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A note on a Whitney map for continua

Ivan Lončar
∗

Abstract. Let X be a non-metric continuum, and C(X) the hy-
perspace of subcontinua of X. It is known that there is no Whitney map
on the hyperspace 2X for non-metrizable Hausdorff compact spaces X.
On the other hand, there exist non-metrizable continua which admit and
the ones which do not admit a Whitney map for C(X). In this paper
we investigate the properties of non-metrizable continua which admit a
Whitney map and the ones which do not admit a Whitney map for C(X).
It is shown that there is no Whitney map on the hyperspace C(X) if X
is a non-metrizable locally connected or rim-metrizable continuum.
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1. Introduction

Let X be a space. We denote by 2X the set of all nonempty closed subsets of X,
by C(X) the set of all nonempty closed connected subsets of X and by X(n), n a
positive integer, the set of all nonempty subsets consisting of at most n points [5].
We consider C(X) and X(n) as a subset of 2X .

Let X and Y be compact spaces and let f : X → Y be a continuous map. Define
2f : 2X → 2Y by 2f(F) = f(F) for F ∈ 2X . By [9, 5.10] 2f is continuous and
2f(C(X)) ⊂ C(Y) and 2f (X(n)) ⊂ Y(n). The restriction 2f |C(X) is denoted by
C(f).

Let X = {Xa, pab, A} be an inverse system of compact spaces with the natural
projections pa : limX → Xa , a ∈ A. Then 2X = {2Xa , 2pab , A}, C(X) = {C(Xa),
C(pab), A} and X(n) = {Xa(n), 2pab |Xb(n), A} form inverse systems. For each
F∈2limX, i.e., for each closed F ⊆ limX, pa(F) ⊆ Xa is closed and compact. Thus,
we have a mapping 2pa :2limX →2Xa induced by pa for each a∈A. Define a mapping
M : 2limX →lim2X by M(F ) = {pa(F ) : a ∈ A} since {pa(F):a∈A} is a thread of
the system 2X. The mapping M is continuous and 1-1. It is also an onto mapping
since for each thread {Fa:a∈A} of the system 2X the set F ′ =

⋂{p−1
a (Fa):a∈A} is
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nonempty and pa(F ′) = Fa. Thus, M is a homeomorphism. If Pa : lim2X →2Xa ,
a ∈ A, are the projections, then PaM = 2pa . Identifying F by M(F) we have Pa =
2pa .

Lemma 1. [5, Lemma 2.]. Let X = limX. Then 2X = lim2X, C(X) = limC(X)
and X(n) = limX(n).

If Fa ∈ 2Xa , then P−1
a (Fa) = (2pa)−1(Fa) = {F : F is a closed subset of limX

and pa(F) = Fa} ∈ 2limX. Similarly, for the natural projection Qa of the system
C(X) = {C(Xa), C(pab), A} we have Qa = C(pa). Moreover, if Ca ∈ C (Xa), then
Q−1

a (Ca) = (C(pa))−1(Ca) = {C : C is a subcontinuum of limX and pa(C) = Ca}
∈ C(limX).

We say that an inverse systemX = {Xa, pab, A} is σ-directed if for each sequence
a1,a2,...,ak,... of the members of A there is an a∈A such that a≥ak for each k ∈ N.

In the sequel we shall use the following theorem.
Theorem 1. [6, Lemma 2.2]. Let X = {Xa, pab, A} be a σ-directed inverse

system of compact spaces with surjective bonding mappings and limit X. Let Y be
a metric compact space. For each surjective mapping f:X→Y there exists an a∈A
such that for each b≥a there exists a mapping gb:Xb →Y such that f = gbpb.

If the bonding mappings are not surjective, then we consider the inverse system
{pa(X), pab|pb(X), A} which has surjective bonding mappings. Moreover, pa(X) =
∩{pab(Xb) : b ≥ a}. Applying Theorem 1 we obtain the following theorem.

Theorem 2. Let X = {Xa, pab, A} be a σ-directed inverse system of compact
spaces with limit X. Let Y be a metric compact space. For each surjective mapping
f:X→Y there exists an a∈A such that for each b≥a there exists a mapping gb:
pb(X)→Y such that f = gbpb.

Let X = {Xa, pab, A} be an inverse system. For each subset ∆0 of (A, ≤) we
define sets ∆n, n = 0, 1, ..., by the inductive rule ∆n+1 = ∆n

⋃ {m(x,y): x,y∈ ∆n},
where m(x,y) is a member of A such that x,y ≤m(x,y). Let ∆ =

⋃{∆n: n ∈ N}. It
is clear that card(∆) = card(∆0). Moreover, ∆ is directed by ≤ [12, Lemma 9.2].
For each directed set (A,≤) we define

Aσ = {∆ : ∅ �= ∆ ⊂ A, card(∆) ≤ ℵ0 and ∆ is directed by ≤}.

Then Aσ is σ - directed by inclusion [12, Lemma 9.3]. If ∆ ∈Aσ, let X∆ = {Xb,
pbb′ , ∆} and X∆ = limX∆. If ∆, Γ ∈Aσ and ∆ ⊆ Γ, let p∆Γ: XΓ →X∆ denote
the map induced by the projections pΓ

δ : XΓ →Xδ, δ ∈ ∆, of the inverse system XΓ.
Now, we have the following theorem.

Theorem 3. [12, Theorem 9.4] If X = {Xa, pab, A} is an inverse system, then
Xσ = {X∆, p∆Γ, Aσ} is a σ - directed inverse system and limX and limXσ are
canonically homeomorphic.

Theorem 4. Let X be a compact space. There exists a σ - directed inverse
system X = {Xa, pab, A} of compact metric spaces Xa and surjective bonding
mappings pab such that X is homeomorphic to limX.

Proof. Apply [8, pp. 152 , 164] and Theorem 3. ✷

Theorem 5. If X is a locally connected compact space, then there exists a
σ-directed inverse system X = {Xa, pab, A} such that each Xa is a metric locally
connected compact space, each pab is a monotone surjection and X is homeomorphic
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to limX. Conversely, the inverse limit of such system is always a locally connected
compact space.

Proof. Apply Theorem 4 and [8, p. 163, Theorem 2.]. ✷

2. Whitney map for C(X)

Let Λ be a subspace of 2X . By a Whitney map for Λ [10, p. 24, (0.50)] we will
understand any mapping g : Λ → [0,+∞) satisfying

a) if A,B∈ Λ such that A⊂B, A�=B, then g(A)< g(B) and

b) g({x}) = 0 for each x∈X.
It is known that there is no Whitney map on the hyperspace 2X for non-

metrizable Hausdorff compact spaces X [1]. On the other hand, there exist non-
metrizable continua which admit and the ones which do not admit a Whitney map
for C(X) [1].

A continuous mapping f : X → Y is light (zero-dimensional) if all fibers f−1(y)
are hereditarily disconnected (zero-dimensional or empty) [3, p. 450], i.e., if f−1(y)
does not contain any connected subset of cardinality larger than one (dimf−1 (y)
≤ 0). Every zero-dimensional mapping is light, and in the realm of mappings with
compact fibers the two classes of mappings coincide.

The key theorem of this section is the following theorem.
Theorem 6. Let X = {Xa, pab, A} be a σ-directed inverse system of compact

spaces Xa and surjective bonding mappings pab. Let X be the limit of X. If there
exists a Whitney map g for C(X) then there exists an a ∈ A such that pb : X →
Xb is a light mapping for every b ≥ a.

Proof. From Lemma1 it follows that C(X) = {C(Xa), C(pab), A} is an inverse
system whose limit is homeomorphic to C(X). Because of Theorem 2, for a Whitney
map g : C(X) → [0,+∞) there exists an a ∈ A such that for every b ≥ a there exists
a mapping gb : Qb(C(X)) → [0,+∞) such that g = gbQb, where Qb is the natural
projection Qb : limC(X)→ C(Xb). Let b ≥ a be fixed. Now we will prove that the
natural projection pb : limX → Xb is a light mapping. Suppose that there exists a
point xb ∈ Xb such that p−1

ab (xb) contains a non-degenerate component C. Let x be
a point of C. Then {x}⊂ C and {x}�= C. This means that g({x}) < g(C), i.e., 0 �=
g(C). On the other hand, we have Qb({x}) = Qb(C). This means that gbQb({x}) =
gbQb(C). From g = gbQb it follows that g({x}) = g(C). This contradicts 0 �= g(C).
We infer that pb is a light mapping. ✷

Theorem 7. Let X = {Xa, pab, A} be a σ-directed inverse system of compact
spaces Xa and monotone surjections pab. Let X be the limit of X. If there exists a
Whitney map g for C(X) then there exists an a ∈ A such that pb : X → Xb is a
homeomorphism for every b ≥ a.

Proof. From Lemma1 it follows that C(X) = {C(Xa), C(pab), A} is an inverse
system whose limit is homeomorphic to C(X). Moreover, every C(pab) is a surjection.
By Theorem 1 for a Whitney map g : C(X) → [0,+∞) there exists an a ∈ A such
that for every b ≥ a there exists a mapping gb : C(Xb) → [0,+∞) such that g =
gbQb, where Qb is the natural projection Qb : limC(X)→ C(Xb). Let b ≥ a be fixed.
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Now we shall prove that the natural projection pb: limX → Xb is a homeomorphism.
It suffices to prove that pb is 1-1. From Theorem 6 it follows that there exists an
a1 ∈ A such that for each b ≥ a1 pb is light. Now, pb for b ≥ a, a1 is light and
monotone. This means that pb is 1-1. Hence, pb is a homeomorphism. ✷

Corollary 1. If X is a limit of a σ-directed inverse system X = {Xa, pab,
A} of compact metric spaces Xa and monotone surjections pab, then there exists a
Whitney map for C(X) if and only if X is metrizable.

Proof. If X is metrizable, then there exists a Whitney g map for 2X [10, pp.
25-27]. The restriction g|C(X) is a Whitney map for C(X). Conversely, if there
exists a Whitney map for C(X), then there exists an a ∈ A such that for every b ≥
a mapping pb is a homeomorphism. Hence, X is metrizable. ✷

The following Theorem generalizes Observation 3 from [1] which states that for
any non-metrizable dendron (i.e., a Hausdorff continuum such that any two of its
distinct points are separated by a third one) X there is no Whitney map for C(X)
since there is a canonical embedding of X(2) in C(X) (which maps any pair {x, y}
with x �= y to the unique arc xy).

Theorem 8. Let X be a locally connected compact space. Then there exists a
Whitney map for C(X) if and only if X is metrizable.

Proof. If X is metrizable, then there exists a Whitney g map for 2X [10, pp.
25-27]. The restriction g|C(X) is a Whitney map for C(X). Conversely, let X be a
locally connected compact space for which there exists a Whitney map g : C(X) →
[0,+∞). By virtue of Theorem 5 there exists a σ-directed inverse system X = {Xa,
pab, A} such that every Xa is a locally connected metric space, every pab is a
monotone surjection and X is homeomorphic to limX. Apply Corollary 1. ✷

Corollary 2. If X is a non-metric locally connected compact space, then there
is no Whitney map for C(X).

Let τ be an infinite cardinal. A space X is said to be rim-τ if it has a basis B
such that the weight w(Bd(U)) ≤ τ for each U ∈ B. In the sequel we shall use the
following theorem.

Theorem 9. [15, Theorem 1.4].Let f : X → Y be a light mapping of a non-
degenerate continuum X onto a space Y. If X admits a basis of open sets whose
boundaries have weight ≤ w(Y), then w(X) = w(Y).

Theorem 10. Let X be a rim-τ continuum with w(X) > τ . Then there is no
Whitney map for C(X).

Proof. There exists an inverse system Y = {Ya, qab, A} of metric continua Xa

such that X is homeomorphic to limY. From Theorem 2.7 of [6] (see also the proof
of Theorem 3) it follows that there exists a τ -directed inverse system X ={Xa, pab,
Aτ} such that each Xa is homeomorphic to the limit of an inverse subsystem of Y
of cardinality τ and X is homeomorphic to limX. We infer that w(Xa) = τ . If we
suppose that there exists a Whitney map for C(X), then the projection pb must be
light for every b ≥ a for some a ∈ A (Theorem 6). From Theorem 9 it follows that
w(X) = w(Xb) = τ . This is impossible since w(X) > τ . ✷

A space X is said to be rim-metrizable if it has a basis B such that Bd(U)) is
metrizable for each U ∈ B. Equivalently, a space X is rim-metrizable if and only
if for each pair F,G of disjoint closed subsets of X there exists a metrizable closed
subset of X which separates F and G.
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Lemma 2. [15, Theorem 1.2]. Let X be a nondegenerate rim-metrizable con-
tinuum and let Y be a continuous image of X under a light mapping f : X→Y. Then
w(X) = w(Y).

Lemma 3. [15, Theorem 3.2]. Let X be a rim-metrizable continuum and let f
: X→Y be a monotone mapping onto Y. Then Y is rim-metrizable.

It is clear that rim-metrizable continua are rim-τ for τ = ℵ0. Hence, we have
the following theorem.

Theorem 11. Let X be a rim-metrizable continuum. Then there exists a
Whitney map for C(X) if and only if X is metrizable.

Proof. Theorem 11 follows from Theorem 10. We shall give an independent
proof. There exists a σ-directed inverse system X = {Xa, pab, A} of metric continua
Xa such that X is homeomorphic to limX. From Theorem 6 it follows that there
exists an a ∈ A such that for each b ≥ a the projection pb is light. By Lemma2 we
infer that w(X) = w(Xb). This means that X is metrizable since w(Xb) = ℵ0. ✷

If X is a continuous image of an ordered compact space, then X is rim-metrizable
[7, Theorem 5.]. Hence we have the following corollary.

Corollary 3. If a continuum X is a continuous image of an ordered compact
space, then there exists a Whitney map for C(X) if and only if X is metrizable.

In 1973 Heath, Lutzer and Zenor [4] introduced the concept of monotone nor-
mality which is a strengthening of normality.

A space X is monotonically normal [4] if points are closed and, for each x∈X
and an open set U with x∈U, there is an open H(x, U) with x∈H(x, U)⊆U such
that:

(1) (normality) H(x, U)
⋂
H(y, V) = ∅ unless x∈V or y∈U, and

(2) (monotonicity) if x∈U⊆V, then H(x, U)⊆H(x, V).
Every metrizable space is monotonically normal and every linearly ordered space

is monotonically normal [4]. An arbitrary subspace of monotonically normal space
is monotonically normal and a closed image of a monotonically normal space is
a monotonically normal space [4]. It follows that every continuous image of an
ordered compactum is monotonically normal. Moreover, we have the following
excellent recent result of M.E. Rudin [13].

Theorem 12. A space is compact and monotonically normal if and only if it
is the continuous image of some compact, linearly ordered space.

Thus, we have the following corollary.
Corollary 4. Let X be a monotonically normal continuum. Then there exists

a Whitney map for C(X) if and only if X is metrizable.
Theorem 13. Let X be a continuum which admits a Whitney map for C(X).

Then each arc L in X is metrizable.
Proof. It is clear that there exists a Whitney map for C(L). From Theorem 11

it follows that L is metrizable. ✷

A dendroid is a hereditarily unicoherent continuum which is arcwise connected.
If X is a dendroid and x, y ∈ X, then there exists a unique arc [x, y] in X with
endpoints x and y.

Corollary 5. If X is a dendroid which admits a Whitney map for C(X), then
each arc in X is a metric arc.
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The dendroids in which every arc is a metric arc play an interesting role as the
following theorem shows.

Theorem 14. Let X be a dendroid. There exists an inverse system X = {Xa,
pab, A} such that each Xa is a dendroid with metrizable arcs, every pab is monotone
and X is homeomorphic to limX.

Proof. There exists an inverse system Y = {Ya, qab, A} of metric continua Xa

such that X is homeomorphic to limY. Let qa be the natural projection of X onto
Ya. Applying the monotone-light factorization [16] to qa, we get compact spaces
Xa, monotone surjection ma : X→Xa and light surjection la : Xa →Ya such that
qa = la◦ma. By [8, Lemma 8] there exist monotone surjections pab : Xb →Xa such
that pab◦mb = ma, a ≤ b. It follows that X = {Xa, pab, A} is an inverse system
such that X is homeomorphic to limX. Let us prove that Xa is a dendron. The
space Xa is hereditarily unicoherent since ma is monotone. Moreover, Xa is arcwise
connected. Namely, if xa, ya are distinct points of Xa, then there exists a pair x,
y of points of X such that xa = ma(x) and ya = ma(y). Let L be the arc with
endpoints x and y. Now, ma(L) is a continuous image of an arc and, consequently,
arcwise connected [14]. Hence, Xa is a dendroid. Since every map la is light, we
infer that each arc in Xa is metrizable (Theorem 2). ✷

Theorem 15. Let X be a rim-metrizable dendroid. There exists an inverse
system X = {Xa, pab, A} such that each Xa is a metric dendroid, every pab is
monotone and X is homeomorphic to limX.

Theorem 16. Let X = {Xa, pab, A} be an inverse system of dendroids and
monotone surjective bonding mappings pab. The X = limX is a dendroid.

Proof. It is well known that X is hereditarily unicoherent [11, Theorem 3].
Let us prove that X is arcwise connected. Let x, y be a pair of distinct points in
X. There exists an a ∈ A such that pb(x) �= pb(y) for every b ≥ a. There exists a
unique arc Lb which contains pb(x) and pb(y). Let us prove that pbc(Lc) = Lb. Now,
pbc(Lb) is a continuous image of an arc and, consequently, arcwise connected [14].
It follows that there exists an arc Mb with endpoints pb(x) and pb(y). It follows
that Mb = Lb since Xb is hereditarily unicoherent. Moreover, p−1

bc (Mb) = p−1
bc (Lb)

is a continuum containing Lc since Xc is hereditarily unicoherent. This means that
pbc(Lc) ⊂ Lb. Finally, pbc(Lc) = Lb since Lb is the arc and pbc(Lc) contains pb(x)
and pb(y). ✷

Now we consider the existence of transfinite sequences of subcontinua in a con-
tinuum X.

Theorem 17. If a continuum X contains a transfinite increasing (decreasing)
sequence of subcontinua, then X admits no Whitney map for C(X).

Proof. Suppose that X is a continuum which contains the transfinite increasing
sequence C0 ⊂ C1 ⊂ ... ⊂ Cξ ⊂ ..., ξ < ω1 (decreasing sequence C0 ⊃ C1 ⊃
... ⊃Cξ ⊃ ..., ξ < ω1) of subcontinua of X. Then ω(C0) < ω(C1) < ... < ω(Cξ) < ...,
ξ < ω1 is an increasing transfinite sequence of real numbers (ω(C0) > ω(C1) > ... >
ω(Cξ) > ..., ξ < ω1 is a decreasing transfinite sequence of real numbers). This is
impossible since w(R) = ℵ0. ✷

Using Theorem 17 we obtain the following theorem.
Theorem 18. Let X be a continuum such that there exists a point x of X with

the property that for each y �= x there exists a locally connected compact subspace
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(or rim-metrizable subcontinuum) C(x, y) containing x and y. If the density d(X)
> ℵ0, then there is no Whitney map for C(X).

Proof. Suppose that there exists a Whitney map for C(X). Consider the subset
E = X\{x}. For each e∈E we consider a subcontinuum C(e, x). It is clear that
X =

⋃{C(e, x) : e ∈ E}. If there exists a Whitney map for C(X), then there
exists a Whitney map for hyperspace C(C(e,x)). From Theorems 8 and 11 it follows
that every subcontinuum C(e, x) is separable since it is metrizable. Hence if E is
countable, then X is separable. This means that if d(X) > ℵ0, then E is uncountable.
Now, we define a separable subcontinuum Cα ⊆X for every countable ordinal α < ω1

such that Cα ⊆ Cβ if α < β. Let e1 be any point of E. Set C1 = C(e1, x). There
exists a point e2 ∈E\C1 since C1 is separable and d(X)> ℵ0. Set C2 = C1

⋃
C(e2,

x). Suppose that Cα is defined for every α < β and define Cβ . If β is a non-
limit ordinal, then there exists a point eβ ∈E\Cβ−1 since Cβ−1 is separable and
d(X)> ℵ0. Set Cβ = Cβ−1

⋃
C(eβ , x). If β is a limit ordinal, then we set Cβ =

Cl(
⋃{Cα : α < β}). It is clear that Cβ is separable. We have strictly increased a

transfinite sequence C1 ⊂ C2 ⊂ ... ⊂ Cα ⊂ ..., α < ω1. From Theorem 17 it follows
that there is no Whitney map for C(X), which is a contradiction. ✷

Corollary 6. Let X be a continuum. If there exists a point x of X such that
for each y �= x there exists a locally connected compact subspace (or rim-metrizable
subcontinuum) C(x, y) containing x and y and if there is a Whitney map for C(X),
the density d(X) = ℵ0.

Theorem 18 implies the following corollary.
Corollary 7. Let X be an arcwise connected continuum. If the density d(X)

> ℵ0, then there is no Whitney map for C(X).
An arc L in a space X is said to be a free arc in X provided that L without its

endpoints is open in X.
Corollary 8. Let X be an arcwise connected continuum. If X contains un-

countable many free arcs, then there is no Whitney map for C(X).
Proof. It is clear that d(X) > ℵ0. Apply Theorem 18. ✷

Remark 1. The cone over X [10, p. 19] is the decomposition space of the
upper semi-continuous decomposition (X×[0, 1])/(X×{1}) of X×[0, 1] obtained by
”shrinking X×{1} to a point”. The cone over X will be denoted by Cone(X), its
base X×{0} by B(X), and its vertex X×{1} ∈ Cone(X) by v. Let Ω1 be the set
of all ordinals α ≤ ω1, where ω1 is the first uncountable ordinal. The space X =
Cone(Ω1) is a dendroid which contains uncountable many free arcs. Hence, there
does not exist a Whitney map for C(X). Let us note that X is not locally connected.
Moreover, X is not rim-metrizable. Thus, there exists a non locally connected and
non rim-metrizable continuum X which admits no Whitney map for C(X).

A point e of a dendroid X is said to be an endpoint of X if there exists no arc
[a, b] in X such that x ∈ [a, b] {a, b}. The set of all endpoints of a dendroid X is
denoted by E(X).

Corollary 9. [2, p. 317].For every point x of a dendroid X, X =
⋃{[ex] : e ∈

E(X)}.
Corollary 10. Let X be a dendroid. If the density d(X) > ℵ0, then there is no

Whitney map for C(X).
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Corollary 11. If X is a dendroid such that there is a Whitney map for C(X),
then d(X) = ℵ0.

3. Whitney map for 2X

Now we shall give an alternate proof of Theorem 1 from [1] using the inverse system
method.

Theorem 19. The following conditions are equivalent for a Hausdorff compact
space X:

(1.1) X is metrizable;
(1.2) there exists a Whitney map for 2X;
(1.3) there exists a Whitney map for X(2).
Proof. The implication from (1.1) to (1.2) is well known. The one from (1.2)

to (1.3) is obvious. It remains to show that (1.3) implies (1.1). So, assume (1.3).
Let X be a Hausdorff compact space for which there exists a Whitney map g :
X(2) → [0,+∞) . By virtue of Theorem 4 there exists an inverse σ-system X =
{Xa, pab, A} such that every Xa is a metric space, every pab is a surjection and X is
homeomorphic to limX. From Lemma 1 it follows that X(2) = {Xa(2), 2pab |Xb(2),
A} is an inverse system whose limit is homeomorphic to X(2). Moreover, every
Xa(2) is a metric space and every 2pab |Xb(2) is a surjection. By virtue of Theorem 1,
for a Whitney map g : X(2) → [0,+∞) there exists an a ∈ A such that for
every b ≥ a there exists a mapping ga : Xb(2) → [0,+∞) such that g = gbPb,
where Pb is the natural projection Pb : limX(2) → Xb(2). Now we shall prove
that every natural projection pb : limX → Xb is a homeomorphism. It suffices to
prove that pb is 1-1. Suppose that there exists a point xb ∈ Xb such that p−1

ab (xb)
contains two different points x and y. Then {x}⊂ p−1

ab (xb) and {x}�= {p−1
ab (xb)}.

This means that g({x}) < g({p−1
ab (xb)}), i.e., 0 < g({p−1

ab (xb)}). On the other hand,
g({p−1

ab (xb)}) = gbPb{p−1
ab (xb)} = gb({xb}) since Pb{p−1

ab (xb)} = {xb}. This means
that g({p−1

ab (xb)}) = 0. This is impossible since 0 < g({p−1
ab (xb)}). We infer that pb

is a homeomorphism. Hence, X = limX is a metric space since every Xb is a metric
space. ✷
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