MATHEMATICAL COMMUNICATIONS 6(2001), 199-215 199

Hyperspaces which are products or cones

IvaAN LONCAR*

Abstract. Let C(X) be the hyperspace of all subcontinua of a met-
ric continuum X . Alejandro Illanes has proved that C(X) is a finite-
dimensional Cartesian product if and only if X is an arc or a circle.
In this paper we shall prove, using the inverse systems and limits, that
if X is a non-metric rim-metrizable continuum and C(X) is a finite-
dimensional Cartesian product, then X is a generalized arc or a gener-
alized circle.

It is also proved that if X is a non-metric continuum such that
dim(X) < oo and such that X has the cone = hyperspace property,
then X is a generalized arc, a generalized circle, or an indecomposable
continuum such that each nondegenerate proper subcontinuum of X is a
generalized arc.
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1. Introduction

All spaces in this paper are compact Hausdorff spaces and all mappings are con-
tinuous mappings. The symbol =" means ”is homeomorphic to”.The weight of a
space X is denoted by w(X). The cardinality of a set A is denoted by card(A).
We shall use the notion of an inverse system as in [1, pp. 135-142]. An inverse
system is denoted by X = {X,, pap, A}. We say that X = {X,, pas, A} is a
well-ordered inverse system if A is a well-ordered set. Let X = { X, pap», A} be an
inverse system; an element {x,} of the Cartesian product [[{X, : a € A} is called
a thread of X if pap(xp) = x4 for any a, b € A satisfying a < b. The subspace of
[[{X. : a € A} consisting of all threads of X is called the limit of the inverse system
X = {Xa, Pav, A} and is denoted by lim X or by im{X,, pa, 4} [1, p. 135].

In the sequel we shall use the following results.

Lemma 1. [1, Corollary 2.5.7]. Any closed subspace Y of the limit X of
an inverse system X = {Xg, pap, A} is the limit of the inverse system Xy =

{Clpa(Y)), Pas|Cl(ps(Y)), A}.
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Lemma 2. [1, Corollary 2.5.11]. Let X = {X,, pap, A} be an inverse system
and B a subset cofinal in A. The mapping consisting in restriction all threads from
X =limX to B is a homeomorphism of X onto the space lim{ Xy, pyc, B}.

A generalized arc is a Hausdorfl continuum with exactly two non - separating
points a and b. The points a and b are end-points. A generalized arc with end-points
a and b will be denoted by [a, b]. Each separable arc is homeomorphic to the closed
interval I = [0, 1].

A generalized closed curve J is the union of two generalized arcs L; and Lo with
end-points @ and b such that L1 N Ly = {a,b}.

Lemma 3. [2, Theorem 5]. Let X = {X,, pab, A} be a o-directed inverse
system of (generalized) arcs. Then X =lim X is a generalized arc.

Lemma 4. Let X = {X,, pap, A} be a o-directed inverse system of (gener-
alized) circles and monotone bonding mappings. Then X = lim X is a generalized
circle.

Proof. Let x, y, z be distinct points of X. There exists an a € A such that
pu(x), po(y), pu(2) are distinct points of X, for every b > a. For every b € A, let
Ly C X}, be the arc with end-points py(x) and py(y) which contain py(z). Let uq
be a point of X,\_ L,. There exists a point v € X such that p,(u) = u,. For every
b > a let My be the arc with end-points py(z) and py(y) which contain py(u). If
¢ > b, then p, ' (L) is a continuum (since py. is monotone) containing p.(z), pe(y)
and p.(z). This means that L. C pgcl(Lb). Hence pp.(L.) C Lp. Similarly, we have
Doe(M.) C My. It follows that {Lp, ppe|Le, a < b < ¢} and {My, ppc |M. , A} are
inverse systems of arcs and monotone bonding mappings whose limits L and M
are generalized arcs (Lemma 8). It is clear that LUM = X and LN M = {z,y}. O

Let X be a compact space. By 2% we denote the set of all nonempty closed
subsets of X, by C(X) the set of all nonempty closed connected subsets of X and
by X (n), where n is a positive integer, the set of all nonempty subsets consisting of
at most n points [5]. We consider C(X) and X (n) as a subset of 2%. The topology
on 2% is the Vietoris topology and C(X), X (n) are subspaces of 2X.

Let X and Y be compact spaces and let f : X — Y be a continuous map.
Define 2/ : 2% — 2Y by 2/(F) = f(F) for F € 2%. By [9, 5.10] 2/ is continuous
and 2/(C(X)) ¢ C(Y) and 2/(X(n)) C Y(n). The restriction 2/|C(X) is denoted
by C(f).

Let X = {X,, pab, A} be an inverse system of compact spaces with natural
projections p, : limX — X, a € A. Then 2X = {2%« 2rPa A} C(X) =
{C(X4),C(pap), A} and X(n) = {X.(n), 2P=*| Xp(n), A} are inverse systems. For
each I/ € 2'mX i e for each closed F C lim X, p,(F) C X, is closed and compact.
Therefore, we have a mapping 2P+ : 2imX —, 92Xa induced by p,, for each a € A.
Define a mapping M : 2imX — [im2X by M(F) = {p.(F) : a € A}. Note that
{pa(F) : a € A} is a thread of the system 2X. Mapping M is continuous and 1-1.
It is also an onto mapping since for each thread {F, : a € A} of the system 2% the
set F' = ({p,'(F.) : a € A} is non-empty and p,(F') = F,. Therefore, M is a
homeomorphism. If P, :lim2* — 2%« 4 € A, are the corresponding projections,
then P,M = 2P+, Identifying F' with M (F'), we have P, = 2Pa.

Lemma 5. [5, Lemma 2.]. Let X =1imX. Then 2% =1im2X, C(X) = limC(X)
and X(n) =1limX(n).
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2. Inverse o-systems and hyper-onto representations of con-
tinua

This section contains some special features of inverse systems which are needed in
the next sections.

2.1. o-complete inverse systems

We say that an inverse system X = {X,, pap, A} is o-directed if for each sequence
a1,02,...,0f,... of members of A there is an a € A such that a > aj for each k£ € N.

Theorem 1. [6, Theorem 1.1] Let X = {Xa, pap, A} be a o-directed inverse
system of compact spaces with surjective bonding mappings and limit X. Let Y be
a metric compact space. For each surjective mapping f:X—Y there exists an a€A
such that for each b>a there is a mapping gy : Xp — Y such that f = gyps.

Let 7 be an infinite cardinal number. We say that a directed set A is 7-complete
if for each transfinite sequence a1 < as < ... < aq <,...,a < T,aq € A, there exists
sup a, € A.

We say that a well-ordered inverse system {X,, pap, A} is continuous if for each
limit ordinal v, 0 < v < w(X), the maps pa : X, — X, induce a homeomorphism
of the spaces X, and im{X,, pag, @ < B8 < v}. An inverse system X = {X,, pas, A}
is continuous if for each chain B C A with supB = v the maps poy : Xy — Xo
induce a homeomorphism of the spaces X, and im{X,, pas, B}.

An inverse system {X,,pap, A} is said to be an inverse 7-complete system if
{Xa,Dab, A} is continuous and A is 7-complete. An inverse system is said to be an
inverse T-system if it is 7-complete and w(X,) < 7,a € A [14, p. 9]. A directed
set A is o-complete if A is Rg-complete. An inverse system is said to be an inverse
o-system if it is o-complete and w(X,) < Ng,a € A.

Theorem 2. For each Tychonoff cube I'*, m > Ny, there exists an inverse
o-system I = {I% Pu, A} of Hilbert cubes I® such that I' is homeomorphic to
limI.

Proof. a) Let us recall that the Tychonoff cube I™ is the Cartesian product
[I{I; : s € S}, card(S) = m, I, = [0,1] [1, p. 114]. If card(S) = Vg, the Tychonoff
cube I™ is called the Hilbert cube. Let A be the set of all countable subsets of S
ordered by inclusion. If a C b, then we write a < b. It is clear that A is o-directed.
For each a € A there exists a Hilbert cube I*. If a,b € A and a < b, then there
exists the projection P, : I® — I?. Finally, we have the system I = {I%, P, A}.

b) Let us prove that I = {I% P,, A} is an inverse o-system. It is clear that
A is o-directed. Moreover, A is o-complete. Namely, if a1 < az < ... < ap,... 18
a countable chain in A, then we have a countable chain a1 C as C ... C ay,... of
countable subsets of S. It is clear that a = J{an, : n € N} is a countable subset
of S and a = supa,. It remains to prove that I = {I*, P,;, A} is continuous. Let
B=a; <ax < ..<aqg, . .,a<T,a, €A, be a chain with supa, = v € A. We
have a transfinite inverse sequence {I**, P, 4,, B}. Let us prove that a mappings
P,.~,a < 7 induce a homeomorphism of the spaces I and im{I%, P, .,, B}. Let
x € I7. It is clear that P, ~(r) = x4, is a point of [** and that Py, q,(%a;) = Ta,
if aq < ag. This means that (z,,) is a thread in {I®*, P, 44, B}. Set H(x) =
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(7q,). We have the mapping H : 17 — lim{I%, P, a,,B}. It is clear that H is
continuous, 1-1 and onto. Hence, H is a homeomorphism. Finally, I = {I%, P, A}
is an inverse o-system since w(I%*) < Ny.

c) Let us prove that I"™ is homeomorphic to limI. Let € I"™. It is clear
that Puyn(z) = z, is a point of I* and that P.(xp) = x4 if a < b. This means
that (z,) is a thread in I = {I%, Py, A}. Set H(z) = (z,). We have the mapping
H . I"™ — limI. It is clear that H is continuous, 1-1 and onto. Hence, H is a
homeomorphism. O

By a similar method of proof we have the following theorem.

Theorem 3. For each uncountable Cartesian product [[{X, : a € A} of con-
tinua X, there exists an inverse o-system X = {X®, Puy,, B} of countable infinite
Cartesian products X° and monotone mappings Pu, such that [[{X, : a € A} is
homeomorphic to lim X.

Theorem 4. Let X be a compact Hausdorff space such that w(X) > Xy. There
exists an inverse o-system X = { X, pap, A} of compact metric spaces X, such that
X is homeomorphic to limX.

Proof. By [1, Theorem 2.3.23.] the space X is embeddable in I*(X). From
Theorem 2 it follows that I(X) is a limit of I = {I®, P, A}, where every I is
the Hilbert cube. Now, X is a closed subspace of limI. Let X, = P,,,(X), where
P, : I — I*is a projection of the Tychonoff cube I"™ onto the Hilbert cube I®. Let
Dap be the restriction of Py, to X,. We have an inverse system X = { X, pap, A} such
that w(X,) < Wg. By virtue of Lemma 1 X is homeomorphic to lim X. Moreover,
X is an inverse o-system since I = {I%, P,;, A} is an inverse o-system. O

Lemma 6. Let B be an infinite subset of a directed set A. There exists a directed
subset F, (B) of A such that BCFo (B) and card(Fy (B)) = card(B).

Proof. If B is directed, then we let Foo(B) = B. Suppose that B is not
directed. By By;, we shall denote the set all finite subsets of B. Let v be any finite
subset of A. There exists a §(v) € A such that 6 < §(v) for each § € v. For each
B C A there exists a set F1(B) = B|J{6(v) : v € Byin}. Put

Fn+1:F1(Fn(B)7 (1)
and
Fuoo(B) = | {Fu(B) : n € N}, (2)
It is clear that
[ (B)CFy,(B)C..CF,(B)C.. (3)

The set Foo(B) is directed since each finite subset v of Fio (B) is contained in some
F,(B) and, consequently, d(v) is contained in Fy,41(B) C Foo(B). From card(B) >
No, it follows card({é(v) : v € B}) < card(B)Xo. We infer that card(Fi(B)) <
card(B)Ng. Similarly, card(F,(B)) < card(B)X. This means that card(Fu(B)) <
card(B)Rg. Thus

card(Fs(B)) < card(B)No. (4)

We infer that card(F(B)) = card(B). O
Let X = {X4, pab, A} be a usual inverse system of compact spaces and let 7 <
card(A) be an infinite cardinal. Consider the set A, of all Foo(B), B C A, card(B) =
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7, ordered by inclusion. It is clear that A, is 7-directed. Each element « of A,
is some F(B). We define X, as the limit of {X,, pap, Foo(B)}. Let a = Fo(B)
and 8 = Foo(C). If a C 3, then there exists the natural projection g.5 : Xg =
lim{Xa, pav, Fo (C)} — Xo = lim{Xa, pav, Fo (B)}. Tt is clear that ¢ay = ¢asgsy
if a < B <~. It follows that {X,, ¢ag, A-} is an inverse system.

Theorem 5. Let X = {X,, pap, A} be an inverse system of compact spaces with
limit X. For each infinite cardinal T < card(A) there exists a T-complete inverse
system X = {Xa, qap, Ar} such that X is homeomorphic to im{X,, qug, A-}.

Proof. The proof of the fact that X is homeomorphic to limX,is the same
as the proof of Theorem 9.4. of [13]. It remains to prove that X, is T-complete.
Let C be a chain of A, of the cardinality < 7. Every ¢ € C is some F(B;).
Consider the union (J{Fs(B.:) : ¢ € C}. It is clear that it is directed and has
the cardinality < 7. Hence, | J{F(Bc) : ¢ € C} is a member d of A.. Moreover,
H{F(B:) : c € C} D Fx(B,) for each ¢ € C. This means that d > ¢ (in the
ordering of A,) for each ¢ € C. Clearly, if e > ¢ for every ¢ € C, then e > d since d
is defined as the union |J{Feo(B,) : ¢ € C}. O

Theorem 6. Let X be a compact space of finite dimension dim X. There exists
an inverse o-system X = {Xq, pab, A} of compact metric spaces X, and surjec-
tive bonding mappings pap such that X is homeomorphic to im X and dim X, <
dim X.

Proof. By virtue of [7, Theorem 1.] every compact space X is homeomorphic
to the inverse limit of an inverse system of metrizable compacta {Qq, ¢up, B} with
dimQ@, < dimX and card(B) < w(X). From Theorem 5 it follows that Q, =
{Qa,qar, Ay} is a o-system such that lim X and lim X,, are homeomorphic. Every
QA is metrizable as the inverse limit of an inverse system over a countable directed
set. Moreover, by [1, p. 504, Exercise 7.3.1.], dimQa < dimX. Denote A,
by A and Qa by X,. We obtain the desired inverse system X = {X,, pap, A} of
compact metric spaces X, and surjective bonding mappings p, such that X is
homeomorphic to lim X and dim X, < dim X. O

2.2. Factorizable inverse systems

An inverse system X = {X,, pab, A} is said to be factorizable [14, p. 24] if for each
continuous real-valued function f :lim X — I = [0,1] there exists an a € A such
that for b > a there exists a continuous function f, : X, — I such that f = fyps.

By virtue of Theorem 1 we have the following lemma.

Lemma 7. If X = {X,,pab, A} is a o-directed inverse system of compact spaces
with surjective bonding mappings, then X is factorizable.

Theorem 7. [14, Theorem 40.]. If X = {Xa, pap, A} and Y = {Ya, qup, A} are
factorizable inverse T-systems of compact spaces with surjective bonding mappings,
then for each mapping f : im X — lUmY there exists a cofinal subset B(f) of A
and the mappings fy : Xy — Y3, b € B(f), such that each diagram

X, &= X,
L fo L fe (5)
, < Y
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commutes and the mapping f is induced by the collections {fy : b € B(f)}, i.e.,
each diagram

X, & limX
b S Lf (6)

Y, < limY

commutes. If f:lim X — limY is a homeomorphism, then each fy, is a homeomor-
phism.

Proof. For the sake of the completeness we give the proof. Let us prove that
there exists a cofinal subset B(f) of A such that every diagram (5) commutes. Let
a € A be any member of A. Set ag = a. Suppose that a; € A is defined for
each i € N,i < k. We define aj, as follows. Consider the mapping fqq, ,
limX — Y, ,, where gq,, , :limY — Y, ~is anatural projection. By Theorem 1
and Lemma 7 there exists ar € A, ar > ax—1, and a mapping fo, ,p : Xp — Yaki1
such that every diagram commutes for each b > aj. Hence, aj is defined for every
k € N. We obtain an increasing sequence E = {ag, a1, ...,ak,...}. There exists
b =supay € A since A is complete. By the definition of aj there exists a mapping
fawp + Xp — Y, for every k € N. The collection {f,,» : ¥ € N} induces the
mapping f, : Xp — Um{Ya,, Gara,, £} From the continuity of X it follows that
Y, is homeomorphic to Uim{Ys,, Ga,a,, £} This means that f, : X — V3. It is
clear that b > a. Hence, the subset B(f) of A is cofinal in A and the mappings
fo + Xo — Yy, b€ B(f), such that each diagram (5) commutes, induce the
mapping f.

If f is a homeomorphism h, then there exists the set B(h) for the mapping f
and the set B(h~!) for f=1. Let B(h) = B(h) N B(h~!). From the commutative
diagram

X, 2 limX
a T fo Rt 1l h (7)
Y, 2 limY

it follows that gy fy and fygp are the identity. Hence, f; is a homeomorphism. Let us
observe that by Lemma 2 lim X = {X,, pay, A} is homeomorphic to lim X = {X,,
Pab, B(f)} -

In the remaining parts of this section we discuss the necessary and sufficient
conditions for surjectivity of the bonding mappings of the inverse o-system C(X) =
{C(X4), C(pav), A} whose limit (by Lemma 5) is C(lim X). We adopt the notion of
hyper-onto representation ([10, p. 183, Definition (1.186)], [4, p. 439]) as follows.

A continuum X is said to have a hyper-onto representation provided that there
exists an inverse o-system X = {X,, pap, A} such that: (i) X is homeomorphic
to lim X, (ii) each X, is a metric space and (iii) each mapping C(pap) : C(Xp) —
C(X,) is a surjection.

An inverse system X = {X,, pa, A} satisfying (i) through (iii) is called a
hyper-onto representation for X.

A continuous mapping f : X — Y is said to be confluent [12, p. 284, Definition
13.12] if for each subcontinuum @ of Y and each component K of f~1(Q) we have
F(K) = Q.
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A continuous mapping f : X — Y is said to be weakly confluent [10, p. 22] if
for each subcontinuum @ of Y there exists a component K of f~1(Q) such that
f(K) = @Q. Every monotone surjection is weakly confluent.

It is clear that, as in [10, p. 186, Theorem (190)], the following theorem holds.

Theorem 8. A continuum X has a hyper-onto representation if and only if
there exists an inverse system X = {Xq, pav, A} satisfying (i) and (ii) and such
that every bonding mapping pay : Xp — X4 is weakly confluent.

In the sequel we investigate the hyper-onto representation of some classes of
continua.

2.3. Hyper-onto representation of locally connected and rim-
metrizable continua

A space X is said to be rim-metrizable if it has a basis B such that Bd(U)) is
metrizable for each U € B. Equivalently, a space X is rim-metrizable if and only
if for each pair F, G of disjoint closed subsets of X there exists a metrizable closed
subset of X which separates F' and G.

Lemma 8. [15, Theorem 1.2]. Let X be a nondegenerate rim-metrizable con-
tinuum and let Y be a continuous image of X under a light mapping f : X — Y.
Then w(X) = w(Y).

Lemma 9. [15, Theorem 3.2]. Let X be a rim-metrizable continuum and let
f: X =Y be a monotone mapping onto Y. Then Y is rim-metrizable.

Let us prove the following theorem.

Theorem 9. Let X = {X,,pap, A} be an inverse system of compact spaces and
surjective bonding mappings pay- Then:

1) There exists an inverse system M(X) = {M,, map, A} of compact spaces such
that mqp are monotone surjections and lim X is homeomorphic to lim M (X),

2) If X is o-directed, then M(X) is o-directed,
3) If X is o-complete, then M (X) is o-complete,

4) If every X, is a metric space and limX is locally connected (a rim-metrizable
continuum), then every M, is metrizable.

Proof. 1) The proof of 1) is broken into several steps.

a) Let X = {X,,pap, A} be an inverse system with limit X and the projections
Pe X — Xga € A. For every mapping p, : X — X, there exists a
monotone-light factorization p, = ¢,mg, where m, : X — M, is monotone and
by : M, — X, islight [1, p. 451, Theorem 6.2.22]. We have a collection of spaces
Mgy, a € A.

b) For every bonding mapping p.y, : X — Xg,b > a, we define mg
M, — M, as follows. Let x be a point of M}, xp, = €y(x) and z, = pap(zp). Then
z is a component in p, ' (5). This means that there exists a unique component y
of p;!(z,) containing = since p, '(z;) C p;t(wa). Set map(z) =y € M,. The
mapping mqp : Mp — M, is defined. From the definition of mg, : My — M,
it follows

Pa = gamaa (8)
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pabeb - eamaba (9)

and
MapMp = M. (10)

c) Transitivity. Let as prove that mg. = mapmpe. Let & be any point of M,.
Set 2. = {.(x). This means that there exists a component C' of p_!(x.) such that
m(C) =x. Let &, = ppe(le(x)). Tt is clear that C' is contained in some component
D of pgl(acb). Let x4 = pap(xp). It follows that D is contained in some component
E of p;*(z,). Hence,

mpe(x) = my(D). (11)

This means that mepmpe(x) = maymp(D) = mq(D) = me(E) = m.(C) since
mapymp = Mg and D C C. On the other hand m,.(z) = m,(C). Hence, for every
x € M, we have

Mae(T) = MapMpe (). (12)

The proof of the transitivity is completed.

d) We infer that M (X) = {M,, ma, A} is an inverse system. Let us prove
that lim X and lim M (X) are homeomorphic. Let z be any point of lim M (X).
From (10) it follows that the collection {m,(x) :a € A} is a point of lim M (X).
This means that the collection {m, : a € A} induces a continuous mapping
m :limX — lim M (X) which assigns to the point x the point m(x) = {mq(z)
a€ A} €limM(X). If z and y are distinct points of lim X, then there exists an
a € A such that p,(x) # po(y). It is clear that mq(z) # mg(y). This means that
the mapping m is 1-1. Similarly, one can prove that m is a surjection. Hence m is
a homeomorphism.

2) Obvious.

3) It suffices to prove the continuity of M(X). Let X = {X,, pap, A} be con-
tinuous. Let a1 < as < ... < aq....,a < T, be a transfinite sequence in A. We have
a transfinite well-ordered inverse system {Xa,,Pa,az, @ < 7} whose limit space is
X,, € X. We have also a well-ordered inverse system {M,,,Ma,a5, 0 < 7}. We
must prove that the inverse system {M,,,Mq4,a,, @ < 7} has the limit homeomor-
phic to M, and that the homeomorphism is induced by the mappings mq_q.. Let
Y be the limit of {M,, ,ma,a;, @ < 7} and let ng, : Y — M,, be the natural
projection, a < 7. For each point € M,_ the collection {m,_q.(x) : a < 7} is
a thread in {M,,,ma,a,, o < 7}. Define H(z) = (Mma,a, () :a < 7) €Y. We
have a continuous mapping H : M,, — Y induced by mappings mg,_q, such that
Hmg, o, = ng,, @ < 7. Let us prove that H is a homeomorphism. It suffices to
prove that H is onto and 1-1. If y € Y, then y,, = N4, (y) and ma,as(Yas) = Yao -

Every m_ !, (ya.) is non-empty and m;', (ya.) D mgﬁlar (Yap), @ < B < T, since

Magar = MagayMaga, - We infer that ({mg 1, (ya.) : @ < 7} is non-empty subset
of M,, . For each point z € ({m;', (ya.): @ < 7} we have H(z) =y. Thus, H is
onto. Finally, let us prove that H is 1-1. Let z,y be a pair of distinct point of M, _.
We consider two cases. First, let £,_(x) # ¢,_(y). This means that there exists an
a < 7 such that pa, o, (Ya, (%)) # Pana. (la.(y)) since X, _ is the limit of the sys-
tem {Xa,,Panas, ¢ < 7). From (9) it follows that £, Ma,a, () = Paga, (la, ()

and Lo, Mana,(Y) = Pana,(la, (y)). Thus, lo,Maya, () # laaMaga, (y). Tt is
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clear that mg_q, () # Ma,a.(y). Because of the definition of H it follows that
H(z) # H(y). Consider the case {o (z) = lo, (y). Set z = £, (x) = Lo, (y).
From x # y it follows that there exist two different components C, D of p;l(z)
such that m,_ (C) = z and m,, (D) = y. For every @ < 7 we have the point
Zan = Pana, () such that ({p, ', (za.) : @ < 7} = z since X, is the limit of the
system {Xa., Panay,a < 7}. It follows that ({py'pals (Za.) : @ < 7} = pii(2)
or ({pal(za.) : @ < 7} = p;'(2). We infer that every component of p,!(z) is
contained in some component of p;ﬂl(zaa). If we suppose that for every a < 7 there
exists a component K, of pgal(zaa) which contains both C' and D, then we have
the continuum ({K,, : @ < 7} [1, Corollary 6.1.19] containing C' and D. This is
impossible since C' and D are components. Hence, there exists an a < 7 such that
C and D are in different components of p;!(z,,). We infer that mq,, (C) # ma, (D).
From (10) it follows that mg, 4, M, (C) = mq, (C) and mg,q, M, (D) = mq, (D).
This means that mq,q, Mq, (C) # Ma,a,Ma, (D) o Mg, a0, () # Ma,a.(y) since
Mg, (C) =z and mg_ (D) = y. From the definition of g it follows that H(z) # H(y).
The continuity is proved.

4) If X is rim-metrizable, then apply Lemmas 8 and 9. If X is locally connected,
then apply [8, Theorem 1]. O

Theorem 10. Let X = {X,, pay, A} be a o-directed inverse system of compact
spaces and surjective bonding mappings pep- If Um X is a locally connected space
(rim-metrizable continuum), then there exists an a € A such that the projection py,
is monotone, for every b > a.

Proof. Let M(X) = {M,, map, A} be the inverse system of compact metric
space M, and monotone bonding mappings mgp ( Theorem 9) whose limit is home-
omorphic to lim X. From Theorem 7 and Lemma 7 it follows that there exists an
a € A such that for every b > a there exists a homeomorphism h, : X, — M,
such that hypy = my, where my : lim M(X) — M, is a projection. Clearly, my
is monotone. Hence, p;, is monotone since hyp, = myp and hy : Xp — My is a
homeomorphism. O

Theorem 11. If X is a locally connected or rim-metrizable continuum, then X
has a hyper-onto representation.

Proof. By Theorems 9 and 10 there exists an inverse o-system M (X) = {M,,
Map, A} such that the bonding mappings p,, are monotone. From Theorem 8 it
follows that M (X) = {M,, map, A} is a hyper-onto representation of X. O

2.4. Hyper-onto representation of chainable continua

A chain {Uy, ..., Uy} is a finite collection of sets U; such that U; ([ U; # 0 if and only
if |i—7] < 1. A continuum X is said to be chainable or arc-like if each open covering
of X can be refined by an open covering u = {Ux, ..., U, } such that {Un,...,U,} is
a chain.

Theorem 12. [7, Theorem 2*]. Every chainable continuum X is homeomorphic
with the inverse limit of an inverse system {Qa, qap} of metric chainable continua
Qa-

Remark 1. One can assume that qqp are onto mappings since a closed connected
subset C of a chainable continuum is chainable [8, Lemma 12].
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Theorem 13. [12, p. 262, Theorem 12.46]. If f : X — Y is a mapping of the
metric continuum X onto an arc-like continuum Y, then f is weakly confluent.

Representation in Theorem 12 is not an hyper-onto since {Q,, ¢ap} is not an
o-system. Now we shall prove that every chainable continuum has the hyper-onto
representation.

Theorem 14. If X is a chainable continuum, then X has the hyper-onto
representation Q, = {Qa, par, Ao} such that each Qa is a metric chainable
continuum and each par is a weakly confluent surjection.

Proof. Let Q = {Qa, ¢ap, A} be an inverse system as in Theorem 12. Using
Theorem 5, for T = Ny, we obtain the inverse system Q, = {Qa, par, A, } which is
a o-directed and o-complete inverse system such that lim @) and lim @), are homeo-
morphic. Every Qa is chainable since we may assume that Q® = {Qy, gpyr, A} is an
inverse sequence since A is countable and Qa = lim Q*. Let u = {Uy, ..., U,} be an
open covering of Qa. There exists a b € A and an open covering u, = {U?, ..., Ut }
of Qp such that {g, '(U?), ..., q; '(U5,)} refines the covering u = {Uy, ..., U, }. There
is a chain {‘/'11’7...,‘/;,"} which refines wu;, since @)y is chainable. It is clear that
{qgl(Vlb), - qgl(VZf’)} is a chain which refines the covering u. Hence, Qa is chain-
able. Further, one can assume that every pa : lim @, — QA is onto since a closed
connected subset C' of an chainable continuum is chainable [8, Lemma 12]. From
Theorem 13 it follows that every bonding mapping par is weakly confluent. Finally,
we infer that every chainable continuum has the hyper-onto representation. O

2.5. Hyper-onto representation of hereditarily indecompos-
able continua

A continuum is said to be decomposable provided that it is the union of two proper
subcontinua [4, p. 61]. A continuum that is not decomposable is said to be in-
decomposable. A continuum is said to be hereditarily indecomposable [4, p. 61]
provided that all of its nondegenerate subcontinua are indecomposable.

Now we obtain the hyper-onto representation for rim-metrizable hereditarily
indecomposable continua.

Theorem 15. If X is a rim-metrizable non-metric hereditarily indecompos-
able continuum, then X has an hyper-onto representation X = {X,, pap, A} such
that each X, is a metric hereditarily indecomposable continuum and each pqp @S a
monotone surjection.

Proof. Using Theorem 9 we obtain an inverse o-system X = {X,, pay, A}
such that every X, is a metric continuum and every pqp is a surjective monotone
mapping. It remains to prove that each X, is hereditarily indecomposable. This
easy follows from the fact that the projection p,,a € A, are monotone surjections.
O

3. Hyperspaces which are products

In [11, Question 2.0], Nadler asked the following question: If C(X) is a finite-
dimensional Cartesian product then must X be an arc or a circle? For a metric
continuum X Illanes [3, Theorem A.] answered by the following theorem.
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Theorem 16. [3, Theorem A.]. If X is a metric continuum, then C(X) is a
finite-dimensional Cartesian product if and only if X is an arc or a circle.

Let IC be a class of non-metric finite-dimensional continua which are the limit of
o-directed inverse systems X = {X,, pap, A} of metric finite-dimensional continua
X,,dim X, < dim X, and weakly confluent bonding mappings ps». By virtue of
Theorems 6 and 11 the class K contains all locally connected non-metric continua
and all non-metric rim-metrizable continua. Moreover, the class K contains all
non-metric chainable continua since every continuous mapping of a continuum onto
a chainable continuum is weakly confluent (Theorem 13) and every chainable non-
metric continuum has a hyper-onto representation (Theorem 14).

We start with the following theorem.

Theorem 17. Let a continuum X be in class K. If C(X) is homeomorphic to
Y x Z, then X is a generalized arc or a generalized circle.

Proof. From X € K it follows that there exists an inverse o-system X =
{Xa,Pab, A} of metric continua such that X is homeomorphic to lim X and dim X, <
dim X. Now, C(X) is a limit of inverse system C(X) = {C(X4), C(pap), A} with
surjective bonding mappings C'(pas) [10, Theorem (0.49.1)]. If C(X) =~ Y x Z, then
there exist the inverse systems Y = {Y,,qup, A} and Z = {Z,, r4p, A} such that
Y, and Z, are subspace of C(X,) and ¢up, rap» are the restriction of C(p,p) on Y,
and Z,. It is clear that qup, 745 are surjections. Then Y x Z is homeomorphic to
Um{Ys X Za, qab X Tap, A} [1, p. 143]. Let us observe that gup X e is a surjec-
tion. It follows that C'(X) is homeomorphic to Um{Y, X Z,, gap X rap, A} and to
lm{C(X,),C(pap), A}. By Theorem 7 it follows that there exists a cofinal subset B
of A such that Y} x Z;, is homeomorphic to C(X}) for each b € B. From Theorem 16
it follows that each X3 is an arc or a circle. By [2, Theorem 3] we infer that X is
locally connected. Using Theorem 10 we may assume that py. is monotone for every
b,c € B. If there exists a subset D of B which is cofinal in A and for each d € D
Xy is an arc, then X = lim{X,,p.q4,C} is an arc [2, Theorem 5]. If there is no a
subset D of C which is cofinal in A such that for each d € D X is an arc, then
there exists a subset E of C' cofinal in A such that X, is a generalized circle, e € E.
From Lemma 4 it follows that X = lim{X,, p.q, E} is a generalized circle. O

Problem 1. Is it true that C(X) is homeomorphic to Y X Z for every generalized
arc (for every generalized circle)?

From Theorems 17 and 14 there follows the following result.

Corollary 1. Let X be a chainable non-metric continuum. If C(X) is homeo-
morphic to' Y x Z, then X is a generalized arc.

Theorem 18. If X is a non-metric rim-metrizable (or locally connected) finite-
dimensional continuum and C(X) is homeomorphic to' Y x Z, then X is a gener-
alized arc or a generalized circle.

Proof. By virtue of Theorem 6 there exists an inverse o-system X = {X,, pap, A}
of metric continua such that X is homeomorphic to lim X and dim X, < dim X.
From Theorem 10 it follows that we may assume that p,p are monotone surjections.
Now, apply Theorem 17. O

Problem 2. Is the converse of Theorem 18 true?

Problem 3. Is it true that every non-metric finite-dimensional continuum X
is a generalized arc or a generalized circle if C(X) is homeomorphic to Y x Z %
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If C(X) is an infinite-dimensional product and X is a locally connected metric
continuum, then we have the following result.

Theorem 19. [11, Theorem 3.15]. Let X be a Peano continuum. If C'(X) =
Y X Z, then one of the following must hold:

(3.15.1) X is a circle,
(3.15.2) X contains no free arc,

(3.15.3) The closure of any component of UF(X) is a free arc (in X ) which is
disjoint from any free arc (in X ) not contained in it.

Let us recall that for any continuum M, F(M) is defined by F(M) = {A €
C(M) : A C J for some free arc in M and A is nondegenerate} [11, p. 60]. It
follows that UF (M) = {p € M : p € J for some free arc J in M} [11, p. 60].

In a non-metric case we have the following theorem.

Theorem 20. Let X be a locally connected non-metric continuum. If C(X) =
Y X Z, then one of the following must hold:

(a) X is a generalized circle,
(b) X contains no free arc,

(¢) The closure of any component of UF(X) is a free arc (in X ) which is disjoint
from any free arc (in X ) not contained in it.

Proof. From Theorem 11 it follows that there exists an inverse o-system X =
{Xa,Pab, A} of metric locally connected continua such that X is homeomorphic to
lim X. Now, C(X) is a limit of inverse system C(X) = {C(X,),C(pas), A} with
surjective bonding mappings C(pgp) [10, Theorem (0.49.1)]. If C(X) = Y x Z, then
there exist the inverse systems Y = {Yy, qap, A} and Z = {Z,, Sap, A} such that Y,
and Z, are subspace of C(X,) and gap, Sqp the restriction of C(pap) onto Y, and Z,.
Then Y x Z is homeomorphic to lim{Y, X Z,, ¢, X 74, A} [1, p. 143]. It follows that
C(X) is homeomorphic to lim{Y, X Z,, g, X 74, A} and to im{C(X,), C(pas), A}.
By Theorem 7 it follows that there exists a cofinal subset B of A such that Y}, x Z,
is homeomorphic to C(Xp) for each beB. From Theorem 19 it follows that each
X, is either an arc or a circle or (3.15.3) is satisfied. Consider the following sets
: C={be B:X,isanarc}, D ={be B: X, contains no free arc} and
E = {b € B: X, satisfies (c)}. It is clear that if C is cofinal in B, then D and E
are not cofinal in B since a monotone image of an arc is an arc. From Lemma 3 it
follows that X is a generalized arc. Similarly, if D is cofinal in B, then C' is not
cofinal in B. Let us prove that in this case X contains no free arc. Suppose that X
contains a free arc L with the end-points « and y. This means that U = L\ {0, 1}
is an open set in X. There exists a d € D and an open set Uy C X4 such that
pgl(Ud) C U C L. Let us observe that Ly = pg(L) is an arc since pg is monotone.
We infer that Uy C L4. This means Uy is an interval (x4, yq) of the arc Lg. Tt
follows that (x4, yq) is open in X. This is impossible since X4 contains no free arc.
It remains to consider the case when F is cofinal in B. Let K be any component of
UF(X) and let z € K. There exists a free arc J with end points « and y such that
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pe N Az, y}.Now, U = J\{0,1}is open in X. As in case when D is cofinal in B
we infer that there exists an ey € F such that, for every e > eq, p.(z) is in some free
arc in X. This means that p.(K) is contained in some component K. of UF(X,).
From the monotonicity of pe,e,,e0 < €1 < eg, it follows that p; L (Ke,) = Ke,.
Similarly, p;.L, (Cl(K.,)) = CI(K.,). Now, we have the inverse system {CI(K,),
Pes [CUKY) , eo < e1 < ez} whose limit is CI(K). Let us prove that CI(K) is an
arc. This follows from Lemma 3 since every CIl(K,.) is an arc. Similarly, one can
prove that CI(K) is a free arc. It remains to prove that CI(K) is disjoint from any
free arc (in X)) not contained in it. Suppose that there exists a free arc J in X such
that CI(K)NJ # 0 and J\CI(K) # 0. This means that p.(CL(K)) Npe(J) # 0 for
every e > eg. Moreover, if z € p.(CI(K)) Npe(J) # O then there exists a eg € F
such that, for every e > ep, pe(z) is in some free arc J. in X.. By (c) it follows
that p.(J) is contained in p.(CI(K)) for every e > ep. Thus, J is contained in
Im{Cl(K.), pes |Cl(Kf) , eq < €1 < ea} = CI(K), a contradiction. O

Now we consider the non-metric continua for which C(X) ~ X x I, where
I=10,1].

Theorem 21. [10, p. 342, Theorem (10.3)]. If X is a finite-dimensional metric
continuum such that C(X) is homeomorphic to X X I, then X is an arc.

For non-metric finite-dimensional continua we shall prove the following theorem.

Theorem 22. If X is a finite-dimensional non-metric rim-metrizable (or locally
connected) continuum such that C(X) is homeomorphic to X x I, then X is a
generalized arc.

Proof. By virtue of Theorem 6 there exists an inverse o-system X = {X,, pap, A}
of metric continua such that X is homeomorphic to lim X and dim X, < dim X.
By virtue of Theorem 10 we may assume that p,, are monotone surjections. Now,
C(X) is a limit of inverse system C(X) = {C(X,),C(pap), A}. f C(X) = X x I,
then there exist the inverse systems X x I = {X, X I, pgp X id, A} and C(X) =
{C(X4),C(pap), A} with homeomorphic limits C(X). From Theorem 7 it follows
that there exists a cofinal subset B of A such that X, x I is homeomorphic to
C(Xp) for each b € B. From Theorem 21 it follows that each X is a metric arc.
From [2, Theorem 5] it follows that X is a generalized arc. O

Remark 2. Let us observe that the proof above is wvalid for chainable non-
metric continua. This means that if X is a finite-dimensional non-metric chainable
continuum such that C(X) is homeomorphic to X x I, then X is a generalized arc.

Problem 4. Is the arc X in Theorem 22 a metric arc? Moreover, is an arc L
a metric arc if C(L) is homeomorphic to L x I?

Remark 3. Let us prove that there exists an o € L such that [0, a] is a metric
arc and a B € L such that [3,1] is metrizable, where 0 and 1 are end-points of L.
The following Figure shows C(X).
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(0,1) (8,1) (1,1)

(0,a) (a,a)

(0,0)

The Figure is obtained as follows. FEvery member of C(X) is a subarc [a, []
of L, where o < . Let T = {(«a, B): < B}. We define H : C(L) — T by
H(la, B]) = (o, B) € T. It is easy to see that H is a homeomorphism. Let p1 and
pa be projections of the triangle T such that p1(«, B8) = a and pa(a, B) = . Let
h:X xI — C(X) be a homeomorphism. There exists a point x = (a, t) € X x I
such that h(z) = (0,0). Consider the metric arc I = {a} x [0,1] which contains
the point . Now, h(I) contains the point (0,0). The projection p1h(I) is a non-
degenerate arc on the vertical side of the triangle. Since the vertical side of the
triangle is homeomorphic to L, we obtain that there exists an a € L such that [0, o]
is a metric arc. Similarly, considering the point (1,1) we see that there exists a
B € L such that [3,1] is metrizable.

Remark 4. The long segment V [1, p. 297] is a non-metric arc. From the
above Remark it follows that C(V') is not homeomorphic to V x I since for each
a €V the segment [a,w1] is non-metrizable.

Problem 5. Let V be the long segment. Is C(V') homeomorphic to V. x V2 If
it is, what is a homeomorphism?

Theorem 23. Let L be a generalized arc. If X is a finite-dimensional non-
metric rim-metrizable (or locally connected) continuum such that C(X) is homeo-
morphic to X x L and w(X) > w(L), then X is a generalized arc.

Proof. a) Suppose that w(X) = w(L). By virtue of Theorem 6 there exists an
inverse o-system X = {X,, pab, A} of metric continua such that X is homeomorphic
to lim X and dimX, < dimX. By virtue of Theorem 11 we may assume that p,; are
monotone surjections. Similarly, there exists an inverse o-system L = {I,, qap, A}
of the metric arcs I, = [0, 1] such that L is homeomorphic to limL. By virtue of
Theorem 11 we may assume that ¢,; are monotone surjections. Now, C(X) is a limit
of inverse system C(X) = {C(X,), C(pap), A}. If C(X) ~ X x L, then there exist
the inverse system X x L = {X, X I, Dab X qap, A} and C(X) = {C(X4), C(pas), A}
with homeomorphic limits C'(X). From Theorem 7 it follows that there exists a
cofinal subset B of A such that X} x I, is homeomorphic to C(X}) for each b € B.
By Theorem 21 it follows that each X}, is a metric arc. Finally, from [2, Theorem 5]
it follows that X is a generalized arc.

b) w(X) > w(L). Set 7 = w(L). From Theorem 5 it follows that there exists a 7-
system X = {X,, pap, A} of continua X, with w(X,) = 7 and monotone bonding
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mappings pgp such that X is homeomorphic to lim X. Now, C(X) is a limit of
inverse system C(X) = {C(X,), C(pay), A}. If C(X) ~ X x L, then there exist the
inverse system X x L = {X, X L, pap x id, A} and C(X) = {C(X,), C(pap), A} with
homeomorphic limit C(X). From Theorem 7 it follows that there exists a cofinal
subset B of A such that X, x L is homeomorphic to C(X,) for each b € B. By a)
of this proof it follows that each X}, is a generalized arc. Finally, from [2, Theorem
5] it follows that X is a generalized arc. O

4. Hyperspaces which are cones

The cone over X [10, p. 19] is the decomposition space of the upper semi-continuous
decomposition (X x [0,1])/(xx{1}) of X x [0,1] obtained by ”shrinking X x {1}
to a point”. The cone over X will be denoted by Cone(X), its base X x {0} by
B(X), and its vertez X x {1} € Cone(X) by v.

A space X has the cone = hyperspace property [10, p. 303] if there exists a
Rogers homeomorphism H : C(X) — Cone(X), i.e., a homeomorphism such that
H(X(1)) = B(X), where X(1) = {{z} :z € X} .

Theorem 24. [10, p. 808, Theorem (8.6)]. Let X be a metric continuum such
that dim(X) < oo and such that X has the cone = hyperspace property. Then X
is an arc, a circle, or an indecomposable continuum such that each nondegenerate
proper subcontinuum of X is an arc.

Now we shall prove that this is true for non-metric continua.

Theorem 25. [10, p. 308, Theorem (8.6)]. Let X be a non-metric continuum
such that dim(X) < oo and such that X has the cone = hyperspace property. Then
X is an arc, a generalized circle, or an indecomposable continuum such that each
nondegenerate proper subcontinuum of X is a generalized arc.

Proof. By virtue of Theorem 6 there exists an inverse o-system X = { X, pap, A}
such that X is homeomorphic to lim Xand dimX, < dimX. Now, C(X) is a
limit of inverse system C(X) = {C(X,),C(pap), A}. Moreover, we have the in-
verse system X x I = {X, X I,pap X id, A} whose limit is X x [. Let B(X,)
be a base and v, a vertex of Cone(X,). Let Cone(pas) be a mapping such that
Cone(pap) () = v, . It follows that Cone(X) is the inverse limit of the sys-
tem Cone(X) = {Cone(X,),Cone(pay), A}. If X has the cone = hyperspace, let
H:C(X)— Cone(X) be a Rogers homeomorphism, i.e., a homeomorphism such
that H(BX)) = X(1). Now, from Theorem 7 it follows that there exists ana € A
such that for every b > a there exists a homeomorphism Hj, : C'(X}) — Cone(Xy)
such that H,C(py) = Cone(py)H. It follows that Hy is a Rogers homeomorphism.
By virtue of Theorem 24 X, is an arc, a circle, or an indecomposable continuum
such that each nondegenerate proper subcontinuum of X is a generalized arc. Let
B={be A:b> a}. We have the following cases:

1) There exists a subset C of B cofinal in A such that each X.,c € C, is an
arc,

2) There exists a subset C' of B cofinal in A such that each X.,c € C, is a
circle,

3) There exists a subset C' of B cofinal in A such that each X.,c € C, is an
indecomposable continuum such that each nondegenerate proper subcontinuum of
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X, is an arc.

If 1), then X is a generalized arc. Let us prove that X is metrizable. Let
x = (0,0) and y = (1,1) be the points as in figure of Remark3. There exists a
metrizable arc L in Cone(X) with the end-points H~!(z) and H*(y). Then H(L)
is a metrizable arc containing the points « and y. It is clear that p1(H(L)) = X.
Thus, X is metrizable. If 2), then X is a generalized circle (Lemma4). Consider
the case 3). We have the inverse system {X., pcq, C} with the limit X. Let us
prove that X is indecomposable. Suppose that X is decomposable, X = X; U Xs,
where X7, X5 are subcontinua of X and X; # Xs. There exists a ¢ € C such
that p.(X1) # pe(X2). Moreover, X, = p.(X1) U p.(X3). This is impossible
since X, is indecomposable. Hence, X is indecomposable. It remains to prove that
each nondegenerate proper subcontinuum of X is a generalized arc. Let K be a
nondegenerate proper subcontinuum of X. There exists a subset D of C which is
cofinal in C' and every pq(K) is a nondegenerate subcontinuum of Xy4. This means
that pg(K) is an arc. We have the inverse system {pq(K),pde|pe(K), D} whose
limit is K. From Lemma 3 it follows that X is a generalized arc. O

Problem 6. Is it true that X in the case 2) of the above proof is metrizable?

Problem 7. Is every nondegenerate proper subcontinuum of X in the case 3)
of the proof above is a metrizable arc?

References

[1] R. ENGELKING, General Topology, PWN, Warszawa, 1977.

[2] G.R.GORDH,JR., S. MARDESIC, Characterizing local connectedness in in-
verse limits, Pacific Journal of Mathematics 58(1975), 411-417.

[3] A.ILLANES, Hyperspaces which are products, Topology and its applications
79(1997), 229-247.

[4] A.ILLANES, S.B.NADLER, “Hyperspaces : Fundamentals and Recent Ad-
vances”, Marcel Dekker, Inc., New York and Basel, 1999.

[5] Y.KoDpAMA, S. SpiEZ, T. WATANABE, On shape of hyperspaces, Fund. Math.
100(1979), 59-67.

[6] I. LONCAR, A note on hereditarily locally connected continua, Zbornik radova
Fakulteta organizacije i informatike Varazdin 22(1998), 29-40.

[7] S. MARDESIC, On covering dimension and inverse limits of compact spaces,
Tllinois Journal of Mathematics 9(1960), 278 - 291.

[8] S. MARDESIC, Locally connected,ordered and chainable continua, Rad JAZU
Zagreb 33(1960), 147-166.

[9] E. MICHAEL, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 7(1951),
152-182.

[10] S.B.NADLER, Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.



HYPERSPACES WHICH ARE PRODUCTS OR CONES 215

[11] S.B.NADLER, Continua whose hyperspace is a product, Fund. Math.
108(1980), 49-66.

[12] S. B.NADLER, ” Continuum theory”, Marcel Dekker, Inc., New York, 1992.

[13] J. NikIEL, H. M. TUNCALI, E. D. TYMCHATIN, Continuous images of arcs and
inwverse limit methods, Mem. Amer. Math. Soc. 1993, 104, 496, 1 - 80.

[14] V.E. SEEPIN, Funktory i nescetnye stepeni kompaktov, Uspehi matematiceskih
nauk 36(1981), 3-62.

[15] H. M. TuNcALI, Concerning continuous images of rim-metrizable continua,
Proc. Amer. Math. Soc. 113(1991), 461 - 470.



