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Computational aspects of probit model

Eugene Demidenko
∗

Abstract. Sometimes the maximum likelihood estimation procedu-
re for the probit model fails. There may be two reasons: the maximum
likelihood estimate (MLE) just does not exist or computer overflow error
occurs during the computation of the cumulative distribution function
(cdf). For example, the approximation explosive effect due to an inac-
curate computation of the cdf for a large value of the argument occurs in
a popular statistical package S-plus. The goal of the paper is to provide
remedies for these two abnormalities. First, despite the availability of
a criterion for the MLE existence, expressed in terms of a separation
plane in the covariate space, there are no constructive criteria to verify
whether such a separation exists. We develop constructive criteria for
the MLE existence that are valid also for other link functions. Second,
to avoid the overflow problem we suggest approximate formulae for the
log-likelihood function and its derivatives in the case of possible large
value of the argument. Standard algorithms of the log-likelihood maxi-
mization like Newton-Raphson or Fisher Scoring are very sensitive to
large values of the linear predictor, particularly outliers. Five algorithms
are compared by the time to converge and reliability via statistical sim-
ulations. The corrected algorithms, based on the approximate formulae
are more reliable and almost as fast as the standard ones.
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1. Introduction

Models with binary dependent variable are commonly used in statistical applica-
tions. The classic books by Cox (1970), Finney (1971), McCullagh and Nelder
(1989) provide theoretical background with numerous examples of applications.
Several link functions have been proposed in the literature; the most popular are
logit and probit, McCullagh and Nelder (1989). Often, the procedure of maximum
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likelihood estimation of the probit model, implemented in many statistical pack-
ages, runs smoothly. However, sometimes it fails. The goal of the present paper is
to study possible reasons of that failure and provide some remedies.
There may be two reasons of failure to converge during the log-likelihood func-

tion maximization: a) maximum likelihood estimate (MLE) just does not exist, b)
the argument of the normal cumulative distribution function is too large in absolute
value, due to rare/frequent event data and/or the presence of an outlier. In this
paper we suggest criteria for the MLE existence and provide some approximate
formulae that work well even for a very large argument value.

Criteria for the existence and uniqueness of the maximum likelihood estimate
(MLE). An important property of many popular link functions, including probit,
is that the log-likelihood is a concave function of parameters. Consequently, under
mild conditions the MLE is unique, if it exists. General criteria for the existence
of the global optimum of a continuous function defined on a non-compact set are
developed in Demidenko (1981, 1996, 2000) and Nakamura and Lee (1993). Haber-
man (1974) and Weddenburn (1976) investigated numerical aspects of the method
of maximum likelihood estimation for binary data in detail. In particular, despite
the concavity, it was realized that for some data the MLE may not exist. The issue
of the MLE existence in logistic regression was considered by Silvapulle (1981) and
Albert and Anderson (1984). Lesaffre and Kaufmann (1992) have suggested a nec-
essary and sufficient condition for the MLE existence in the probit model which,
in fact, coincides with that derived by Albert and Anderson for the logistic model.
That criterion is formulated in terms of separation of observation points in the co-
variate space. As was mentioned by Albert and Anderson, in order to prove that
the MLE exists one need further to apply some linear programming technique to
implement that criterion in practice, i.e. demonstrate that the separation does not
exist. Thus, despite the fact that the criterion for the MLE existence in the probit
model is known, it is unclear how to realize that criterion in practice. In this paper
we suggest a constructive procedure to check whether that separation exists that
boils down to a criterion for the existence of a solution to a system of homogeneous
linear inequalities. It may be too expensive to apply the necessary and sufficient
criterion to every probit model because it is timely consuming; a simple sufficient
criterion may work as well.

Large value of the argument. The estimation procedure for probit model may
fail in the case of a rare or a frequent event, i.e. for an extreme argument value
in the normal cumulative distribution function Φ. For example, Demidenko and
Spiegelman (1997) describe an example of a binary model for the Nurses’ Health
Study, a prospective cohort of 89,538 white married women, 601 of whom developed
breast cancer, a rare event. Then, the computation accuracy of the cumulative dis-
tribution function Φ is limited by 10−7 for single and by 10−14 for double precision.
For example, if for some observation point the argument of Φ is large then 1 − Φ
becomes close to zero and the maximum likelihood program crashes due to division
by zero. To avoid possible overflow errors we suggest to use approximate formulae
to compute quantities like Φ or 1− Φ for a large argument.
The structure of the paper is as follows. In the next section main notations

and the Feller approximation are introduced. In Section 3 we suggest constructive
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criteria for the MLE existence in binary models. In Section 4 we investigate the effect
of poor approximation of the normal cumulative distribution function and suggest
a reliable computational algorithm for the log-likelihood function maximization in
case of the extreme argument value of function Φ. Finally, in Section 5 we compare
algorithms via statistical simulations.

2. The log-likelihood function

Let yi be a binary variable and xi be a k×1 fixed vector of the explanatory variables
or covariates, i = 1, ..., n. Throughout the paper it is assumed

rank (x1, ...,xn) = k, (1)

which is referred to as a full rank condition. The probit model is based on the
binomial distribution of yi with probability

Pr (yi = 1) = Φ(β′xi), i = 1, ..., n (2)

where Φ is the normal cumulative distribution function (cdf)

Φ(s) =
∫ s

−∞
φ(t)dt,

where φ(t) = (2π)−1/2e−
1
2 t2 is the standard normal density, and β is the k × 1

parameter of interest. Assuming independence of {yi, i = 1, ..., n} the log-likelihood
function for the probit model is written as

l(β) =
∑
yi=1

log [Φ(si)] +
∑
yi=0

log [1− Φ(si)], β ∈R
k, (3)

where si = β′xi. The MLE, β̂ML maximizes function (3). To find the MLE we need
the first and second derivatives of (3):

∂l/∂β =
∑
yi=1

φ(si)Φ−1(si)xi −
∑
yi=0

φ(si)(1 − Φ(si))−1xi , (4)

∂2l/∂β2 = −{ ∑
yi=1

[siφ(si)Φ−1(si) + φ2(si)Φ−2(si)]xix′
i

+
∑
yi=0

[φ2(si)(1 − Φ(si))−2 − siφ(si)(1− Φ(si))−1]xix′
i

}
. (5)

Taking the expectation we obtain the k × k information matrix

I(β) = −E (∂2l/∂β2) =
n∑
1

φ2(si)
Φ(si)(1− Φ(si))xix′

i. (6)
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The covariance matrix may be estimated in two ways – as the inverse of the expected
or observed information matrix:

cov1(β̂ML) = I−1(β̂ML), cov2(β̂ML) =

(
∂2l

∂β2

∣∣∣∣
β=βML

)−1

.

For further approximations the following facts about the cdf and the standard
normal density function will be used:

lim
s−→−∞

φ(s)
sΦ(s)

= −1, lim
s−→∞

φ(s)
s[1− Φ(s)] = 1 (7)

sΦ(s) + φ(s) > 0, φ(s)− s(1− Φ(s)) > 0 ∀s ∈ R
1. (8)

The proof of (7) is given by Feller (1957, p. 166). Inequalities (8) can be obtained
by a slight modification of that proof. The approximation based on the limits (7)
will be used in Section 4 to calculate the cdf for large value of the argument.

3. Criteria for the existence

In many cases the maximization of the log-likelihood function (3) runs quite smoothly.
However, for some data the estimation result seems suspicious: even the criterion of
convergence met the maximum of the log-likelihood function is close to zero and the
final estimate is unreasonably large in absolute value. Can one trust that result?
Maybe the MLE does not exist at all and the obtained convergence is the result of
computer inaccuracy and cut-off-errors? To answer this question one has to have
a criterion to check whether the MLE exists for particular data. If that criterion
shows that the MLE exists, then one could trust the estimation result, otherwise it
would indicate that the resulted estimate is false. We stress that the failure of the
maximum likelihood procedure itself does not mean that the MLE does not exist
because that failure may occur due to the overflow error during computation of the
cdf at the large value of the argument (see the next section).
The uniqueness of the MLE, if it exists, for probit model under assumption (1)

was proven by Haberman (1974, p. 309) and follows from the fact that functions
log(Φ(·)) and log(1 − Φ(·)) are strictly concave. Notice that for linear regression
condition (1) implies the existence of the MLE, unlike probit model. The Hessian
of the log-likelihood function (5) under (1) is positive definite, as follows from
inequalities (8). Therefore, the log-likelihood is a strictly concave function of β –
an important feature of the probit model. Also, the log-likelihood function of the
probit model must be negative because 0 < Φ(β′xi) < 1 for all β. Haberman (1974,
p. 320) and Weddenburn (1976) formulated the condition for the MLE existence
for the probit and logistic models in general terms; Albert and Anderson (1984) did
it for the logistic, and Lesaffre and Kaufmann (1992) for the probit model. That
necessary and sufficient criterion was formulated in terms of separation of the data
points in covariate space. Further, S0 denotes the index set {i : yi = 0} and S1

denotes {i : yi = 1}.
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Necessary and sufficient criterion for the MLE existence of the probit
model (Lesaffre and Kaufmann, 1992). The MLE for the probit model exists if
and only if there is no β �= 0 ∈ R

k such that

β′xi ≥ 0, i ∈ S0 and β′xi ≤ 0, i ∈ S1, (9)

which will be referred to as a separation condition. Geometrically, the MLE does
not exist if and only if there is a plane which separates points {xi, i = 1, ..., n}
into two groups according to occurrence/non-occurrence of event y. After Albert
and Anderson (1984) points {xi, i = 1, ..., n} are called overlapped if there is no
separation plane. If (9) is not true for any β, then, as it can be easily shown,
l(β)→ −∞ if ‖ β ‖→ ∞. Otherwise, limλ→+∞ l(λβ′0xi) = 0 where β0 ∈ R

k is such
that β′0xi ≥ 0 for i ∈ S0 and β′0xi ≤ 0 for i ∈ S1, β �= 0.
Criterion (9) is illustrated by a one-covariate probit model with the intercept

term, Pr(yi = 1) = Φ(β1 + β2xi), see Figure 1. For this problem k = 2 and
xi = (1, xi)′. Denote

M0 = max
yi=0

xi, m0 = min
yi=0

xi, M1 = max
yi=1

xi, m1 = min
yi=1

xi.

Figure 1. Two situations in a one-covariate probit model with the intercept term. In
the top graph a separation line (bold) exists because intervals (m0,M0) and (m1,M1)
do not overlap. Consequently, the MLE does not exist for these data. On the
contrary, in the bottom graph a separation line does not exist because intervals
(m0,M0) and (m1,M1) overlap due to one vector y = 1 which falls among other
vectors with y = 0. Consequently, the MLE exists for these data
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Vectors {xi, i = 1, ..., n} can be separated by a line if and only if intervals
(m0,M0) and (m1,M1) do not overlap which occurs if M0 ≤ m1 or M1 ≤ m0.
Therefore, the MLE for the probit model with one covariate and intercept exists if
and only if either m0 < m1 < M0 or m0 < M1 < M0. In particular, there should
be at least one data point with y = 0 or y = 1 for the MLE to exist. The MLE
does not exist if for all data points yi = 0 (or yi = 1), i = 1, ..., n. Note that this
statement is true only for probit models with the intercept term. The condition on
separation is harder to verify for higher dimensions. We aim to construct criteria
for the MLE existence in the probit model for an arbitrary parameter dimension in
the rest of this section.
To simplify further considerations we introduce the following vectors:

vi = (1 − 2yi)xi =
{

xi if i ∈ S0

−xi if i ∈ S1
, i = 1, ..., n. (10)

Most of the statements of the following theorem can be viewed just as certain
reformulations of the separation condition (9) in terms of existence of the solution
of a system of homogeneous inequalities. The last statement is the well known
Gordan’s theorem (1873), see also Cottle et al. (1992).

Theorem 1. The following statements are equivalent:

(i) MLE for the probit model exists;

(ii) there are no β �= 0 such that β′vi ≥ 0 for all i = 1, ..., n;

(iii) for any β �= 0 there is vector vj from {vi, i = 1, ..., n} such that β′vj < 0;

(iv) the system of homogeneous linear inequalities β′vi > 0 for β has no solution;

(v) there exist γ1 ≥ 0, ..., γn ≥ 0 not all equal to zero that
∑n

i=1 γivi = 0.

Consequently, if a vector is a linear combination of other vectors with nonneg-
ative coefficients it can be removed from the MLE existence consideration because
it does not affect the existence of solution to a system of homogeneous inequalities.
The following simple existence criterion is formulated which sometimes works. Be-
fore formulating the criterion let us make some comments on the geometry of the
Euclidean space R

k. We define an ort-vector as a vector with coordinates 0, 1 or
−1. Then, the space can be divided into 2k quadrants. An open quadrant can be
defined as an open cone spanned by the k neighboring ort-vectors.

Theorem 2. (Sufficient Criterion I). The MLE exists if every open ortant of
R

k contains a vector from {vi, i = 1, ..., n}, or algebraically, for any k dimensional
vector e = (e1, ..., ek)′ consisting of 1 or −1 there exists a vector vj = (vj1, ..., vjk)′

such that ervjr > 0 for all r = 1, ..., k.
Proof. We prove that for any vector β �= 0 there exists a vector vj from

{vi, i = 1, ..., n} such that β′vj > 0, using (iii) of Theorem 1. Let β �= 0 be given.
We construct vector e = (e1, ..., ek)′ using the following rule

er =
{

0, if βr = 0
βr/|βr|, if βr �= 0.
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Coordinates of this vector are 0 or ±1 and e �= 0. Hence there exists vector vj

such that ervjr > 0 for all r = 1, ..., k and e′vj =
∑k

r=1 ervjr > 0. But β′vj =∑k
r=1 ervjr |βr| > 0, i.e. the MLE exists. ✷

This criterion is simple but quite restrictive; for instance, for a one-covariate
probit model with the intercept term it works only if x takes positive and negative
values for y = 0 and y = 1. A better sufficient criterion is formulated below. To
simplify the notation vectors xi are supplied with the superindex 0 or 1; thus x0

i

corresponds to the covariate vector with yi = 0 and x1
j corresponds to yj = 1;

also x0 are supplied with the subindex i and x1 are supplied with the subindex j.
As follows from (9) the MLE does not exist if and only if {x0

i } and {x1
j} can be

separated by a plane.
Theorem 3. (Sufficient Criterion II). The MLE exists if there exists x0

p which
can be represented as a linear combination of some vectors {x1

j} with positive coeffi-
cients, or there exists x1

p which can be represented as a linear combination of some
vectors {x0

j} with positive coefficients.
Proof. Let vector x0

p can be represented as a positive linear combination
∑
λjx1

j

where λj > 0. We use (iv) of Theorem 1 to prove that the MLE exists. On the
contrary, if β exists such as β′x1

j > 0 and β
′x0

i < 0, then for vector x
0
p we have

β′x0
p = β

′∑λjx1
j =

∑
λjβ

′x1
j > 0,

a contradiction. Analogously, we prove the MLE existence if x1
p can be expressed

as a positive linear combination of vectors x0
i . ✷

The following algorithm determines whether the MLE exists, based on Theo-
rem 3.

Algorithm 1.

1. Pick a vector x0
p from {x0

i }.
2. Pick k linearly independent vectors from {x1

j}.

3. Express x0
i as a linear combination of k vectors from step 2 solving the accord-

ing system of linear equations. If all coefficients of the solution are positive
then the MLE exists, and quit. Otherwise, return to step 2 until all k linearly
independent vectors from {x1

j} are enumerated.
4. Return to 1 and pick another vector.

The necessary and sufficient criterion for the MLE existence is formulated next.
Theorem 4. (Necessary and Sufficient Criterion). The MLE does not exist if

and only if there are k− 1 vectors w1,w2, ...,wk−1 among {vi, i = 1, ..., n} that all
n determinants,

Di = det


vi1 vi2 · · · vik

w11 w12 · · · w1k

· · ·
wk−1,1 wk−1,2 · · · wk−1,k

 , i = 1, 2, ..., n (11)
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have the same sign.
Proof. Let the MLE not exist, i.e. there exists β �= 0 as the solution to n

homogeneous inequalities β′vi ≥ 0, i = 1, ..., n. It is well known that the solutions
to the system of homogeneous inequalities is a polyhedral cone C+ conjugate to
the cone C spanned by the vectors {vi, i = 1, ..., n}, e.g. Hoffman (1999). Each
edge of C+ is orthogonal to at least k − 1 vectors of {vi, i = 1, ..., n}. Hence it is
possible to pick a β∗ �= 0 and k − 1 vectors w1, ...,wk−1 among {vi} such that
β′∗vi ≥ 0 for all i = 1, ..., n and β′∗wj = 0 for j = 1, ..., k − 1. Thus, in searching
a plane which separates {x0

i } and {x1
j}, without loss of generality, we can restrict

ourselves to planes which go through k − 1 points from {vi}. Further, it is well
known that the position of vector v = (v1, ..., vk)′ about the plane defined by k
points (0,w1, ...,wk−1) is determined by the sign of

det


v1 v2 · · · vk

w11 w12 · · · w1k

· · ·
wk−1,1 wk−1,2 · · · wk−1,k

 .
Therefore, the MLE does not exist if and only if all Di have the same sign for all
vi and a certain group of k − 1 vectors from {vi}. ✷

The following algorithm determines whether the MLE exists.
Algorithm 2.

1. Pick any k − 1 different vectors w1, ...,wk−1 from {vi, i = 1, ..., n}; there are(
k−1

n

)
ways to pick k − 1 different vectors w1, ...,wk−1.

2. Compute (11) for v1, ..., vn. If all Di have the same sign the MLE does not
exist, and we quit. Otherwise go to step 1 and pick another group of k − 1
vectors.

If for any k−1 group of vectors {Di} do not have the same sign, the MLE exists.
It is worthwhile to note that the above criteria for the MLE existence are ap-

plicable to general binary model P (yi = 1) = µ(β′xi) where µ(·) is a link-function
such that: (i) 0 < µ(·) < 1, (ii) log(µ(·)) and log(1 − µ(·)) are strictly concave
functions. In particular, these criteria are valid for the logistic model.

4. Algorithm for the log-likelihood maximization

The most popular general iterative algorithms for the log-likelihood function max-
imization are Newton-Raphson (NR) and Fisher Scoring (FS) with iterations:

br+1 = br + λrH−1
r gr, r = 0, 1, 2, ... (12)

where r is the iteration index, br is the MLE approximation at the rth iteration,
λr > 0 is the step length in the direction H−1

r gr, and gr is the gradient of the
log-likelihood function (4). For the Newton-Raphson algorithmH = −∂2l/∂β2 cal-
culated by formula (5) and for the Fisher Scoring algorithm H = I calculated by
formula (6); all quantities are calculated at β = br. The important feature of the
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probit model is that the matrices are positive definite under the full rank condition.
As follows from the general theory of optimization at each iteration, where gr �= 0,
there exists such a positive step length λr that l(br+1) > l(br). A common practice
is to start with λ = 1 and reduce it by half until l(br+1) > l(br).

4.1. The unit step algorithm

It is possible to avoid matrixH recalculation and its inverse at each step of iteration
(12) considering the upper bound approximation of the Hessian. In fact, as follows
from (8)

0 <
sφ(s)
Φ(s)

+
φ2(s)
Φ2(s)

< 1, 0 <
φ2(s)

[1− Φ(s)]2 − sφ(s)
[1− Φ(s)] < 1

for any s ∈ (−∞,∞). Therefore, as follows from (5)

∂2l/∂β2 > −
n∑

i=1

xix′
i = −X′X, (13)

where X is the n × k matrix with xi as the ith row (the matrix inequality means
that the difference between the left and the right side of the inequality is a positive
definite matrix). Based on inequality (13) the following Unit Step (US) algorithm
for the log-likelihood maximization can be proposed:

br+1 = br + (X′X)−1gr, r = 0, 1, 2, ... (14)

There are several advantages of the US algorithm: (i) it does not require the trial
of step length, (ii) the matrix (X′X)−1 is constant and can be calculated only once
at the initial iteration, (iii) it avoids the overflow error problem for large s when
calculating (5) or (6), (iv) at each iteration it guarantees the increase of the log-
likelihood function. The increase of the log-likelihood function follows from the
Taylor series expansion and inequality (13):

l(β)− lr = g′r(β − βr) +
1
2
(β − βr)′

∂2l

∂β2
(β∗)(β − βr)

> g′r(β − βr)− 12(β − βr)′X′X(β − βr).

The next approximation vector br+1 calculated by formula (14) maximizes the right
side of the above inequality. Since for gr �= 0 that maximum is positive it follows
that lr+1 > lr for all r = 0, 1, . . . which proves (iv).

Theorem 5. If the MLE β̂ML exists then the US algorithm converges to β̂ML

starting from any initial parameter vector b0.
Proof. Since the MLE exists lim‖β‖→∞ l(β) = −∞. Therefore, the sequence

generated by the US algorithm (14) is bounded because l(br) ≥ l(b0). Let b∗ be
any limit point of {br}, there exists at least one limit point since br are bounded.
Then limp→∞ brp = b∗ and letting p→ ∞ in (14) we obtain b∗ = b∗+(X′X)−1g∗
where g∗ is the gradient at β = b∗. It implies g∗ = 0 at any limit point of {br}.
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But there is only one point where the gradient of the log-likelihood vanishes, β̂ML.
Hence the sequence generated by the US algorithm {br} has a unique limit point
which is β̂ML. ✷

Especially effective the US algorithm might be at initial steps of the maximiza-
tion process; after few iterations one can switch to algorithms of the second order
such as Newton-Raphson (see the next section).

4.2. Initialization

To start a maximization process (14) an initial vector b0 is needed. For well defined
problems, when the range of | si |=| β′xi | is fairly small, the initial guess is not
so important. However, to reduce the number of iterations and to avoid a possible
computer overflow problem, in the presence of outliers, a better initial guess is
required. Usually the probit model contains the intercept term. So, let us assume
that the first column of matrix X contains only 1’s and b0 = (b00,b′

01)
′ where b00

is the intercept term and b01 is the (k − 1)−vector of coefficients at explanatory
variables. Then a reasonable initial guess would be b01 = 0 and b00 = Φ−1(r/n)
where r is the number of yi = 1 and Φ−1 is the inverse cdf. This choice is referred
to as ‘go-through-origin’ guess.
Another initial vector can be derived via linear regression yi on xi, i.e. b0 =

(X′X)−1X′y.

4.3. Approximation explosive effect

For some observation points, outliers, the value s = β′x may be quite large and
consequently may create troubles during the log-likelihood maximization. In this
case the computer program usually stops due to an overflow error. The core of this
trouble is in the computation of 1 − Φ(s) and related quantities. For example, let
us consider the computation of functions

φ(s)
1− Φ(s) (15)

and
φ2(s)

(1 − Φ(s))2 − sφ(s)
1− Φ(s) (16)

for large s, presented in the gradient (4) and Hessian matrix (5) formulae, respec-
tively. As follows from the right limit (7) the quantity (15) must be close to s and
the quantity (16) must be close to zero for s � ∞. Figure 2 illustrates the approxima-
tion explosive effect for that takes place in the neighborhood of s = 7 in a popular
statistical package S-plus. In fact, this effect has little to do with the accuracy of
Φ(s) computation, and even very accurate algorithms of Φ(s) approximation for
large positive s, such as described in Kennedy and Gentle (1980) or Vedder (1993),
cannot help. The approximation explosive effect happens because for large positive
s the value Φ(s) is close to 1 and therefore the accuracy of 1−Φ(s) cannot be better
than 10−7 for single and 10−14 for double precision. Thus, inaccuracy of (15) or
(16) is limited by computer float-point arithmetic (cut-off-error), not inaccuracy of
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Φ(s) approximation. Probably, the easiest way to avoid these cut-off-errors is to
substitute 1−Φ(s) by Φ(−s). However, to avoid the cut-off-error problem in a more
comprehensive way one should use another formulae for the log-likelihood function
and its derivatives which are presented in the following subsection.

Figure 2. Approximation explosive effect in statistical package S-plus. For s in the
neigborhood of 8 the computation of the gradient and the Hessian of the log-likelihood
function becomes unstable. This is driven by the fact that for large positive s the
value Φ(s) is close to 1 and therefore 1 − Φ(s) cannot have accuracy less than
10−7 for single precision and 10−14 for double precision arithmetic. Dashed lines
correspond to the approximation based on the limits (7): for large s (15) can be well
approximated by s and (16) can be well approximated by zero

4.4. Approximate formulae

As follows from the previous section a straightforward computation of the log-
likelihood function and its derivatives by formulae (3), (4) and (5) becomes unreli-
able for large values s = β′xi. We suggest to use the Feller approximation (7) for
large s.
Thus, a more reliable computation of the log-likelihood function is

l(β) =
∑
yi=1

θ1(β′xi) +
∑
yi=0

θ2(β′xi)
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where

θ1(s)=


log(−φ(s)/s), if s < −5

logΦ(s), if | s |≤ 5
−φ(s)/s, if s > 5,

θ2(s)=


φ(s)/s, if s < −5

log(1− Φ(s)), if | s |≤ 5
log(φ(s)/s), if s > 5.

(17)

The gradient should be computed by the formula

∂l/∂β =
∑
yi=1

θ3(β′xi)xi −
∑
yi=0

θ4(β′xi)xi

where

θ3(s)=


−s, if s < −5

φ(s)Φ−1(s), if | s |≤ 5
φ(s), if s > 5,

θ4(s)=


φ(s), if s < −5

φ(s) (1− Φ(s))−1 , if | s |≤ 5
s, if s > 5.

(18)

For the Hessian matrix we recommend to use the following formulae

∂2l/∂β2 = −{
∑
yi=1

θ5(β′xi)xix′
i +

∑
yi=0

θ6(β′xi)xix′
i}

where

θ5(s) =


0, if s < −5

sφ(s)Φ−1(s) + φ2(s)Φ−2(s), if | s |≤ 5
sφ(s) + φ2(s), if s > 5,

(19)

θ6(s) =


φ2(s)− sφ(s), if s < −5

φ2(s)(1 − Φ(s))−2 − sφ(s)(1 − Φ(si))−1, if | s |≤ 5
0, if s > 5.

(20)

For the expected information matrix the following formula should be used

n∑
1

θ7(β′xi)xix′
i

where

θ7(s) =


−sφ(s), if s < −5

φ2(s)Φ−1(s)(1 − Φ(s))−1, if | s |≤ 5
sφ(s), if s > 5.

(21)

The effectiveness of these approximative formulae is demonstrated in the fol-
lowing section where several algorithms are compared via statistical simulation.
These formulae provide a good approximation and are very reliable for large s; the
threshold is chosen 5. This value was found empirically and is subject to change.

5. Algorithms comparison

To evaluate the speed and reliability of different algorithms of the log-likelihood
function maximization five algorithms in the form (6) were compared:
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1. FS - Fisher Scoring. The log-likelihood function is calculated by formula (3),
the gradient is calculated by formula (4) and the expected information matrix
is calculated by formula (6).

2. NR - Newton-Raphson, formulae (3), (4) and (5) were used.

3. FSA - Fisher Scoring with Approximations for large s: formulae (17), (18)
and (21) were used.

4. NRA - Newton-Raphson with Approximations for large s: formulae (17), (18)
and (19), (20).

5. NRUS - the same as NRA with the first iteration calculated by the Unit Step
algorithm.

The sample size was taken n = 500 and the number of parameters, k = 3.
Three types of data were generated. In the first case ‘Small’ the range of the linear
predictor si = β′xi was (−2, 2). In the second type of experiments a ‘Moderate’
range (−4, 4) was taken. At last in ‘Large’ the range of β′xi corresponds (−6, 6).
All algorithms started from the ‘go-through-origin’ guess. The results are reported
in Table 1 where ‘Time’ is the average time in seconds to converge, ‘Nonc.’ is
the percentage of cases with failed convergence (the number of iteration exceeded
100, convergence met if five digits in all parameters coincide in two subsequent
iterations), ‘Error’ is the percentage of cases when the program was stopped due to
overflow error during calculations.
As follows from Table 1 for experiments with relatively small si all algorithms do
the job well and are similar in terms of speed and reliability. Only the FS algorithm
failed to converge in one experiment. For moderate values si standard algorithms
FS and NR failed almost in one third of all experiments. They got worse for a
wider range of si: computer program crashed in 83 experiments out of 100 due to
overflow error. On contrary, the corrected algorithms FSA, NRA and NRUS based
on approximate formulae worked very reliable and fast.

Small Moderate Large
(−2, 2) (−4, 4) (−6, 6)

Algorithm Time Nonc. Error Time Nonc. Error Time Nonc. Error
FS 3.85 1% 0 4.65 0 29% 6.47 0 83%
NR 3.05 0 0 3.48 0 29% 3.86 0 83%
FSA 3.97 0 0 5.15 0 0 5.63 0 0
NRA 3.24 0 0 3.72 0 0 4.34 0 0
NRUS 3.94 0 0 4.41 0 0 4.95 0 0

Table 1. Algorithms comparison for a different linear prediction range,
n = 500, k = 3, 100 simulation experiments
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[11] P.Gordan, Über die Auflösung linearer Gleichungen mit reelen Coefficienten,
Mathematische Annalen 6(1873), 23-8.

[12] S. J. Haberman, The Analysis of Frequency Data, University of Chicago,
Chicago, 1974.

[13] K.Hoffman, Linear Algebra, 3rd Ed., Prentice Hall, London, 1999.

[14] W.J.Kennedy, J. E.Gentle, Statistical Computing, Marcel Dekker, New
York, 1980.

[15] E.Lesaffre, H.Kaufmann, Existence and uniqueness of the maximum like-
lihood estimator for a multivariate probit model, Journal of American Statistical
Association 87(1992), 805-11.

[16] P.McCullagh, J. A.Nelder, Generalized Linear Models, Chapman and
Hall, London, 1989.

[17] T.Nakamura, C.-S. Lee, On the existence of minimum contrast estimates
in binary response model, Annals of Institute of Statistical Mathematics
45(1993), 741-58.

[18] W.H.Press, S. A.Teulolsky, W.T. Vetterling, B. P. Flannery, Nu-
merical Recipes in C, Cambridge University Press, Cambridge, 1992.



Computational aspects of probit model 247

[19] M. J. Silvapulle, On the existence of maximum likelihood estimates for the
binomial response models, J. of Royal Statistical Society, ser. B 43(1981), 310-
313.

[20] J.D.Vedder, An invertible approximation to the normal distribution func-
tion, Computational Statistics & Data Analysis 16 (1993), 119-23.

[21] R. W.M.Weddenburn, On the existence and uniqueness of the maximum
likelihood estimates for certain generalized linear models, Biometrika 63 (1976),
27-32.


