From the commutative
diagram

Xb
pb←− limX

gb ↑↓ fb h−1 ↑↓ h
Yb

qb←− limY
(7)

it follows that gbfb and fbgb are the identity. Hence, fb is a homeomorphism. Let us
observe that by Lemma2 limX = {Xa, pab, A} is homeomorphic to limX = {Xa,
pab, B(f)} ✷

In the remaining parts of this section we discuss the necessary and sufficient
conditions for surjectivity of the bonding mappings of the inverse σ-system C(X) =
{C(Xa), C(pab), A} whose limit (by Lemma5) is C(limX). We adopt the notion of
hyper-onto representation ([10, p. 183, Definition (1.186)], [4, p. 439]) as follows.

A continuum X is said to have a hyper-onto representation provided that there
exists an inverse σ-system X = {Xa, pab, A} such that: (i) X is homeomorphic
to limX, (ii) each Xa is a metric space and (iii) each mapping C(pab) : C(Xb) →
C(Xa) is a surjection.

An inverse system X = {Xa, pab, A} satisfying (i) through (iii) is called a
hyper-onto representation for X .

A continuous mapping f : X → Y is said to be confluent [12, p. 284, Definition
13.12] if for each subcontinuum Q of Y and each component K of f−1(Q) we have
f(K) = Q.
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A continuous mapping f : X → Y is said to be weakly confluent [10, p. 22] if
for each subcontinuum Q of Y there exists a component K of f−1(Q) such that
f(K) = Q. Every monotone surjection is weakly confluent.

It is clear that, as in [10, p. 186, Theorem (190)], the following theorem holds.
Theorem 8. A continuum X has a hyper-onto representation if and only if

there exists an inverse system X = {Xa, pab, A} satisfying (i) and (ii) and such
that every bonding mapping pab : Xb → Xa is weakly confluent.

In the sequel we investigate the hyper-onto representation of some classes of
continua.

2.3. Hyper-onto representation of locally connected and rim-
metrizable continua

A space X is said to be rim-metrizable if it has a basis B such that Bd(U)) is
metrizable for each U ∈ B. Equivalently, a space X is rim-metrizable if and only
if for each pair F,G of disjoint closed subsets of X there exists a metrizable closed
subset of X which separates F and G.

Lemma 8. [15, Theorem 1.2]. Let X be a nondegenerate rim-metrizable con-
tinuum and let Y be a continuous image of X under a light mapping f : X → Y .
Then w(X) = w(Y ).

Lemma 9. [15, Theorem 3.2]. Let X be a rim-metrizable continuum and let
f : X → Y be a monotone mapping onto Y . Then Y is rim-metrizable.

Let us prove the following theorem.
Theorem 9. Let X = {Xa, pab, A} be an inverse system of compact spaces and

surjective bonding mappings pab. Then:

1) There exists an inverse system M(X) = {Ma,mab, A} of compact spaces such
that mab are monotone surjections and limX is homeomorphic to limM(X),

2) If X is σ-directed, then M(X) is σ-directed,

3) If X is σ-complete, then M(X) is σ-complete,

4) If every Xa is a metric space and limX is locally connected (a rim-metrizable
continuum), then every Ma is metrizable.

Proof. 1) The proof of 1) is broken into several steps.
a) Let X = {Xa, pab, A} be an inverse system with limit X and the projections

pa : X → Xa, a ∈ A. For every mapping pa : X → Xa there exists a
monotone-light factorization pa = 4ama, where ma : X → Ma is monotone and
4a : Ma → Xa is light [1, p. 451, Theorem 6.2.22]. We have a collection of spaces
Ma, a ∈ A.

b) For every bonding mapping pab : Xb → Xa, b ≥ a, we define mab :
Mb → Ma as follows. Let x be a point of Mb, xb = 4b(x) and xa = pab(xb). Then
x is a component in p−1

b (xb). This means that there exists a unique component y
of p−1

a (xa) containing x since p−1
b (xb) ⊂ p−1

a (xa). Set mab(x) = y ∈ Ma. The
mapping mab : Mb → Ma is defined. From the definition of mab : Mb → Ma

it follows
pa = 4ama, (8)
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pab4b = 4amab, (9)

and
mabmb = ma. (10)

c) Transitivity. Let as prove that mac = mabmbc. Let x be any point of Mc.
Set xc = 4c(x). This means that there exists a component C of p−1

c (xc) such that
mc(C) = x. Let xb = pbc(4c(x)). It is clear that C is contained in some component
D of p−1

b (xb). Let xa = pab(xb). It follows that D is contained in some component
E of p−1

a (xa). Hence,
mbc(x) = mb(D). (11)

This means that mabmbc(x) = mabmb(D) = ma(D) = ma(E) = mc(C) since
mabmb = ma and D ⊂ C. On the other hand mac(x) = ma(C). Hence, for every
x ∈ Mc we have

mac(x) = mabmbc(x). (12)

The proof of the transitivity is completed.
d) We infer that M(X) = {Ma,mab, A} is an inverse system. Let us prove

that limX and limM(X) are homeomorphic. Let x be any point of limM(X).
From (10) it follows that the collection {ma(x) : a ∈ A} is a point of limM(X).
This means that the collection {ma : a ∈ A} induces a continuous mapping
m : limX → limM(X) which assigns to the point x the point m(x) = {ma(x) :
a ∈ A} ∈ limM(X). If x and y are distinct points of limX, then there exists an
a ∈ A such that pa(x) �= pa(y). It is clear that ma(x) �= ma(y). This means that
the mapping m is 1-1. Similarly, one can prove that m is a surjection. Hence m is
a homeomorphism.

2) Obvious.
3) It suffices to prove the continuity of M(X). Let X = {Xa, pab, A} be con-

tinuous. Let a1 ≤ a2 ≤ ... ≤ aα...., α < τ, be a transfinite sequence in A. We have
a transfinite well-ordered inverse system {Xaα , paαaβ

, α < τ} whose limit space is
Xaτ ∈ X. We have also a well-ordered inverse system {Maα ,maαaβ

, α < τ}. We
must prove that the inverse system {Maα ,maαaβ

, α < τ} has the limit homeomor-
phic to Maτ and that the homeomorphism is induced by the mappings maαaτ . Let
Y be the limit of {Maα ,maαaβ

, α < τ} and let naα : Y → Maα be the natural
projection, α < τ . For each point x ∈ Maτ the collection {maαaτ (x) : α < τ} is
a thread in {Maα ,maαaβ

, α < τ}. Define H(x) = (maαaτ (x) : α < τ) ∈ Y . We
have a continuous mapping H : Maτ → Y induced by mappings maαaτ such that
Hmaαaτ = naα , α < τ. Let us prove that H is a homeomorphism. It suffices to
prove that H is onto and 1-1. If y ∈ Y, then yaα = naα(y) and maαaβ

(yaβ
) = yaα .

Every m−1
aαaτ

(yaα) is non-empty and m−1
aαaτ

(yaα) ⊃ m−1
aβaτ

(yaβ
), α < β < τ , since

maαaτ = maαaβ
maβaτ . We infer that

⋂{m−1
aαaτ

(yaα) : α < τ} is non-empty subset
of Maτ . For each point x ∈ ⋂{m−1

aαaτ
(yaα) : α < τ} we have H(x) = y. Thus, H is

onto. Finally, let us prove that H is 1-1. Let x, y be a pair of distinct point of Maτ .
We consider two cases. First, let 4aτ (x) �= 4aτ (y). This means that there exists an
α < τ such that paαaτ (4aτ (x)) �= paαaτ (4aτ (y)) since Xaτ is the limit of the sys-
tem {Xaα , paαaβ

, α < τ}. From (9) it follows that 4aαmaαaτ (x) = paαaτ (4aτ (x))
and 4aαmaαaτ (y) = paαaτ (4aτ (y)). Thus, 4aαmaαaτ (x) �= 4aαmaαaτ (y). It is
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clear that maαaτ (x) �= maαaτ (y). Because of the definition of H it follows that
H(x) �= H(y). Consider the case 4aτ (x) = 4aτ (y). Set z = 4aτ (x) = 4aτ (y).
From x �= y it follows that there exist two different components C,D of p−1

aτ
(z)

such that maτ (C) = x and maτ (D) = y. For every α < τ we have the point
zaα = paαaτ (z) such that

⋂{p−1
aαaτ

(zaα) : α < τ} = z since Xaτ is the limit of the
system {X aα, paαaβ

, α < τ}. It follows that
⋂{p−1

aτ
p−1

aαaτ
(zaα) : α < τ} = p−1

aτ
(z)

or
⋂{p−1

aα
(zaα) : α < τ} = p−1

aτ
(z). We infer that every component of p−1

aτ
(z) is

contained in some component of p−1
aα

(zaα). If we suppose that for every α < τ there
exists a component Kaα of p−1

aα
(zaα) which contains both C and D, then we have

the continuum
⋂{Kaα : α < τ} [1, Corollary 6.1.19] containing C and D. This is

impossible since C and D are components. Hence, there exists an α < τ such that
C and D are in different components of p−1

aα
(zaα). We infer that maα(C) �= maα(D).

From (10) it follows that maαaτmaτ (C) = maα(C) and maαaτmaτ (D) = maα(D).
This means that maαaτmaτ (C) �= maαaτmaτ (D) or maαaτ (x) �= maαaτ (y) since
maτ (C) = x andmaτ (D) = y. From the definition of qb it follows thatH(x) �= H(y).
The continuity is proved.

4) If X is rim-metrizable, then apply Lemmas 8 and 9. If X is locally connected,
then apply [8, Theorem 1]. ✷

Theorem 10. Let X = {Xa, pab, A} be a σ-directed inverse system of compact
spaces and surjective bonding mappings pab. If limX is a locally connected space
(rim-metrizable continuum), then there exists an a ∈ A such that the projection pb

is monotone, for every b ≥ a.
Proof. Let M(X) = {Ma,mab, A} be the inverse system of compact metric

space Ma and monotone bonding mappings mab (Theorem 9) whose limit is home-
omorphic to limX. From Theorem 7 and Lemma 7 it follows that there exists an
a ∈ A such that for every b ≥ a there exists a homeomorphism hb : Xb → Mb

such that hbpb = mb, where mb : limM(X) → Mb is a projection. Clearly, mb

is monotone. Hence, pb is monotone since hbpb = mb and hb : Xb → Mb is a
homeomorphism. ✷

Theorem 11. If X is a locally connected or rim-metrizable continuum, then X
has a hyper-onto representation.

Proof. By Theorems 9 and 10 there exists an inverse σ-system M(X) = {Ma,
mab, A} such that the bonding mappings pab are monotone. From Theorem 8 it
follows that M(X) = {Ma,mab, A} is a hyper-onto representation of X . ✷

2.4. Hyper-onto representation of chainable continua

A chain {U1, ..., Un} is a finite collection of sets Ui such that Ui

⋂
Uj �= ∅ if and only

if |i−j| ≤ 1. A continuum X is said to be chainable or arc-like if each open covering
of X can be refined by an open covering u = {U1, ..., Un} such that {U1, ..., Un} is
a chain.

Theorem 12. [7, Theorem 2∗]. Every chainable continuum X is homeomorphic
with the inverse limit of an inverse system {Qa, qab} of metric chainable continua
Qa.

Remark 1. One can assume that qab are onto mappings since a closed connected
subset C of a chainable continuum is chainable [8, Lemma 12].
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Theorem 13. [12, p. 262, Theorem 12.46]. If f : X → Y is a mapping of the
metric continuum X onto an arc-like continuum Y , then f is weakly confluent.

Representation in Theorem 12 is not an hyper-onto since {Qa, qab} is not an
σ-system. Now we shall prove that every chainable continuum has the hyper-onto
representation.

Theorem 14. If X is a chainable continuum, then X has the hyper-onto
representation Qσ = {Q∆, p∆Γ, Aσ} such that each Q∆ is a metric chainable
continuum and each p∆Γ is a weakly confluent surjection.

Proof. Let Q = {Qa, qab, A} be an inverse system as in Theorem 12. Using
Theorem 5, for τ = ℵ0, we obtain the inverse system Qσ = {Q∆, p∆Γ, Aσ} which is
a σ-directed and σ-complete inverse system such that limQ and limQσ are homeo-
morphic. Every Q∆ is chainable since we may assume that Q∆ = {Qb, qbb′ , ∆} is an
inverse sequence since ∆ is countable and Q∆ = limQ∆. Let u = {U1, ..., Un} be an
open covering of Q∆. There exists a b ∈ ∆ and an open covering ub = {U b

1 , ..., U
b
m}

of Qb such that {q−1
b (U b

1 ), ..., q
−1
b (U b

m)} refines the covering u = {U1, ..., Un}. There
is a chain {V b

1 , ..., V
b
p } which refines ub since Qb is chainable. It is clear that

{q−1
b (V b

1 ), ..., q−1
b (V b

p )} is a chain which refines the covering u. Hence, Q∆ is chain-
able. Further, one can assume that every p∆ : limQσ → Q∆ is onto since a closed
connected subset C of an chainable continuum is chainable [8, Lemma 12]. From
Theorem 13 it follows that every bonding mapping p∆Γ is weakly confluent. Finally,
we infer that every chainable continuum has the hyper-onto representation. ✷

2.5. Hyper-onto representation of hereditarily indecompos-
able continua

A continuum is said to be decomposable provided that it is the union of two proper
subcontinua [4, p. 61]. A continuum that is not decomposable is said to be in-
decomposable. A continuum is said to be hereditarily indecomposable [4, p. 61]
provided that all of its nondegenerate subcontinua are indecomposable.

Now we obtain the hyper-onto representation for rim-metrizable hereditarily
indecomposable continua.

Theorem 15. If X is a rim-metrizable non-metric hereditarily indecompos-
able continuum, then X has an hyper-onto representation X = {Xa, pab, A} such
that each Xa is a metric hereditarily indecomposable continuum and each pab is a
monotone surjection.

Proof. Using Theorem 9 we obtain an inverse σ-system X = {Xa, pab, A}
such that every Xa is a metric continuum and every pab is a surjective monotone
mapping. It remains to prove that each Xa is hereditarily indecomposable. This
easy follows from the fact that the projection pa, a ∈ A, are monotone surjections.
✷

3. Hyperspaces which are products

In [11, Question 2.0], Nadler asked the following question: If C(X) is a finite-
dimensional Cartesian product then must X be an arc or a circle? For a metric
continuum X Illanes [3, Theorem A.] answered by the following theorem.
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Theorem 16. [3, Theorem A.]. If X is a metric continuum, then C(X) is a
finite-dimensional Cartesian product if and only if X is an arc or a circle.

Let K be a class of non-metric finite-dimensional continua which are the limit of
σ-directed inverse systems X = {Xa, pab, A} of metric finite-dimensional continua
Xa, dimXa ≤ dimX, and weakly confluent bonding mappings pab. By virtue of
Theorems 6 and 11 the class K contains all locally connected non-metric continua
and all non-metric rim-metrizable continua. Moreover, the class K contains all
non-metric chainable continua since every continuous mapping of a continuum onto
a chainable continuum is weakly confluent (Theorem 13) and every chainable non-
metric continuum has a hyper-onto representation (Theorem 14).

We start with the following theorem.
Theorem 17. Let a continuum X be in class K. If C(X) is homeomorphic to

Y × Z, then X is a generalized arc or a generalized circle.
Proof. From X ∈ K it follows that there exists an inverse σ-system X =

{Xa, pab, A} of metric continua such thatX is homeomorphic to limX and dimXa ≤
dimX . Now, C(X) is a limit of inverse system C(X) = {C(Xa), C(pab), A} with
surjective bonding mappings C(pab) [10, Theorem (0.49.1)]. If C(X) ≈ Y ×Z, then
there exist the inverse systems Y = {Ya, qab, A} and Z = {Za, rab, A} such that
Ya and Za are subspace of C(Xa) and qab, rab are the restriction of C(pab) on Ya

and Za. It is clear that qab, rab are surjections. Then Y × Z is homeomorphic to
lim{Ya × Za, qab × rab, A} [1, p. 143]. Let us observe that qab × rab is a surjec-
tion. It follows that C(X) is homeomorphic to lim{Ya × Za, qab × rab, A} and to
lim{C(Xa), C(pab), A}. By Theorem 7 it follows that there exists a cofinal subset B
of A such that Yb×Zb is homeomorphic to C(Xb) for each b ∈ B. From Theorem 16
it follows that each Xb is an arc or a circle. By [2, Theorem 3] we infer that X is
locally connected. Using Theorem 10 we may assume that pbc is monotone for every
b, c ∈ B. If there exists a subset D of B which is cofinal in A and for each d ∈ D
Xd is an arc, then X = lim{Xc, pcd, C} is an arc [2, Theorem 5]. If there is no a
subset D of C which is cofinal in A such that for each d ∈ D Xd is an arc, then
there exists a subset E of C cofinal in A such that Xe is a generalized circle, e ∈ E.
From Lemma4 it follows that X = lim{Xc, pcd, E} is a generalized circle. ✷

Problem 1. Is it true that C(X) is homeomorphic to Y ×Z for every generalized
arc (for every generalized circle)?

From Theorems 17 and 14 there follows the following result.
Corollary 1. Let X be a chainable non-metric continuum. If C(X) is homeo-

morphic to Y × Z, then X is a generalized arc.
Theorem 18. If X is a non-metric rim-metrizable (or locally connected) finite-

dimensional continuum and C(X) is homeomorphic to Y × Z, then X is a gener-
alized arc or a generalized circle.

Proof. By virtue ofTheorem 6 there exists an inverse σ-system X = {Xa, pab, A}
of metric continua such that X is homeomorphic to limX and dimXa ≤ dimX .
From Theorem 10 it follows that we may assume that pab are monotone surjections.
Now, apply Theorem 17. ✷

Problem 2. Is the converse of Theorem18 true?
Problem 3. Is it true that every non-metric finite-dimensional continuum X

is a generalized arc or a generalized circle if C(X) is homeomorphic to Y × Z?
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If C(X) is an infinite-dimensional product and X is a locally connected metric
continuum, then we have the following result.

Theorem 19. [11, Theorem 3.15]. Let X be a Peano continuum. If C(X) ≈

Y × Z, then one of the following must hold:
(3.15.1) X is a circle,

(3.15.2) X contains no free arc,

(3.15.3) The closure of any component of ∪F (X) is a free arc (in X) which is
disjoint from any free arc (in X) not contained in it.

Let us recall that for any continuum M, F (M) is defined by F (M) = {A ∈
C(M) : A ⊂ J for some free arc in M and A is nondegenerate} [11, p. 60]. It
follows that ∪F (M) = {p ∈M : p ∈ J for some free arc J in M} [11, p. 60].

In a non-metric case we have the following theorem.
Theorem 20. Let X be a locally connected non-metric continuum. If C(X) ≈

Y × Z, then one of the following must hold:

(a) X is a generalized circle,

(b) X contains no free arc,

(c) The closure of any component of ∪F (X) is a free arc (in X) which is disjoint
from any free arc (in X) not contained in it.

Proof. From Theorem 11 it follows that there exists an inverse σ-system X =
{Xa, pab, A} of metric locally connected continua such that X is homeomorphic to
limX. Now, C(X) is a limit of inverse system C(X) = {C(Xa), C(pab), A} with
surjective bonding mappings C(pab) [10, Theorem (0.49.1)]. If C(X) ≈ Y ×Z, then
there exist the inverse systems Y = {Ya, qab, A} and Z = {Za, sab, A} such that Ya

and Za are subspace of C(Xa) and qab, sab the restriction of C(pab) onto Ya and Za.
Then Y ×Z is homeomorphic to lim{Ya×Za, qa× ra, A} [1, p. 143]. It follows that
C(X) is homeomorphic to lim{Ya × Za, qa × ra, A} and to lim{C(Xa), C(pab), A}.
By Theorem 7 it follows that there exists a cofinal subset B of A such that Yb ×Zb

is homeomorphic to C(Xb) for each b∈B. From Theorem 19 it follows that each
Xb is either an arc or a circle or (3.15.3) is satisfied. Consider the following sets
: C = {b ∈ B : Xb is an arc}, D = {b ∈ B : Xb contains no free arc} and
E = {b ∈ B : Xb satisfies (c)}. It is clear that if C is cofinal in B, then D and E
are not cofinal in B since a monotone image of an arc is an arc. From Lemma3 it
follows that X is a generalized arc. Similarly, if D is cofinal in B, then C is not
cofinal in B. Let us prove that in this case X contains no free arc. Suppose that X
contains a free arc L with the end-points x and y. This means that U = L�{0, 1}
is an open set in X . There exists a d ∈ D and an open set Ud ⊂ Xd such that
p−1

d (Ud) ⊂ U ⊂ L. Let us observe that Ld = pd(L) is an arc since pd is monotone.
We infer that Ud ⊂ Ld. This means Ud is an interval (xd, yd) of the arc Ld. It
follows that (xd, yd) is open in X . This is impossible since Xd contains no free arc.
It remains to consider the case when E is cofinal in B. Let K be any component of
∪F (X) and let z ∈ K. There exists a free arc J with end points x and y such that
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p ∈ J� {x, y} . Now, U = J�{0, 1} is open in X . As in case when D is cofinal in B
we infer that there exists an e0 ∈ E such that, for every e ≥ e0, pe(z) is in some free
arc in X . This means that pe(K) is contained in some component Ke of ∪F (Xe).
From the monotonicity of pe1e2 , e0 ≤ e1 ≤ e2, it follows that p−1

e1e2
(Ke1) = Ke2 .

Similarly, p−1
e1e2

(Cl(Ke1)) = Cl(Ke2). Now, we have the inverse system {Cl(Ke),
pef |Cl(Kf) , e0 ≤ e1 ≤ e2} whose limit is Cl(K). Let us prove that Cl(K) is an
arc. This follows from Lemma3 since every Cl(Ke) is an arc. Similarly, one can
prove that Cl(K) is a free arc. It remains to prove that Cl(K) is disjoint from any
free arc (in X) not contained in it. Suppose that there exists a free arc J in X such
that Cl(K)∩J �= ∅ and J�Cl(K) �= ∅. This means that pe(Cl(K))∩ pe(J) �= ∅ for
every e ≥ e0. Moreover, if z ∈ pe(Cl(K)) ∩ pe(J) �= ∅ then there exists a e0 ∈ E
such that, for every e ≥ e0, pe(z) is in some free arc Je in Xe. By (c) it follows
that pe(J) is contained in pe(Cl(K)) for every e ≥ e0. Thus, J is contained in
lim{Cl(Ke), pef |Cl(Kf) , e0 ≤ e1 ≤ e2} = Cl(K), a contradiction. ✷

Now we consider the non-metric continua for which C(X) ≈ X × I, where
I = [0, 1].

Theorem 21. [10, p. 342, Theorem (10.3)]. If X is a finite-dimensional metric
continuum such that C(X) is homeomorphic to X × I, then X is an arc.

For non-metric finite-dimensional continua we shall prove the following theorem.

Theorem 22. If X is a finite-dimensional non-metric rim-metrizable (or locally
connected) continuum such that C(X) is homeomorphic to X × I, then X is a
generalized arc.

Proof. By virtue ofTheorem 6 there exists an inverse σ-system X = {Xa, pab, A}
of metric continua such that X is homeomorphic to limX and dimXa ≤ dimX .
By virtue of Theorem 10 we may assume that pab are monotone surjections. Now,
C(X) is a limit of inverse system C(X) = {C(Xa), C(pab), A}. If C(X) ≈ X × I,
then there exist the inverse systems X × I = {Xa × I, pab × id, A} and C(X) =
{C(Xa), C(pab), A} with homeomorphic limits C(X). From Theorem 7 it follows
that there exists a cofinal subset B of A such that Xb × I is homeomorphic to
C(Xb) for each b ∈ B. From Theorem 21 it follows that each Xb is a metric arc.
From [2, Theorem 5] it follows that X is a generalized arc. ✷

Remark 2. Let us observe that the proof above is valid for chainable non-
metric continua. This means that if X is a finite-dimensional non-metric chainable
continuum such that C(X) is homeomorphic to X×I, then X is a generalized arc.

Problem 4. Is the arc X in Theorem22 a metric arc? Moreover, is an arc L
a metric arc if C(L) is homeomorphic to L× I?

Remark 3. Let us prove that there exists an α ∈ L such that [0, α] is a metric
arc and a β ∈ L such that [β, 1] is metrizable, where 0 and 1 are end-points of L.
The following Figure shows C(X).
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The Figure is obtained as follows. Every member of C(X) is a subarc [α, β]
of L, where α ≤ β. Let T = {(α, β) : α ≤ β} . We define H : C(L) → T by
H([α, β]) = (α, β) ∈ T . It is easy to see that H is a homeomorphism. Let p1 and
p2 be projections of the triangle T such that p1(α, β) = α and p2(α, β) = β. Let
h : X × I → C(X) be a homeomorphism. There exists a point x = (α, t) ∈ X × I
such that h(x) = (0, 0). Consider the metric arc I = {α} × [0, 1] which contains
the point x. Now, h(I) contains the point (0, 0). The projection p1h(I) is a non-
degenerate arc on the vertical side of the triangle. Since the vertical side of the
triangle is homeomorphic to L, we obtain that there exists an α ∈ L such that [0, α]
is a metric arc. Similarly, considering the point (1, 1) we see that there exists a
β ∈ L such that [β, 1] is metrizable.

Remark 4. The long segment V [1, p. 297] is a non-metric arc. From the
above Remark it follows that C(V ) is not homeomorphic to V × I since for each
α ∈ V the segment [α, ω1] is non-metrizable.

Problem 5. Let V be the long segment. Is C(V ) homeomorphic to V × V ? If
it is, what is a homeomorphism?

Theorem 23. Let L be a generalized arc. If X is a finite-dimensional non-
metric rim-metrizable (or locally connected) continuum such that C(X) is homeo-
morphic to X × L and w(X) ≥ w(L), then X is a generalized arc.

Proof. a) Suppose that w(X) = w(L). By virtue of Theorem 6 there exists an
inverse σ-system X = {Xa, pab, A} of metric continua such thatX is homeomorphic
to limX and dimXa ≤ dimX . By virtue of Theorem 11 we may assume that pab are
monotone surjections. Similarly, there exists an inverse σ-system L = {Ia, qab, A}
of the metric arcs Ia = [0, 1] such that L is homeomorphic to limL. By virtue of
Theorem 11 we may assume that qab are monotone surjections. Now, C(X) is a limit
of inverse system C(X) = {C(Xa), C(pab), A}. If C(X) ≈ X × L, then there exist
the inverse system X×L = {Xa×Ia, pab×qab, A} and C(X) = {C(Xa), C(pab), A}
with homeomorphic limits C(X). From Theorem 7 it follows that there exists a
cofinal subset B of A such that Xb × Ia is homeomorphic to C(Xb) for each b ∈ B.
By Theorem 21 it follows that each Xb is a metric arc. Finally, from [2, Theorem 5]
it follows that X is a generalized arc.

b) w(X) > w(L). Set τ = w(L). From Theorem 5 it follows that there exists a τ -
system X = {Xa, pab, A} of continua Xa with w(Xa) = τ and monotone bonding
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mappings pab such that X is homeomorphic to limX. Now, C(X) is a limit of
inverse system C(X) = {C(Xa), C(pab), A}. If C(X) ≈ X ×L, then there exist the
inverse system X×L = {Xa×L, pab× id, A} and C(X) = {C(Xa), C(pab), A} with
homeomorphic limit C(X). From Theorem 7 it follows that there exists a cofinal
subset B of A such that Xb × L is homeomorphic to C(Xb) for each b ∈ B. By a)
of this proof it follows that each Xb is a generalized arc. Finally, from [2, Theorem
5] it follows that X is a generalized arc. ✷

4. Hyperspaces which are cones

The cone over X [10, p. 19] is the decomposition space of the upper semi-continuous
decomposition (X × [0, 1])/(X×{1}) of X × [0, 1] obtained by ”shrinking X × {1}
to a point”. The cone over X will be denoted by Cone(X), its base X × {0} by
B(X), and its vertex X × {1} ∈ Cone(X) by v.

A space X has the cone = hyperspace property [10, p. 303] if there exists a
Rogers homeomorphism H : C(X) → Cone(X), i.e., a homeomorphism such that
H(X(1)) = B(X), where X(1) = {{x} : x ∈ X} .

Theorem 24. [10, p. 308, Theorem (8.6)]. Let X be a metric continuum such
that dim(X) < ∞ and such that X has the cone = hyperspace property. Then X
is an arc, a circle, or an indecomposable continuum such that each nondegenerate
proper subcontinuum of X is an arc.

Now we shall prove that this is true for non-metric continua.
Theorem 25. [10, p. 308, Theorem (8.6)]. Let X be a non-metric continuum

such that dim(X) < ∞ and such that X has the cone = hyperspace property. Then
X is an arc, a generalized circle, or an indecomposable continuum such that each
nondegenerate proper subcontinuum of X is a generalized arc.

Proof. By virtue ofTheorem 6 there exists an inverse σ-system X = {Xa, pab, A}
such that X is homeomorphic to limXand dimXa ≤ dimX . Now, C(X) is a
limit of inverse system C(X) = {C(Xa), C(pab), A}. Moreover, we have the in-
verse system X × I = {Xa × I, pab × id, A} whose limit is X × I. Let B(Xa)
be a base and νa a vertex of Cone(Xa). Let Cone(pab) be a mapping such that
Cone(pab)(νb) = νa . It follows that Cone(X) is the inverse limit of the sys-
tem Cone(X) = {Cone(Xa), Cone(pab), A}. If X has the cone = hyperspace, let
H : C(X)→ Cone(X) be a Rogers homeomorphism, i.e., a homeomorphism such
that H(BX)) = X(1). Now, from Theorem 7 it follows that there exists an a ∈ A
such that for every b ≥ a there exists a homeomorphism Hb : C(Xb)→ Cone(Xb)
such that HbC(pb) = Cone(pb)H . It follows that Hb is a Rogers homeomorphism.
By virtue of Theorem 24 Xb is an arc, a circle, or an indecomposable continuum
such that each nondegenerate proper subcontinuum of Xb is a generalized arc. Let
B = {b ∈ A : b ≥ a}. We have the following cases:

1) There exists a subset C of B cofinal in A such that each Xc, c ∈ C, is an
arc,

2) There exists a subset C of B cofinal in A such that each Xc, c ∈ C, is a
circle,

3) There exists a subset C of B cofinal in A such that each Xc, c ∈ C, is an
indecomposable continuum such that each nondegenerate proper subcontinuum of
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Xc is an arc.
If 1), then X is a generalized arc. Let us prove that X is metrizable. Let

x = (0, 0) and y = (1, 1) be the points as in figure of Remark 3. There exists a
metrizable arc L in Cone(X) with the end-points H−1(x) and H−1(y). Then H(L)
is a metrizable arc containing the points x and y. It is clear that p1(H(L)) = X.
Thus, X is metrizable. If 2), then X is a generalized circle (Lemma4). Consider
the case 3). We have the inverse system {Xc, pcd, C} with the limit X. Let us
prove that X is indecomposable. Suppose that X is decomposable, X = X1 ∪X2,
where X1, X2 are subcontinua of X and X1 �= X2. There exists a c ∈ C such
that pc(X1) �= pc(X2). Moreover, Xc = pc(X1) ∪ pc(X2). This is impossible
since Xc is indecomposable. Hence, X is indecomposable. It remains to prove that
each nondegenerate proper subcontinuum of X is a generalized arc. Let K be a
nondegenerate proper subcontinuum of X . There exists a subset D of C which is
cofinal in C and every pd(K) is a nondegenerate subcontinuum of Xd. This means
that pd(K) is an arc. We have the inverse system {pd(K), pde|pe(K), D} whose
limit is K. From Lemma 3 it follows that X is a generalized arc. ✷

Problem 6. Is it true that X in the case 2) of the above proof is metrizable?
Problem 7. Is every nondegenerate proper subcontinuum of X in the case 3)

of the proof above is a metrizable arc?
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